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and Patricia Thébault, patricia.thebault@labri.fr

Received 27 April 2012; Accepted 11 July 2012

Academic Editor: Aristotelis Chatziioannou

Copyright © 2012 Amine Ghozlane et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates
its life cycle between the mammal host(s) (bloodstream form) and the insect vector (procyclic form), with two divergent glucose
metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the
flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so
far. We present a computational analysis (called Metaboflux) that exploits the metabolic topology of the procyclic form, and allows
the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting
from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experi-
mental data are modeled in a multiobjective function. Our results show that the current metabolic model is in agreement with
experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a
rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution
through the malic enzyme steps.

1. Introduction

Trypanosomes are unicellular protozoa that are ubiquitous
parasites of higher eukaryotes, including insects, plants, and
mammals. Among the numerous species belonging to the
trypanosomatid family, Trypanosoma brucei, Trypanosoma
cruzi, and Leishmania spp. are responsible for Human dis-
eases. Most of these parasites live in more than one host over
their life cycle and encounter very different environments,
such as insect vectors’ gut and vertebrate bloodstream. Con-
sequently, the different parasitic forms have developed dis-
tinct morphologies and metabolisms.

We will consider here T. brucei, which belongs to the
group of parasites responsible for sleeping sickness in Africa.
T. brucei belongs to the only group of organisms that
performs glycolysis in a peroxisome-like organelle, called
glycosome [1]. It is widely considered that this compart-
mentalized glycolysis requires impermeability of glycosomal
membrane to cofactors, such as NAD(P)+ and NAD(P)H,
and nucleotides (ATP, ADP, etc.) [2]. As a consequence, the
intraglycosomal NAD+/NADH and ATP/ADP balances need
to be maintained, which implies that each NAD+ or ATP
molecules consumed during the first glycolytic steps have to
be regenerated inside the organelle (see Figure 1).
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Figure 1: Metabolic network of glucose degradation for the bloodstream and procyclic forms of T. brucei.

Panels (a) and 1(b) correspond to the metabolic model
of the bloodstream forms of T. brucei (BSF) in the aerobic
and anaerobic conditions, respectively. Panel (c) represents
the metabolic model for the procyclic form grown in glucose-
rich medium. For both forms, the major part of the glyco-
lytic pathway is compartmentalized in glycosomes (peroxi-
some-like organelles). Excreted end-products from glucose

metabolism are in red, green, or purple characters on a
grey rectangle as background. In Panels (a) and (b), meta-
bolic branches consuming and regenerating NAD+ are in
blue and red, respectively, while the color code in Panel (c)
is blue, red, and purple for the acetate, glycosomal succinate,
and mitochondrial succinate branches, respectively. NAD+

and ATP molecules are underlined, when consumed in
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the glycosomes, and boxed, when produced in the glyco-
somes. In aerobic conditions, BSF converts one molecule of
glucose into two molecules of pyruvate with consumption
of one molecule of dioxygen (Panel (a)) and net production
of two molecules of ATP, while in anaerobic conditions one
molecule of pyruvate, glycerol, and ATP is produced per
molecule of glucose consumed (Panel (b)). Abbreviations:
1,3BPGA, 1,3-bisphosphoglycerate; DHAP, dihydroxyace-
tone phosphate; FBP, fructose 1,6-bisphosphate; FUM,
fumarate; Gly3P, glycerol 3-phosphate; G3P, glyceraldehyde
3-phosphate; MAL, malate; OAA, oxaloacetate; PEP, phos-
phoenolpyruvate; PYR, pyruvate; SUC, succinate. Individual
enzymes included in the model are 1, hexokinase: 2, glu-
cose-6-phosphate isomerase; 3, phosphofructokinase; 4,
aldolase; 5, triose-phosphate isomerase; 6, glyceraldehyde-
3-phosphate dehydrogenase; 7, phosphoglycerate kinase; 8,
phosphoglycerate mutase; 9, enolase; 10, pyruvate kinase;
11, glycosomal glyceraldehyde-3-phosphate dehydrogenase;
12, FAD-dependent glycerol-3-phosphate dehydrogenase;
13, ubiquinone; 14, SHAM-sensitive alternative oxidase;
15, glycerol kinase; 16, pyruvate phosphate dikinase;
17, pyruvate dehydrogenase complex; 18, acetate:succinate
CoA-transferase and acetyl-CoA thioesterase; 19, phos-
phoenolpyruvate carboxykinase; 20, glycosomal malate dehy-
drogenase; 21, cytosolic (and glycosomal) fumarase; 22,
glycosomal NADH-dependent fumarate reductase; 23, mito-
chondrial fumarase; 24, mitochondrial NADH-dependent
fumarate reductase; 25, cytosolic malic enzyme; 26, mito-
chondrial malic enzyme.

In the mammalian host, the bloodstream forms of T.
brucei (BSF) develop a very simple and well-known glucose-
based energy metabolism, with glucose being converted
into the pyruvate, which is the only end product excreted
in the presence of oxygen (Figure 1(a)). In aerobiosis,
equimolar amounts of pyruvate and glycerol are excreted
from glucose metabolism (Figure 1(b)). In both conditions,
all ATP required for the parasite development is produced in
by the cytosolic pyruvate kinase (step 10 in Figure 1).

In contrast, the procyclic form of T. brucei (PF), which
evolves in the midgut of the insect vector (tsetse fly), develops
a more complex branched energy metabolism. When grown
in standard rich medium, PF primarily uses glucose to
provide the cell with carbon and ATP. In the course of
glycolysis, phosphoenolpyruvate (PEP) is produced in the
cytosol, where it is located at a branching point (Figure 1(c)).
It can be converted into pyruvate, which enters the mito-
chondrion to produce acetate [3, 4]. PEP can also reenter
the glycosomes to be converted to succinate in either the
glycosomes or the mitochondrion [5, 6]. Although the topo-
logy of the glucose metabolism network is known for the
procyclic form, the flux distribution between the different
branches of the network has not been addressed so far.

The main objective of this paper is to propose a bioin-
formatics analysis, integrating multipurposed experimental
data, to investigate the flux distribution in the main branches
of glucose metabolism of the PF trypanosomes. To address
this question, we developed a model based on (i) the
published topology of the metabolic network [7, 8], (ii) the
maintenance of the glycosomal redox (NAD+/NADH) and

(ATP/ADP) balances, with no exchange of these cofactors
with other subcellular compartments [7], and (iii) experi-
mental data.

2. Related Work

In the last decade, high-throughput technologies had been
developed to monitor organism responses to various envi-
ronmental perturbations. At the same, time many advances
in bioinformatics have been made to mine these data. In par-
ticular, methods have been designed to investigate the plas-
ticity of biological processes. To conduct such analyses, the
level of abstraction of models can range from global to local
and from static to dynamic, according to the biological data
available (for a review, see [9]). A biological system can be
modeled by a set of interconnected reactions allowing fluxes
of chemical compounds (metabolites). When the organism is
exposed to environmental changes, these fluxes are adjusted
to preserve the homeostasis of the metabolism and to
optimize biological functions such as growth rate. Several
bioinformatics approaches address the problem of estimating
the flux distributions accompanying these metabolic pertur-
bations. The quality of these computed flux distributions is
critical since it strongly affects the ability of subsequent in
silico simulations to fit and predict physiological observa-
tions. Moreover, the integration of experimental data in such
models helps in producing more realistic in silico description
of biological systems.

One of the most popular formalism for modeling
metabolism relies on constraint-based methods such as Flux
Balance Analysis (FBA) [10, 11] that are designed to find an
optimal flux distribution given a specific objective function
(e.g., growth or ATP production). This mathematical frame-
work is based on the stoichiometry of reactions, which is ana-
lyzed using linear programming to optimize fluxes toward
an objective function. The resulting solution space defines all
of the possible metabolic behavior of the cell under a given
set of conditions, and the addition of constraints help to
predict achievable cellular functions that reflect thermody-
namic, kinetic, or biochemical knowledge (for a review see
[12]).

To better mimic the in vivo system, considerable attention
has been directed in recent years towards the development of
variants of FBA to (1) explore differently the space solutions
or/and (2) integrate experimental data.

The Optimal Metabolic Network Identification [13]
and Regulatory On/Off minimization [14] methods suggest
adapting the network flux structure to observed data, while
the Minimization Of Metabolic Adjustment [15] approach
searches for suboptimal, but more realistic solutions. To
add flexibility to FBA prediction, Flux Variability Analysis
(FVA) [16] proposes a feasible range of fluxes that satisfies
the objective function corresponding to different genetic
states. To limit the allowable functional behavior of networks,
Energy Balance Analysis integrates additional thermody-
namic constraints that describe energy balance and eliminate
thermodynamically infeasible optima [17]. Other efforts
have focused on the exploitation of integrative methods for
improving the prediction of metabolic flux distributions.
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Notably, integrative Omics-Metabolic Analysis [18] and
integrated Flux Balance Analysis [19] quantitatively integrate
proteomic and metabolomic data with genome-scale models
to predict metabolic flux distributions. These methods allow
for the integration of kinetics models, when available, and
formulate a set of differential equations to describe the
dynamics of metabolite concentrations.

However, none of the previous methods account for
a multiobjective function, which is crucial since eukary-
otic cells perform multiple metabolic functions. Therefore,
before simulating such metabolic models, integrating biolog-
ical relevant knowledge as different and multiple objectives
need to be implemented. In practice, the definition of an
appropriate framework is a difficult task in increasing the
complexity of the flux prediction problem.

Moreover, the identification of a physiologically realistic
objective function remains challenging [20] since it strongly
constrains the predictive quality of the flux distribution.
While it is commonly accepted to use the maximization of
the biomass yield for bacteria, other objective functions may
be more appropriate to predict metabolic fluxes in eukaryote
cells. For instance, systems are ruled by other type of
constraints, such as side compound balancing or sustaining
certain metabolite concentrations within the system. Most
of these constraints can be experimentally monitored and
defined as an objective state.

Combining them with the flux objective function could
imply several and sometimes conflicting objectives. For these
reasons, recent studies investigated the flux balance problem
in a multiobjective perspective [21, 22]. These theoretical
articles propose algorithms to infer a flux distribution con-
strained by one or more target optimal output fluxes. These
approaches handle several objectives with different impacts.
The first step in these approaches consists of setting the
bounds of the solutions space. Next, the function to optimize
can be defined as a multiparametric distance that can handle
data of different kinds (metabolite biomass, fluxes, etc.). The
distance is then optimized by nonlinear or linear methods,
adapted for multidimensional data. Finally, the aim is to find
a configuration of the system, which is as close as possible to
the optimal state, and where no improvement of one objec-
tive is possible without negatively impacting another objec-
tive (namely, an optimal Pareto solution). Several analyses
have been carried out to infer the optimal solution when
using 2, 3, or 4-objective combinations to illustrate the
benefit of the addition of experimental data to mimic the
reality of the cell [22]. Besides the great interest of these arti-
cles, they are not related to publicly available bioinformatic
softwares.

None of the existing methods offers a qualitative or
semiquantitative approach that can account for multiple
constraints deduced from experimental data. Prediction of
flux distribution should account for properties such as
cellular homeostasis where there is no net consumption
or production of key intracellular metabolites/cofactors
(NAD(P)+, NAD(P)H, ATP, ADP, etc.), or metabolic data,
such as the ratio of excreted end-products. Therefore, we
are particularly interested in a modeling system that does
not require kinetic data to predict flux distribution, and that

can integrate multipurposed constraints based on the known
properties of the metabolic network.

To achieve this goal, we propose and implement a
heuristic algorithm that can compute the optimal flux
distribution that fits results deduced from various high
throughput approaches (e.g., metabolomics and fluxomics).
In particular, the real values of the fluxes of most reactions
are unknown and span large intervals. Therefore, the key
question that our method addresses is to use experimental
observations to identify the set of parameter values for which
the network model would exhibit a realistic behavior.

The methodology used in this approach (called Meta-
boflux) combines a metabolic network simulator with a pro-
babilistic metaheuristic [23] to optimize multiple flux objec-
tives under multiple biological constraints. Metaboflux is
freely available at http://services.cbib.u-bordeaux2.fr/meta-
boflux/.

3. Material and Methods

3.1. Biological Model and Data. Glucose metabolism of the
BSF and PF trypanosomes differs considerably. The first
model, described in the next section, corresponds to the
simple and well-known glucose metabolism of BSF, with the
flux distribution in the two main branches experimentally
validated (Figures 1(a)-1(b)). The second model, describes
the more elaborated glucose metabolism in the PF try-
panosome, with three interconnected branches (Figure 1(c)).
However, flux distribution between these metabolic branches
has not been addressed so far.

Our bioinformatic approach will be validated through
the first well-known BSF model, before being used to
investigate the flux distribution in the main branches of the
PF glucose metabolism.

(A) Trypanosoma brucei Bloodstream Forms (BSF). When
grown in the presence of oxygen, the BSF convert glucose
into pyruvate, the excreted end product, in three subcellular
compartments, the glycosomes, the cytosol, and the mito-
chondrion [7]. For reasons of simplification, the cytosolic
and mitochondrial compartments shown in the Figure 1(a)
are merged in the model. The first seven glycolytic steps take
place in the glycosomes (steps 1–7), while the three other
steps leading to pyruvate are cytosolic (steps 8–10). It is
to note that one molecule of glucose (hexose) is converted
into two molecules of triose phosphate, dihydroxyacetone
phosphate (DHAP), and glyceraldehyde 3-phosphate. In the
glycosomes, ATP molecules consumed in steps 1 and 3 are
regenerated by step 7 and NAD+ consumed in step 6 is
regenerated inside the organelle by conversion of DHAP into
glycerol 3-phosphate (G3P) (step 11). The latter is converted
back into DHAP in the mitochondrion (step 12), to form a
DHAP/G3P cycle, which transfers electrons to dioxygen to
produce H2O (steps 12–14). Consequently, two molecules of
pyruvate are produced from one molecule of glucose con-
sumed, with a net production of two molecules of ATP in
the cytosol by the pyruvate kinase (step 10). In anaerobiosis,
electrons cannot be transferred to dioxygen, thus G3P is

http://services.cbib.u-bordeaux2.fr/metaboflux/
http://services.cbib.u-bordeaux2.fr/metaboflux/
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converted into the excreted end product glycerol, with as a
consequence a net production of one molecule of pyruvate
and glycerol excreted by molecule of glucose consumed, with
a net production of one molecule of ATP (Figure 1(b)).

(B) Trypanosoma brucei Procyclic Form (PF). Energy meta-
bolism has been extensively studied in the PF of T. brucei
(for a review, see [7, 8]); however, only glucose metabolism
is taken into consideration in the model. Conversion of
glucose into the excreted end products, succinate and acetate,
implies glycosomal, cytosolic, and mitochondrial enzymatic
steps [7]. As mentioned for the BSF model, the cytosolic and
mitochondrial compartments shown in the Figure 1(c) are
also merged in the PF model. The first six glycolytic steps take
place in the glycosomes and consume 2 molecules of ATP
and 2 molecules of NAD+ per molecule of glucose consumed
(steps 1–6 in Figure 1), while the three other steps leading
to phosphoenolpyruvate (PEP) are cytosolic (steps 7–9). PEP
is located at a key branching point, that is, (i) one branch
leads to acetate production in the mitochondrion (steps 10,
17-18) [3, 4] and (ii) the other branch is also branched
with succinate being produced in both the glycosomes (steps
19–22) and the mitochondrion (steps 23-24) [24, 25]. The
glycosomal succinate branch is critical for glycolysis by
regenerating one molecule of ATP (step 19) and up to two
molecules of NAD+ (steps 20, 22) per molecule of succinate
produced. The model also includes the essential cytosolic
and mitochondrial malic enzymes (ME, steps 25 and 26,
resp.) [26], which constitute a bridge between the succinate
and acetate branches. It is also important to mention that
(i) the tricarboxylic acid cycle is not functioning as a cycle
in the PF trypanosomes and, most of acetyl-CoA produced
from glucose is converted into acetate [27], (ii) most ATP is
produced by substrate level phosphorylation from glucose,
with a nonessential contribution of the mitochondrial F0/F1-
ATP synthase for ATP production [4, 24, 26, 28], (iii) NADH
molecules produced in the mitochondrion by the pyruvate
dehydrogenase complex (step 17) are regenerated by the
mitochondrial fumarate reductase (step 24), implying that
the respiratory chain activity is not required to maintain the
mitochondrial redox balance of glucose metabolism [6]. As
a consequence, the mitochondrial tricarboxylic acid cycle,
respiratory chain, and F0/F1-ATP synthase are not included
in our model.

3.2. Metaboflux. We analyzed the behavior of both the
bloodstream and procyclic form of T. brucei by semiquan-
titative modeling and simulation with stochastic Petri Nets
(PN). We describe in this section the details of the design of
Metaboflux (see Figure 3). Metaboflux is a new framework
for the simulation and for the estimation of the parameters
of PN with stochastic immediate transitions that we called
Fluxes Petri Net (FPN). We first describe the formal defini-
tion of the PN variant we use. We then provide a simulation
algorithm to generate sequences of markings from a model.
We then outline an optimization procedure to estimate the
parameters of a model so as to satisfy constraints derived
from experimental data. We finally present an alternative

and faster and approximate simulation algorithm that we
used to approximate the behavior of a model during the
optimization steps.

3.2.1. PN Formalism. The PN formalism gives an interesting
framework for simulating biological systems [29] and has
been largely employed in the last decade to describe biologi-
cal networks (for a review see [30]).

A PN (also called Place Transition net) is a graph-based
model that can describe the dynamics of a system as a set
of sequences of discrete configurations. A PN is a bipartite,
directed and labeled graph. Nodes in a PN can either be a
place p ∈ P or a transition ∈ T . In the case of metabolic
networks, places of a PN represent the metabolites and
transitions represent enzymatic reactions, labeled by the
enzyme catalyzing the reaction. Each place contains a coun-
table (i.e., positive integer) set of tokens, representing the
quantity of the corresponding metabolite. The number of
tokens i : P → N in every place is called a marking of
the net and represents its current state. Traditionally, the
number of tokens in a place p is indicated by #(p, i) or #(p)
when the marking is understood. Edges in a PN are only
allowed between a place and a transition or vice versa, but
never between two places or two transitions. When an edge
connects a place and a transition, the edge is called an input
arc for the transition. When an edge connects a transition
and a place, the edge is called an output arc for the transition.

A transition is enabled and can fire when all its conditions
are fulfilled, namely, if all its input places contain enough
tokens. When a transition is enabled, selected, and fired,
tokens from its input places are consumed, and tokens are
added to its output places. Every edge in a PN is labeled
with a multiplicity corresponding to the stoichiometry of the
reaction. More formally, the multiplicity (p, t) ∈ R of an
input arc (p, t) is a positive integer value indicating the
number of tokens that must be present in the place p for
the transition t to be enabled. The multiplicity m(t, p) ∈ R
of an output arc (p, t) is a positive integer value indicating
the number of tokens that will be added to the placep if the
transition t fires.

Combining ideas from Generalized Stochastic PN [31]
and FBA [10, 11], we extend the PN formalism with fluxes
weight. A Flux Petri Net (FPN) is a PN with an additional
flux weight labeling of transitions. Formally, a flux weight is
a function w : T → R+ that assigns a strictly positive flux
value to every transition of an FPN. During simulation, flux
weights are used to compute a probability distribution over
possible transitions whenever more than one transition is
enabled in a given marking. The higher the flux value, the
more often this reaction will fire and thus the higher the
proportion of metabolites that will go through this reaction.
The dynamics of an FPN is illustrated in Figure 2.

As an example of FPN, Figure 4(a) depicts the PN model
of the bloodstream form of the glucose metabolic network
of T. brucei. In this figure, places of the net are, as usual,
depicted as circles. Transitions are drawn as squares and are
labeled with the number of the reaction. Arcs represent input
and output arcs with nonzero multiplicities. Flux weights are
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Figure 2: Illustration of the dynamics of a Flux Petri Net (FPN). (a) depicts the initial state of the FPN, while (b)–(d) depict its states after
three transitions have been fired. This FPN comprises five places (p1–p5) and three transitions (t1–t3). The transition t1 consumes three
tokens of p1, produces one token of p2, and has an associated flux distribution of 5%. Similarly, transition t2 consumes one token of p1,
produces one token of p3, two tokens of p4, and has an associated flux of 90%. In the initial state (a), the place p1 contains five tokens, colored
differently to be distinguishable. Since t1 requires three tokens of p1, t2 requires one token of p1, t3 two tokens of p1; that p1 contains
five tokens; the three transitions t1, t2, and t3 are enabled in this configuration. The corresponding probabilities for each transition are
P(t1) = 5/(5 + 90 + 5) = 0.05, P(t2) = 90/(5 + 90 + 5) = 0.90 and P(t3) = 5/(5 + 90 + 5) = 0.05. Suppose we select t1 with probability 0.05,
then three tokens of p1 are consumed and one token of p2 is produced through t1. In the second state (b), only t2 and t3 are enabled,
since the required number of tokens for t1 in p1 is not satisfied. This time, the respective probabilities associated with t2 and t3 are given
by P(t2) = 90/(90+5) = 0.948, and P(t3) = 5/(90+5) = 0.052. Suppose t2 is selected, it consumes one token of p1 and produces one token
of p3 and two of p4. In the third state (c), only transition t1 is enabled, and the FPN reaches a state (d) after firing t1 where no transition is
enabled.

depicted in the squares bounding transitions. The default
multiplicities and flux weights are 1.

To analyze the behavior of a net, we sample one
possible sequence of markings with the following stochastic
simulator. The simulation starts with a provided initial
marking, considered as the current marking for the first
iteration of the simulation.

At each iteration of the simulation loop, we update
the current marking by selecting and applying an enabled
transition. More formally, given a current marking : P → N,
let E(i) = {t ∈ T | for all p ∈ P and m(p, t) ≤ #(p)} be the
set of enabled transitions in the marking i. The probability
wt(i) that the transition t will fire in the current marking i is
given by the normalized weight wt(i) = w(t)/

∑
t′∈E(i) w(t′).

Once a transition t is selected by random choice, the next
marking t′ is defined by subtracting the consumed tokens

and adding the produced tokens, that is, #(p, i′) = #(p, i) −
m(p, t) + m(t, p).

This simulation loop is repeated until we reach a user-
provided maximal number of iterations or if there are no
transition enabled in the current marking. In the case of the
FPN models of the BSF and PF of the glucose metabolism
of T. brucei, we can see that any sequence of markings will
eventually reach a final marking where no transitions are
enabled. Indeed, these FPNs are both bounded and contain
sink places that are not inputs of any transitions. It is
straightforward to see that regardless of the initial marking
or of the flux weights assigned to transitions (as long as they
are non zero), all the tokens in these FPNs will eventually end
in one of these sink places. Therefore, after a finite number
of iterations, there are no transitions that are enabled and
these FPNs reache a final marking. In our simulations and
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Figure 3: Schematic representation of Metaboflux. analysis pro-
cedure Metaboflux takes two files as input, one SBML file that
describes the metabolic network topology and an XML file in Meta-
boflux format indicating simulation parameters. The first step
launches N-analysis core by MPI (Message Passing Interface). Each
analysis core solves a constrained optimization problem with a
simulated annealing and downhill-simplex. These methods suggest
candidate optimal fluxes valuation and submit them to the simula-
tor. The simulator estimates the distribution of the final markings
according to theses fluxes valuations and returns the corresponding
distance score as a result. These steps are repeated until the opti-
mization procedures converge to one solution.

analysis, we are thus guaranteed that these FPN will always
reach a final marking.

3.2.2. Parameter Calibration of an FPN under Experimentally
Observed Constraints. We now consider the problem of
fitting the predictions of an FPN to experimentally observed
behavior. We first formalize the fitting problem and then
indicate the computational approach we used to solve it as
well as an approximate simulation algorithm. Finally, we
summarize the experimental data available for the metabolic
networks of the BSF and PF.

For the metabolic networks of T. brucei, available experi-
mental data provide proportions of the final metabolites and
indicate a restored balance between cofactors in the glyco-
some. These experimental data exclusively concern the state
of the end products of the glucose metabolism of the par-
asite. Consequently, we are interested in the final markings
of an FPN and we want them to satisfy the observed balances
and proportions of end-products and cofactors. For an FPN,
these final markings are completely dependent on a fluxes

valuation �f , that is, the fluxes weights of all its transitions.
Therefore, the problem of fitting the predictions of an FPN

to the expected behavior is reduced to finding �f such that the
final markings are in agreement with experimental evidence.

The experimental evidence we account for is of differ-
ent nature and is formulated using different constraints.
Experimental data indicating the expected amount of end-
products (e.g., the final quantity of ATP is equal to the initial
quantity, or the amount of Acetate excreted in the cytosol)
are formulated using the Euclidean distance between final
markings and expected quantities. These distances must be
minimized. Experimental data indicating that the possible
amount of end-products lies within an interval (e.g., the
quantity of excreted cytosolic succinate for the PF network)
are formulated using logical constraints on the final mark-
ings. These constraints must be satisfied. Experimental data
indicating expected fluxes values (resp. that flux values lies
within an interval) are formulated using Euclidean distances
that must be minimized (resp. a constraint on the fluxes val-
uation that must be satisfied). These distances are summed

in a distance function D(�f ) that we want to minimize when
subject to the conjunction of constraints over markings and
fluxes. This function D measures the prediction error, that
is, the distance between the prediction and the expected
quantities.

For the T. brucei BSF model (Figures 1(a) and 1(b)), the
modeled constraints are

(1) the balance of glycosomic co-factors NAD+/NADH
and ATP/ADP in the final marking,

(2) an expected maximal cytosolic ATP quantity.

For the T. brucei PF model (Figure 1(c)), depending on
the analysis, the modeled constraints are composed of

(1) the balance of glycosomic cofactors NAD+/NADH
and ATP/ADP in the final markings,

(2) the expected proportion of excreted acetate over final
acetate and succinates, that is, 50% of end products
should consist of acetate,

(3) a range of acceptable glycosomal and mitochondrial
succinate amount,

(4) a minimal flux value for the reaction PEP → OAA
(step 19),

(5) a minimal flux value for the reaction MAL → PYR
(steps 25, 26).

More details on these constraints are provided in the
result section.

To find the flux valuation minimizing the prediction
error, we repeatedly evaluate the distance function, and thus
perform several simulations of the corresponding FPN until
it reaches a final marking. Since our models and simulation
algorithm are probabilistic by nature, a single flux valuation
can generate multiple final markings (i.e., a distribution
over final markings). We thus consider the prediction error
associated with a flux valuation to be the prediction error of
the average of the final marking of 100 simulation replicates.

Numerically, we solved this minimization problem by
combining two nonlinear, nonderivative based optimization
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Figure 4: The flux prediction for the well-known BSF model in aerobiosis (a) and anaerobiosis (b). All the considered pathways are located
in 3 compartments: mitochondrion, glycosomes, and cytosol. Circles represent metabolites, squares depict reactions, and blue squares are
transporters. The stoichiometry is 1 by default, except for H+ and H2O (the stoichiometries of H+, H2O and O2 were multiplied by 2, resp. 4,
2 and 1). The quantity of input metabolites for the initiation stage of Metaboflux is colored in orange, and the final amount are then colored
in purple. The flux percentage at branching points of the metabolic network is given in red for the DHAP node (step 5 versus step 11) and
in blue for the Gly3P node (transport 1 versus step 15). The percentage values at branching points have to be considered as a subpart of the
100% of flux given for the branching point where two enzymes use the same metabolite; for instance, glycerol 3-phosphate dehydrogenase
(step 11) and triose phosphate isomerase (step 5) use DHAP as substrate.
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techniques. Optimization problems can be investigated in
many scientific areas using metaheuristics such as Genetic
algorithms or Simulated Annealing (SA) [23] processes (for a
review and comparative performances see [32]). Publications
have shown a better efficiency with methods based on SA
processes (for instance, [32]) and influenced our choices
towards an implementation of SA algorithm. However,
thanks to the modular implementation of Metaboflux, a fur-
ther work might investigate the impact of different solvers
according to specific applications in metabolic networks.

In Metaboflux, the first technique we investigated is a
global stochastic search based on SA. This method repeatedly
evaluates the distance function on fluxes valuation that are
chosen randomly. The probability that a candidate flux
valuation is accepted as the argument of the minimum of
the distance function depends on the corresponding distance
value, the difference between the candidate solution and the
previous candidate and a gradually decreasing value called
temperature. In the first iterations, a high temperature value
corresponds to a low probability of acceptance, while in later
iterations, a low temperature corresponds to a high proba-
bility of acceptance. This saves the method from selecting in
the first iterations a local optimum. In this study, we used
the GSL [33] implementation of the SA, that we ran with an
initial temperature of 10 000. We observed that even with this
(relatively) very high temperature, the SA often converged to
a local optimum. To avoid this issue, we used a High Perfor-
mance Computing platform to run 300 individual instances
with random starting fluxes valuations. For each of these
instances, we use the returned candidate optimum as the
starting point of an additional local optimum search based
on a Nelder-Mead/downhill-simplex method.

The large amounts of metabolites present in the BSF
and PF models imply that each evaluation of the function
D requires thousands of iteration of the simulation loop
described in the previous section. A single iteration of the
simulation loop will select a transition that, once fired, will
move a limited number of tokens between places. In the BSF
and PF models, the stoichiometries are of 1 except for H+ and
O2 (resp. 2 and 0.5), and thus almost all transitions will
move a single token. For a model having n tokens of glucose
as input, and assuming that the places are bounded by
O(n) tokens, the number of iterations of the simulation
loop required to reach a final marking is in the order of
n∗ |T| where |T| is the number of transitions in the model.
Furthermore, during the minimization procedure, each flux
valuation requires 100 simulation replicates. Finally, the pre-
diction error of several thousand different fluxes valuations
are evaluated before finding an optimum solution. Due to
this huge number of simulation runs to be performed, using
the simulation algorithm during the parameter calibration
step proved to be computationally infeasible. Instead of
simulating the exact semantics of FPNs, we implemented a
greedy simulator that approximates their dynamics.

The greedy simulator we used during the parameter cali-
bration step is based on the idea that the intermediate mark-
ings are not required for the minimization procedure. At
each step of the simulation, the greedy simulator fires maxi-
mally, that is, moves as much tokens as possible by firing in

one step multiple transitions. We identified three situations
where multiple transitions can be lumped and fired simul-
taneously without modifying the final marking. The first
situation is when only one transition is enabled. Consider, for
example, the situation where tokens are only present in one
place that is the input place of a single transition. This is the
case for the initial marking where only glucose and cofactors
are present. With the greedy simulation, when this single
enabled transition is fired, the totality of tokens in the input
place is moved to the output place(s). The second situation
arises in markings where multiple transitions are enabled but
are compatible. Two transitions are said to be compatible if
they do not share any input place. In this case, the greedy
simulator fires maximally all these enabled transition. The
third situation arises in markings that enable incompatible
transitions. In these situations, we compute for each enabled
transitions the maximal number of time it can fire, by
accounting for stoichiometries and the number of tokens in
its input places. Let n be the minimum of these maximal
numbers of times each transition can fire. The greedy simu-
lator determines the number of times each transition fires in
a single step by sampling a multinomial distribution with
n trials and whose event probabilities are the (normalized)
weights of the enabled transitions. These three heuristics
enable a 1000-fold reduction in the number of iterations
required to reach a final marking. We verified experimentally
that these heuristics yields probabilities of attaining a final
marking that are comparable to the exact simulation (accord-
ing to a T-test, differences of the mean final marking between
the exact and approximate simulators were statistically not
significant at the 0.05 level).

In the analysis of the BSF model, we considered that a
difference of ±9% between the predicted and expected dis-
tributions is acceptable. This variability of 9% corresponds
to nonsignificant experimental differences. We determined
numerically the range of values returned by the distance
function when we allow for this variability between the pre-
dicted and expected markings. The corresponding distance
values range from 0 to 0.2. In the subsequent analysis, we
thus used a threshold of 0.2 to identify fluxes valuation
yielding simulation results that are “close enough” to the
experimental results.

4. Results and Discussions

The aim of this analysis is to predict the flux distribution
within glucose metabolic network of T. brucei PF. However,
before applying our approach to the PF model (4.2), we
have evaluated the performance of Metaboflux to estimate
the metabolic flux distribution for the well-known metabolic
BSF model (4.1).

4.1. Trypanosoma brucei Bloodstream Forms (BSF). Many
experimental data ranging from kinetics to metabolomics
have been obtained for the glucose metabolism of BSF
trypanosomes, with the objective to identify the best glyco-
lytic drug targets [34]. Consequently, the glucose metabolic
model, essential for the production of ATP and therefore



10 Advances in Bioinformatics

fitness of the parasite, has been well characterized [34, 35].
To validate our computational analysis, we have used Meta-
boflux to model the complete glucose metabolic network of
the parasite grown in aerobic and anaerobic conditions. To
initiate the simulator, quantity of tokens has been set to 1000
for the glucose input, to 2000 for an excess of dioxygen (aer-
obic condition), and for both stocks of correlated molecules
for ADP/ATP and NAD+/NADH, within the glycosomes. As
constraints implemented within the objective function of
Metaboflux, the balances for ADP/ATP and NAD+/NADH
have been constrained within the glycosomes. As described
earlier, both conditions are vital for the parasite as none
transporter has been identified so far for these metabolites,
which implies their sequestration within the glycosomes.
Moreover, an additional objective was then specified to
maximize the amounts of ATP synthesized by the cytosolic
pyruvate kinase (step 10), which is the only known source of
ATP in BSF [34, 35].

The simulation and optimization stage of Metaboflux has
been carried out and several solutions of flux predictions
have been proposed while the maximization of the ATP
production was well satisfied. Considering the best solutions,
which are identical for this model (even if Metaboflux allows
the prediction of alternatives), three main observations can
be pointed out. First, only pyruvate is produced in aerobiosis,
with two molecules produced per molecules of glucose
consumed (the quantity of tokens given by Metaboflux is the
double of the glucose input stock), while nearly no glycerol
is produced in the glycosomes (Figure 4(a)). However, in
anaerobic condition, Metaboflux predicts equimolar produc-
tion of pyruvate and glycerol (data not shown). Second,
Metaboflux predicts that nearly two (1995 in Figure 4(a))
and one (1000 in Figure 4(b)) molecules of ATP are produced
per molecule of glucose consumed in aerobic and anaerobic
conditions, respectively, which fit perfectly with the BSF
model. Third, flux distribution at the two branching points,
DHAP and glycerol 3-phosphate (Gly3P), is also consistent
with the model. In anaerobic conditions, identical metabolic
fluxes are required in the glycerol and pyruvate branches (red
and blue in Figure 1(b), resp.) to maintain both ATP/ADP
and NAD+/NADH glycosomal balances. As a consequence,
all of the DHAP molecules needs to be converted to Gly3P
and step 5 (conversion of DHAP into G3P) is negligible, as
predicted by Metaboflux (Figure 4(b)). Similarly, the Gly3P
transporter is not contributing, since Gly3P need to be
converted into glycerol to maintain the glycosomal ATP
balance (Figure 4(b)). In contrast, the flux distribution at
these branching points is different in aerobic conditions. The
DHAP/Gly3P cycle implies no glycerol in production with
a full contribution of the Gly3P transporter, as predicted
by Metaboflux (99.8% of the flux in Figure 4(a)). At the
DHAP node, an important part of DHAP is converted into
G3P, since DHAP produced from Gly3P (steps 11, 12 in
Figure 1(a)) reenters into glycosomes. Altogether, these data
are in accordance with the BSF experimental data pro-
vided in both incubation conditions and validate Metaboflux
as an appropriate tool to study flux distribution in the
different branches of glucose metabolism in the PF trypano-
somes.

4.2. Trypanosoma brucei Procyclic Form (PF). The purpose
of the Metaboflux method developed here is to analyze the
extent of the T. brucei metabolic flexibility when constraining
the system by five different constraints known from experi-
mental data or assumed from the literature, that is, (i) the
topology of the metabolic network shown in Figure 1(c), (ii)
the ATP molecules consumed in the glycosomal steps 1 and
3 have to be generated by the glycosomal steps 16 and 19, (iii)
similarly, the NAD+ molecules reduced in the glycosomal
step 6 have to be reoxidized in steps 20 and 22, (iv) between
56 and 86% of the total excreted succinate have to be prod-
uced in the glycosomes, and (v) conversely, 14 to 44% have
to be produced in the mitochondrion. These latter two con-
straints were deduced from the maximum capacity estimated
for both succinate production branches using reverse genetic
approaches [6]. After modeling these five constraints in
Metaboflux, the optimization was run with fixed proportion
of acetate excretion ranging from 0 to 100%, with a 5%
increment. We observed that all the constraints were accom-
modated for acetate proportion (given by the number of
acetate tokens under the total number of excreted tokens,
that is, succinate plus acetate) ranging between 26 and 95%
(distance scores below 0.2) (Figure 5). Figure 5 also shows
that all the constraints are accommodated with their score
variations.

The model confirms that the trypanosome glucose
metabolism is highly flexible in terms of utilization of the
acetate versus succinate branches. Interestingly, the model
is also consistent with the experimental data, since the per-
centage of acetate excreted from glucose metabolism varies
between 26 and 80 depending on the analyses [27, 36]. This
suggests that a high flexibility of flux distribution between
the different branches of the network exists, although tightly
constrained by the glycosomal succinate branch to maintain
the organelle NAD+/NADH and ATP/ADP balances.

To determine possible reasons for this flexibility, we
included two additional constraints in the model to adjust
the flux through PK and ME (from 1 to 80%, with a 5%
increment), thus constituting a bridge between the succinate
and acetate branches (steps 25 and 26). Figure 6 shows only
the distance curve for each ME flux according to the propor-
tion of acetate production. It clearly appears that restraining
the flux through ME reduces the flexibility of the system.
For instance, a 25% flux through ME is compatible with an
acetate production (considering the total number of excreted
tokens given for acetate and total succinate) ranging between
42 and 69% (Figure 6). This also shows a direct correlation
between the flux through ME (between 1 and 70%) and the
proportion of acetate production. However, increasing the
ME flux by over 70% does not increase the flexibility of
the system. The correlation between acetate production and
flux distribution through the ME steps, implies that the
involvement of the first step of the succinate fermentation
branches (step 19) increases proportionally, as observed in
Figure 7. Altogether, this analysis suggests that the flexibility
of the flux distribution between the succinate and acetate
branches is considerably increased by the ME activity, which
are essential steps for the viability of the PF trypanosomes
[26].
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Metaboflux has provided a rational explanation for the
high flexibility in the ratio between acetate versus succinate
production from glucose metabolism, that is, flux redistribu-
tion through ME steps. Interestingly, we previously showed
that downregulation of the expression of both ME genes
by RNAi is lethal for the PF trypanosomes [26]. Since the
main (albeit not the only) role of ME is to provide NADPH
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required for biosynthetic pathways and to respond to oxida-
tive stresses, one may consider that flux through ME depends
on NADPH demand. For instance, under oxidative stress
conditions, redistribution of metabolic fluxes through the
ME steps, to increase NADPH production in the cytosol and
the mitochondrion, would lead to an increase in the acetate/
succinate ratio.
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5. Conclusions

This study presents a bioinformatics analysis of the flux
distribution of the BSF and PF Trypanosoma brucei glucose
metabolism under multiple and varying constraints deduced
from experiments. The results suggest that the current
definition of the biological model is compatible with all the
constraints known from experimental data. Furthermore,
our PF model predicts that there is high flexibility in the ratio
of acetate to succinate production, which is consistent with
data sets of various sources. Notably, our analysis suggests
that the malic enzymes are the main support of this flexibil-
ity. This predicted property can be confirmed experimentally
by metabolic flux analysis. These results have been obtained
with the optimization of a multiobjective function that
integrates heterogeneous experimental data. In addition, we
demonstrate here the great potential of flux analysis to
improve the quality of metabolic models. We also demon-
strate that combining flux prediction with qualitative con-
straints derived from experimental data increases the predic-
tive power of in silico flux analysis. Our models, simulation
and analysis framework, shows great potential and allows for
a more realistic investigation of the T. brucei metabolism.

Appendix

Comparison of FBA and Metaboflux

FBA and Metaboflux both aim at finding a flux distribution
that fits in vivo observations as closely as possible. However,
Metaboflux goes further by allowing the integration of bio-
logical constraints not only on fluxes but also, for instance,
on metabolite biomass. In order to measure the benefit of
this approach, we carried out a comparative analysis between
FBA implemented in FBA-SimVis [37] and Metaboflux. To
perform this evaluation, we took time-consumption and
the sensitivity of predictions into consideration. Our com-
parative analysis is based on the metabolic network model
deduced from experimental data [7, 8].

Using FBA, we integrated the proportions of acetate and
succinate (excreted metabolite) by adding a supplementary
reaction to the model (with a specific stoichiometry of 36, 14
and 50) thus linking together the three ways of synthesizing
these metabolites. The unique objective function was spec-
ified as a biomass production reaction from these three
metabolites. With Metaboflux, we run two simulations: (i)
as used in FBA, an objective function was used to optimize
the biomass production and (ii) a multiobjective function
was used to minimize the differences given by the proportion
of excreted metabolites known from experimental data. In
addition, the balance scales of ADP/ATP and NAD+/NADH
were constrained within the glycosomes as this condition is
required for maintaining the glycolytic flux in trypanosomes.
The results of the three flux predictions are given in Figure 8.
The flux prediction, using FBA or Metaboflux with a unique
objective function, satisfies the constraints on the proportion
of final metabolites (specified through the biomass produc-
tion reaction); however, the balance scales of ATP/ADP and
NAD+/NADH were not maintained. Using Metaboflux that

exploits experimental data in the multiobjective function, the
constraints on balance scales and known metabolite propor-
tions were satisfied. Contrary to FBA and Metaboflux with
an objective function for the biomass production, fluxes pre-
dicted by Metaboflux integrating experimental data are rele-
vant as they obtain the balance scales and the right excreted
metabolite proportions. Detailed analysis of the flux predic-
tions on the flux maps (Figures 8(a)–8(c)) shows that the
main differences between these methods occur at branching
points 1 and 2. Indeed, FBA did not use the path through the
ME and distributed the flux equally between pyruvate kinase
(step 10) and pyruvate phosphate dikinase (step 16). Meta-
boflux, on the other hand, considered pyruvate phosphate
dikinase, which participates in the maintenance of the ATP/
ADP balance. Consequently, 22% of the flux from glycoso-
mal malate dehydrogenase (step 19) goes through the ME to
reach the expected acetate/succinate proportion.

This analysis shows the positive contribution of mul-
tipurpose experimental data in a metabolic model using
Metaboflux. The resulting conflicting constraints are inte-
grated in Metaboflux that can deal with them as our
approach is based on a nonlinear optimization. The satisfac-
tion of such constraints is very helpful proposing the
development of more realistic models for analysis. FBA is not
designed to take this complexity into account and conse-
quently seems to favour the simplest path for its flux predic-
tion.

Metaboflux takes more time compared to FBA-SimVis
(319 versus 6 seconds). The difference is mainly due to the
time taken by the optimization stage of our method and is
correlated to the number of branching points in the network.
As the framework of FBA works with a stoichiometric
matrix, the complexity of the network slightly affects its
running time and such an approach has great application
possibilities for exploiting genome-scale metabolic models.
Metaboflux is more dependent on the complexity of net-
works and to deal with this issue, our method has been
parallelized. This design is particularly suitable for the new
development in computer hardware architectures since n-
core processors are now available. The parallelization on the
different cores will thus make the computation on individual
computers faster.
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Figure 8: Comparison of the prediction performance between FBA-SimVis and Metaboflux. The flux proportion is given by the edge
size, circles stands for metabolites, and square for enzymes. (a) Flux map obtained by FBA-SimVis. (b) Flux map obtained by Metaboflux
using a single objective function. (c) Flux map obtained by Metaboflux with additional constraints on balance states and experimental
knowledge. (d) Histogram that gives the expected proportion (considering experimental data), and proportions obtained with Metaboflux
using the FBA-SimVis flux results as constraints and Metaboflux. The metabolite biomasses were deduced from the number tokens given by
Metaboflux. Deduced from empirical measurements, the glucose biomass was set to 1000 tokens and ATP, ADP, NADH, and NAD+ were set
to 2000. Experimental data given as ratios of excreted metabolites were used to specify expected number of tokens. The balance ratio of ATP,
ADP, NADH, and NAD+ was specified by an equality equation.
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