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ABSTRACT: Chemical language models (CLMs) can be
employed to design molecules with desired properties. CLMs
generate new chemical structures in the form of textual
representations, such as the simplified molecular input line entry
system (SMILES) strings. However, the quality of these de novo
generated molecules is difficult to assess a priori. In this study, we
apply the perplexity metric to determine the degree to which the
molecules generated by a CLM match the desired design
objectives. This model-intrinsic score allows identifying and
ranking the most promising molecular designs based on the
probabilities learned by the CLM. Using perplexity to compare
“greedy” (beam search) with “explorative” (multinomial sampling) methods for SMILES generation, certain advantages of
multinomial sampling become apparent. Additionally, perplexity scoring is performed to identify undesired model biases introduced
during model training and allows the development of a new ranking system to remove those undesired biases.

■ INTRODUCTION

Generative deep learning has become a promising method for
chemistry and drug discovery.1−21 Generative models learn the
pattern distribution of the input data and generate new data
instances based on learned probabilities.22 Among the
proposed generative frameworks that have been applied to
de novo molecular design,2−19 chemical language models
(CLMs) have gained attention because of their ability to
generate focused virtual chemical libraries and bioactive
compounds.20,21,23 CLMs are trained on string representations
of molecules, e.g., simplified molecular input line entry system
(SMILES) strings (Figure 1a),24 to iteratively predict the next
SMILES character using all the preceding portions of the
SMILES string (Figure 1b). In this process, CLMs learn the
conditional probability of sampling any SMILES character
based on the preceding characters in the string. After training,
the model can be used for molecular construction. CLMs have
been demonstrated to both learn the SMILES syntax and
implicitly capture “semantic” features of the training molecules,
such as physicochemical properties,20,21,25,26 bioactivity,2,21

and chemical synthesizability.3 Although alternative generative
approaches have been proposed for de novo design,13,27−29

benchmarks have not shown these to outperform CLMs.30,31 A
feature of CLMs is their ability to function in low-data
regimes,25,29 i.e., with limited training data (typically in the
range of 5−40 molecules).2,3,25 One of the most widely
employed approaches for low-data model training is transfer
learning.20,32 This method leverages previously acquired
information on a related task for which more data are available

(″pretraining”) before training the CLM on a more specific
limited dataset (″fine-tuning”).33
Several prospective de novo design studies based on CLMs

used weighted random sampling (i.e., multinomial sampling,
often in the form of temperature sampling) for molecule
generation.2,20,25,34 This method samples the most likely
SMILES string characters more frequently than the unlikely
characters. This feature enables (i) extensive virtual molecule
libraries to be generated and (ii) a certain chemical space to be
investigated owing to “fuzzy” (probability-weighted) random
sampling. However, such a sampling strategy can result in
molecules that do not possess the physicochemical and
biological properties of the training data. Furthermore, because
the number of molecules that can potentially be sampled from
CLMs considerably exceeds synthetic capacities, and a natural
ranking of the generated SMILES does not exist, an additional
procedure is required for molecule prioritization, e.g., one
based on similarity assessment or activity prediction.2,35 We
recently introduced the beam search algorithm as an alternative
to multinomial sampling. During beam search, the most likely
SMILES strings are generated based on the respective
character probabilities, thereby alleviating the strict require-
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ment for additional molecule prioritization.36 The beam search
performs chemical space “exploitation” as the algorithm
searches for the most probable SMILES strings in a greedy
manner. This method generates only a few candidate
molecules at the expense of chemical space exploration and
design diversity.
Herein, we aimed to improve upon an existing CLM that we

recently used for prospective application3,25,36 to increase its
potential for automated molecular design and scoring. To this
end, we used perplexity to assess the “goodness” of the designs
generated by CLMs via multinomial sampling aiming to (i)
preserve the advantage of intrinsic molecule ranking37 as it can
be achieved via beam search, (ii) benefit from the chemical
space exploration provided by multinomial sampling, and (iii)
provide model-based insights into the most promising
molecules for follow-up analysis.36 We systematically trained
a CLM on sets of bioactive ligands of 10 different
macromolecular targets under four different data-regime
scenarios each. On top of its ability to rank the generated
SMILES strings, the perplexity metric identified undesired
effects of transfer learning using CLMs, thereby qualifying as a
criterion for detecting undesired model bias.

■ RESULTS AND DISCUSSION

Perplexity-Based Scoring of Molecular De Novo
Designs. This study aimed to leverage the overall likeness
of the generated SMILES strings for automated molecule
ranking based on the respective character probabilities.
Accordingly, the SMILES string(s) with the highest likeness
can be considered the best-matching solutions to the CLM
sampling problem, reflecting the information learnt by the
CLM. We selected the perplexity metric to reflect the
probability of sampling a SMILES string as a function of its
characters (eq 1).37 Perplexity has been used to assess the
performance of language models in natural language
processing.37−39 For a SMILES string of length N, the

perplexity score can be computed by considering the CLM
probability of any ith character (pi):

=
∑−
=perplexity 2 N p1 log( )

i

N

i
1 (1)

The information on the overall character probabilities is
captured into a single metric, which is normalized by the
length of the SMILES string (N). Perplexity allows quantifying
the CLM confidence that a specific SMILES string could have
belonged to the training data. If the assumption that the
underlying CLM captured relevant information from the
training data is satisfied, then perplexity will be suitable for
molecule ranking. Because the training objectives of the CLM
are implicitly encoded in the fine-tuning data, the perplexity
score allows one to assess whether the generated SMILES
strings match the objectives. A SMILES string composed of
probable characters (high pi values) exhibits low perplexity,
whereas a string containing many unlikely characters (low pi
values) exhibits high perplexity. Hence, low perplexity scores
are desirable.
To analyze the behavior of perplexity, an RNN with long

short-term memory (LSTM) cells40 was pretrained with
approximately 1.6 million molecules from ChEMBL (version
28).41 Ten randomly selected targets were used for fine-tuning
(Table 1). For each macromolecular target, ligands that
possessed a pChEMBL activity value larger than 6 were
selected, where pChEMBL is defined as −log10(molar IC50,
XC50, EC50, AC50, Ki, Kd, or potency). To emulate different
low-data regimes typical of drug discovery, we prepared fine-
tuning sets of different sizes that contained 5, 10, 20, or 40
randomly selected ligands for each target. For each of the 10
targets and each of the four fine-tuning sets, a total of 1000
SMILES strings were sampled after every second epoch during
a total of 100 CLM fine-tuning epochs via multinomial
sampling. Unlike our previous studies,2,3,25,35 no temperature
parameter was used to modify multinomial sampling to avoid

Figure 1. Principles of chemical language models (CLMs). (a) Example of a molecular structure (Kekule ́ structure) and a corresponding SMILES
string. (b) CLMs are trained to iteratively predict the next SMILES character based on the preceding string characters. (c) Multinomial sampling
can be used to generate new SMILES strings from trained CLMs, where SMILES characters are sampled with a weighted random sampling of
probability distributions learned by the CLM.
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the introduction of confounding factors in our analysis. For all
fine-tuned models and all the fine-tuning epochs, the mean
SMILES string validity consistently exceeded 90% (Figure S1).
Chemical Relevance of Perplexity. To investigate the

information captured by the perplexity metric, we evaluated its
correlation with two measures of molecular similarity
computed between the de novo designs and the corresponding
fine-tuning sets: (a) Tanimoto similarity on Morgan finger-
prints,42 which captures the presence of common substruc-
tures, and (b) Tanimoto similarity on topological pharmaco-

phore fingerprints,43 which captures the presence of shared
structural motifs relevant for ligand-target interactions. To
allow for an easier comparison with the perplexity metric, the
computed Tanimoto similarity values were converted into
distances (computed as 1 − similarity).
A Pearson correlation of approximately 0.3 was observed

between the perplexity score and the computed distances to
the smaller fine-tuning sets (5 and 10 molecules) during the
initial fine-tuning epochs before stabilizing at a value of 0.5
(Figure 2). A correlation of 0.5 tends to be reached at earlier
epochs with bigger fine-tuning sets compared to using only five
molecules (Figure 2). This result suggests that the perplexity
score captures common substructure and 2D pharmacophore
features while at the same time incorporating additional
information modeled by the CLM.

Perplexity as an Indicator for Comparing Molecular
Sampling Strategies. In a previous study, new bioactive
compounds were successfully identified via beam search
sampling,36 which is a heuristic greedy algorithm. Its search
″breadth″ is controlled by a width parameter (k), which
represents the number of the most probable SMILES strings
that the model considers during string extension. Here, beam
search was used as a reference method for comparison with
multinomial sampling.
We investigated the difference in perplexity scores between

molecules generated using a CLM via either beam search or
multinomial sampling. To this end, we additionally sampled for
each of the 10 targets and each of the four fine-tuning sets, 10
or 50 SMILES strings via beam search sampling (k = 10 or 50).
In CLM fine-tuning using the smallest fine-tuning sets (five

molecules), multinomial sampling consistently outperformed
beam search sampling in terms of the perplexity score as

Table 1. Macromolecular Targets Selected for CLM Fine-
Tuninga

CHEMBL ID target protein classification

CHEMBL1836 prostanoid EP4 receptor G protein-coupled
receptor

CHEMBL1945 melatonin receptor 1A G protein-coupled
receptor

CHEMBL1983 serotonin 1D (5-HT1D)
receptor

family A G protein-
coupled receptor

CHEMBL202 dihydrofolate reductase oxidoreductase
CHEMBL3522 cytochrome P450 17A1 cytochrome P450
CHEMBL4029 interleukin-8 receptor A family A G protein-

coupled receptor
CHEMBL5073 CaM kinase I delta kinase
CHEMBL5137 metabotropic glutamate

receptor 2
G protein-coupled
receptor

CHEMBL5408 serine/threonine-protein
kinase TBK1

kinase

CHEMBL5608 NT-3 growth factor
receptor

kinase

aChEMBL target identifier, generic target name, and protein
classification based on the respective ChEMBL target report card.

Figure 2. Correlation between the perplexity score and other representations. Pearson correlation coefficient between the perplexity score and the
average distance of the generated molecules during fine-tuning (black line, Morgan fingerprints; blue line, 2D pharmacophore fingerprints). Gray
shaded areas indicate standard deviations. Fine-tuning sets contained (a) 5, (b) 10, (c) 20, and (d) 40 molecules.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00079
J. Chem. Inf. Model. 2022, 62, 1199−1206

1201

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00079/suppl_file/ci2c00079_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00079?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00079?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00079?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00079?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


molecules with the best score (lowest perplexity) were
obtained (Figure 3a). Increasing the beam search width from
k = 10 to 50 did not markedly improve the ability of this
method in identifying molecules with higher perplexity scores
(Figure 3). These observations were confirmed for the larger
fine-tuning sets (Figures S2−S4). A potential explanation for
this observation is the “greedy” nature of the beam search,44

which explores only a limited number of possibilities for next-
character addition. By contrast, the “fuzzy” nature of
multinomial sampling allows the generation of a greater
number of molecules and hence a broader exploration of the
chemical space of interest.
The 50 top-scoring molecules generated via multinomial

sampling not only indicated lower median perplexity values but
also spanned a narrower range of values (Figure 3a). This
suggests that multinomial sampling yields a greater number of
high-scoring designs (low perplexity) for follow-up synthesis
and biological testing than the beam search algorithm (Figure
3a and Figures S2−S4).
When filtering out designs with a substructure similarity

(Tanimoto index on Morgan fingerprints42) greater than 50%

of the respective fine-tuning molecules, the difference between
multinomial sampling and beam searching was less pro-
nounced (Figure 3 and Figures S5−S7). Multinomial sampling
identified molecules with lower perplexity scores than the
beam search in 72% of the cases involving the smallest fine-
tuning sets (Table S1). The deterioration in performance for
highly diverse molecules was less pronounced with the larger
fine-tuning sets (Table S1).
The results of this study corroborate the potential of

multinomial sampling, not only for chemical space exploration
to obtain chemically diverse molecular designs but also for
generating high-scoring compounds that are sufficiently diverse
from the fine-tuning compounds.

Assessing Pretraining Bias Based on Perplexity. CLM
pretraining might impose a greater effect on model perform-
ance than CLM fine-tuning as model pretraining is typically
performed with data that are at least 2 orders of magnitude
higher in amount than fine-tuning.2,3,25,35,36 If a molecule is
generated by a CLM due to pretraining only, then it will not
necessarily match the design objectives as represented by the
fine-tuning data. We analyzed the degree to which new

Figure 3. Variation in perplexity during fine-tuning. (a) Distribution of the top-scoring compounds for each method over 100 fine-tuning epochs
(only every 10 epochs shown in the graph for clarity). (b) Distribution of the top-scoring compounds by considering only molecules with a
similarity below 50% (Tanimoto index computed on Morgan fingerprints) to the closest molecule in their respective fine-tuning set. Median and
lower to upper quartile values reported using boxplots for 10 different protein-specific fine-tuning sets, which contain five molecules each. Boxplots
for fine-tuning sets with sizes of 10, 20, and 40 molecules are provided in the Supporting Information. Arrows indicate the direction of optimal
perplexity values (“Better”).
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molecules were generated due to the sole effect of pretraining,
i.e., we verified whether “pretraining bias” occurred. In
principle, for a CLM, perplexity can be used to score any
molecule, including those that are not generated by the model.
This can be achieved by computing the conditional
probabilities of each SMILES character using the CLM.
Therefore, the perplexity score was employed to differentiate
between the information learned by the CLM during
pretraining and during fine-tuning to score the molecules
generated at a specified fine-tuning epoch. First, for each fine-
tuning epoch, molecules were scored and ranked by the
perplexity of the model used to generate them. Subsequently,
each de novo design was scored and ranked based on the
perplexity of the CLM after pretraining (i.e., prior to any fine-
tuning). We hypothesized that a suitable ranking method
should favor molecules that were generated based on
information learned by the model during fine-tuning
(capturing the final objectives of the experiment) and
downrank the molecules generated based solely on pretraining
(capturing “generic” information).
To seize this concept quantitatively, we subtracted the rank

yielded by the pretrained model (rankpt) from that of the fine-
tuned CLM (rankft) for each molecule and defined this
difference as the “delta” score (eq 2), as follows:

= −delta rank rankptft (2)

Molecules with a positive delta score were considered more
likely to be output by the fine-tuned CLM. A negative delta
score suggests that the fine-tuning procedure renders a certain
molecule less likely to be output than after pretraining, which
does not satisfy the design objectives. Thus, when a molecule
possesses a good rank based on the perplexity after fine-tuning

but it has a negative delta value, it should not be considered for
further experiments.
The delta score was computed for all sampled molecules

during fine-tuning experiments (Figure 4). The percentage of
molecules with a negative delta score exceeded 40% for the
first 20 fine-tuning epochs and remained above 10% until the
end of fine-tuning for all fine-tuning set sizes. This observation
suggests that 10−40% of the molecules were generated based
on “generic” pretraining, instead of “task-focused” fine-tuning.
As such, this outcome highlights the practicability of the
proposed delta score as an indicator to (i) detect potential
pretraining bias, (ii) identify the best-suited epoch for a
productive sampling of molecules that fulfill the study goals,
and (iii) select the most promising de novo designs.
To expand the analysis, we focused on the 50 top-scoring

molecules generated via multinomial sampling. We discovered
that, among them, only up to 3% of the molecules received a
negative delta score (Figure S8). This shows that using
perplexity alone reduces the pretraining bias. However, the
pretraining bias was not completely removed, which highlights
the benefits of using both the perplexity and delta score for
molecule prioritization prior to synthesis and biological testing.
In summary, these results suggest that the potential of

generative CLMs in medicinal chemistry can be expanded by
employing the SMILES perplexity for molecule prioritization
and for detecting potential pretraining bias.

■ CONCLUSIONS

This present study constitutes a step forward toward an
automated, self-supervised de novo design. By serving as a
model-intrinsic score, perplexity enables the quality assessment
of generated molecules. In particular, perplexity might be
useful for identifying the most promising molecules, i.e., those

Figure 4. Delta score during fine-tuning experiments in a low-data regime. Percentage of molecules with a negative delta score (1000 sampled
SMILES strings; mean ± standard deviation reported for 10 different target proteins). Fine-tuning sets of (a) 5, (b) 10, (c) 20, and (d) 40
molecules.
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that match the probability distribution of the training data as
captured by the CLM. This approach enabled the comparison
of two different methods for SMILES sampling from a trained
CLM. The results revealed certain advantages of multinomial
sampling over the beam search method for molecule
generation. Because perplexity can be used to score SMILES
strings based on the information learned by a CLM, the
pretraining bias can be identified based on the newly
introduced delta score. Perplexity combined with the delta
score can reveal the most promising molecules, in terms of the
fine-tuning objectives, for synthesis and testing. These features
can further accelerate drug discovery using CLMs. Future
studies will focus on the combination of perplexity with the
temperature parameter of multinomial sampling or SMILES
augmentation.34,45 Furthermore, the combination of CLMs
and perplexity scoring bears promise for screening large
collections of commercially available compounds to accelerate
model validation.46 More experiments should be performed to
determine the effect of the new approach on molecular de
novo designs involving CLMs.

■ DATA AND SOFTWARE AVAILABILITY

The computational framework presented herein, pretrained
neural network weights, and data used for model training are
available in a GitHub repository from URL https://github.
com/ETHmodlab/CLM_perplexity.

■ METHODS

Data Processing. Molecules were represented as canonical
SMILES strings using an RDKit (2019.03.2). SMILES strings
were standardized in Python (v3.6.5) by removing salts and
duplicates, and only SMILES strings with 20−90 characters
were retained.
Pretraining Set. The molecules were retrieved from

ChEMBL28.47 After data processing, the pretraining dataset
contained 1,683,181 molecules encoded as SMILES strings.
This set was further segregated randomly into a training set
(1,599,021 molecules) and a validation set (84,160 molecules).
Fine-Tuning Sets. Target selection was limited to

molecules satisfying the following conditions (ChEMBL
annotation): (i) organism: Homo sapiens; (ii) protein
classification (L1): enzymes, membranes receptors, tran-
scription factors, and single proteins; (iii) number of
compounds: 962−2057 molecules (range defined by
ChEMBL); (iv) number of activities: at least 2000 reported
pChEMBL values. Ten target proteins were randomly selected
from the list of targets. For each of the 10 selected target
proteins, sets of 5, 10, 20, and 40 molecules with pChEMBL
>6 were compiled randomly.
CLM Implementation and Training. All computational

experiments were implemented in Python (v3.6.5) using Keras
(v2.2.0, https://keras.io/) with the Tensorflow GPU backend
(v1.9.0, https://www.tensorflow.org/). CLMs were imple-
mented using a recurrent neural network with long short-
term memory cells (LSTM).40 The network, which was
composed of four layers comprising 5,820,515 parameters
(layer 1: batch normalization; layer 2: LSTM with 1024 units;
layer 3: LSTM with 256 units; layer 4: batch normalization),
was trained with SMILES strings encoded as one-hot vectors.
We used the Adam optimizer with a learning rate of 10−4 for
the CLM training during 90 epochs,48 where one epoch was
defined as one pass over all the training data. Fine-tuning was

performed by further training the CLM on the fine-tuning set
for 100 epochs.

Multinomial Sampling. Multinomial sampling was
performed based on the CLM output for each SMILES string
character. In particular, the probability of each ith character to
be sampled (pi) was computed using eq 3:

=
∑

p
e

ei

z T

j
z T

/

/

i

j
(3)

where zi is the CLM output for the ith character (before
applying the softmax function) and j runs over all the
characters of the dictionary. T represents the temperature
parameter, which in this study was set to T = 1. An analysis of
the effect of T on the SMILES generation process can be found
elsewhere.25

Beam Search Sampling. We use the implementation
provided in ref36 (https://github.com/ETHmodlab/
molecular_design_with_beam_search) using two different
beam widths (k = 10 and 50).

Molecular Fingerprints. All fingerprints were computed
with the RDKit (2019.03.2) with default settings: (a) Morgan
fingerprints were used with a radius of 2 and length of 1024;
(b) 2D pharmacophore fingerprints were used with the pre-
configured signature factory as published by Gobbi and
Poppinger.43
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