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ABSTRACT: Negative ions are not accurately represented in density
functional approximations (DFAs) such as (semi)local density functionals
(LDA or GGA or meta-GGA). This is caused by the much too high orbital
energies (not negative enough) with these DFAs compared to the exact
Kohn−Sham values. Negative ions very often have positive DFA HOMO
energies, hence they are unstable. These problems do not occur with the
exact Kohn−Sham potential, the anion HOMO energy then being equal to
minus the electron affinity. It is therefore desirable to develop sufficiently
accurate approximations to the exact Kohn−Sham potential. There are
further beneficial effects on the orbital shapes and the density of using a
good approximation to the exact KS potential. Notably the unoccupied
orbitals are not unduly diffuse, as they are in the Hartree−Fock model, with
hybrid functionals, and even with (semi)local density functional
approximations (LDFAs). We show that the recently developed B-GLLB-VWN approximation [Gritsenko et al. J. Chem.
Phys. 2016, 144, 204114] to the exact KS potential affords stable negative ions with HOMO orbital energy close to minus the
electron affinity.

I. INTRODUCTION

The ionization energy and electron affinity of molecules are a
subject of continuing interest.1−5 So-called Δ methods (e.g.,
ΔSCF or ΔMP2) calculate these properties as differences of
total energies from separate calculations on neutral and
charged species. The disadvantage is that a small quantity is
obtained as difference of two large numbers. Direct methods2,5

compute the desired quantities as (orbital) energies of suitable
one-electron Hamiltonians, or as linear combinations of orbital
energies at some intermediate points between the neutral and
ionic systems (integration methods, see below). Best known is
of course the Hartree−Fock (HF) model, where the HOMO
orbital energy is a frozen orbital approximation (Koopmans) to
minus the ionization energy (IP) and the LUMO orbital
energy is a Koopmans approximation to minus the electron
affinity (EA). These HF orbital energy estimates entail
considerable error; for instance, the HF HOMO orbital energy
has the typical Koopmans’ error of ca. 1 eV, while the LUMO
orbital energy has a larger error and is (in particular in small
molecules) much above −EA, often even positive (cf. ref 6 and
references therein). The Kohn−Sham (KS) model has the
HOMO energy exactly equal to minus the IP.7,8 The KS
LUMO orbital has physically a different meaning than the HF
LUMO orbital. It describes approximately an excited electron,
not an added electron.6,9 The KS LUMO orbital energy is not
close at all to minus the EA, but the HOMO−LUMO gap of
the KS model approximates the first excitation energy. It is an
optical gap rather than the fundamental gap (the IP − EA

difference; see for a recent review, ref 10). With hybrid
functionals, one may follow the optimized effective potential
(OEP) route, trying to minimize the total energy using a local
potential. This has been pioneered for atoms with grid-based
methods for the Hartree−Fock exchange case by Talman and
Shadwick11 and Krieger et al.12 The HOMO orbital energy
then is close to (or identical to) the Hartree−Fock value, and
no special problem with the stability of anions will be
encountered. But the HOMO orbital energy of the exact-
exchange OEP methods will still have the same error (in the
order of 1 eV) with respect to the experimental IP as Hartree−
Fock itself. OEP calculations for (large) molecules require the
use of finite basis sets, with ensuing uniqueness problems as
highlighted by Staroverov et al.13 Solving the latter involves a
balancing act between basis set quality for orbital expansion
and potential expansion,14,15 which may affect the numerical
precision with which orbital energies are obtained. One may
also use the so-called generalized KS (GKS)16 strategy of
performing an orbital optimization in the same way as in HF
theory, which will result in a one-electron Hamiltonian with
certain percentages of the DFA exchange-correlation potential
and the nonlocal HF exchange operator. Orbital energies will
be in between the Hartree−Fock and DFA values. Being
strongly dependent on the percentage of exact exchange in the
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functional, unoccupied orbital energies may be anywhere
between the low KS like value and the high HF value.
One may introduce orbital occupation numbers in the total

energy expression such that the derivative ∂Emodel/∂ni = ϵi, a
relation derived a long time ago for the HF energy expression
and exchange-only LDA (Xα) by Slater et al.17,18 and others.19

Care must be taken that this equality is obeyed by a suitable
introduction of occupation numbers. It is possible to introduce
dependence on occupation numbers for which the relation
would not hold.10 If the relation holds, it is possible to
reproduce total energy based ΔE numbers by a numerical
integration, e.g., for the ionization potential (ionization from
the HOMO)
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Even if the derivative with respect to occupation number is
not an orbital energy, one may use this numerical integration if
just ∂E/∂ni can be determined. If the total energy is a quadratic
function of the occupation numbers (usually a very good
approximation), i.e., if the ϵi or just the ∂E/∂ni derivative is a
linear function of nH, a single point approximation (e.g., ϵ(nH =
1/2)) gives an excellent result.5 This is in fact the Slater
transition state method. More accurate results can be obtained
in this integration method2,5,19 with more points and weights
in the numerical integration. All these “direct” methods
circumvent the subtraction of two large numbers and
determine the IP and/or EA from just the relatively small
orbital energy (or ∂E/∂ni) directly.
A related approach is one in which the functional is tuned,

i.e. by varying the amount of exact exchange, such that the
HOMO and LUMO orbital energies are close to −IP and
−EA, respectively. This has been advocated by Yang and co-
workers.4,20,21 The development of such density functional
approximations has been motivated by the proposal by Perdew,
Parr, Levy, and Balduz (PPLB)22 that the total energy for
fractional electron numbers behaves as a set of straight line
segments between the integer N values. The slope of these
lines then obviously is −IP for N − δ and −EA for N + δ
electrons. Equating [∂E/∂N]+ with ∂E/∂nLUMO = ϵLUMO, one
can observe that the LUMO orbital energy should be −EA in
order to obey the PPLB behavior. Irrespective of the question
whether such straight-line behavior is a necessary requirement
in DFT or just a possible choice,23 this approach would clearly
also lead to a direct determination (approximation) of the EA
(and IP) values from orbital energies.
In the same vein it is possible to construct range-separated

hybrid functionals that provide good approximations to the
fundamental gap by optimal tuning (system dependent) of the
range separation parameter.24−27 This can be perfected3 for the
electron affinity by performing the optimal tuning for just the
anion HOMO orbital energy, minimizing the error J2(μ) =
[ϵHOMO

μ (N + 1) + EAμ(N)]2. The anion HOMO orbital
energies then yield good approximations to the EAs.
A related strategy is the development of so-called Koop-

mans-compliant functionals, where additional terms are
introduced in the functional with the explicit purpose to
obtain HOMO and LUMO orbital energies close to −I and
−A.28−30

It is a disadvantage of these methods that the LUMO is not
only high-lying but will also be rather diffuse, in particular in
small molecules. The physical meaning of (shape of) the
LUMO is no longer clear, and it precludes the transparent
assignment of many electronic excitations as just single
orbital−orbital transitions, which is a great virtue of the
(exact) KS orbital basis.9

Maybe the most simple and straightforward method to
obtain IPs and the EA from orbital energies is by modeling the
exact KS potential directly. For neutral systems, this should
yield the first IP as the HOMO orbital energy, while the
negative anion will provide the EA from its HOMO orbital
energy. Recently, a proposal has been made31 for a reasonably
accurate approximation to the exact KS potential. It is based on
a breakdown of the total KS potential into various parts, such
as the exchange-correlation hole potential and the so-called
response potential. It has been argued that in the LDA and
GGA approximations the exchange-correlation hole potential is
fairly accurate, but the response part of the potential is
erroneous in these approximations. The LDA exchange
response potential is much too repulsive. It causes the
anomalous upshift of ca. 5 eV of the orbital energies of the
LDA/GGA models. A much better approximation to the KS
potential is obtained when the exchange part of the response
potential is replaced by the approximation proposed a long
time ago by Gritsenko et al. (GLLB).32 The exchange-
correlation hole potential is approximated by the LDA
exchange hole (the same as the original Slater exchange hole
approximation) plus Becke’s correction of the exchange hole
potential, while the LDA correlation hole and correlation
response potentials (in the VWN parametrization) are
retained. This so-called B-GLLB-VWN potential proved to
remedy the erroneous upshift of the orbitals of the LDA/GGA
models and to yield orbital energies in much better agreement
with “exact” (very accurate) KS orbital energies.31 It is well-
known that the KS HOMO orbital energy is exactly equal to
the first IP, but also the other exact KS orbital energies are
rather good approximations of the higher ionization potentials
(see refs 33−35 and see further illustration at the end of the
present paper (section III)). The B-GLLB-VWN potential
therefore provided very good estimates of the first and also the
higher IPs by way of the HOMO and lower occupied orbital
energies.31

In the present paper, we investigate the performance of the
B-GLLB-VWN potential for anions and the electron affinity.
There is the notorious problem with the usual DFAs for anions
that they are often unbound (positive orbital energy for the
anion HOMO). This was noted in the early days of LDA
calculations36,37 and caused some concern later.38,39 It has
been clear, however, that the problem was caused by the
deficiency of the DFA KS potential mentioned above, namely,
the erroneous upshift of ca. 5 eV. Given the generally small
EAs (a few electronvolts at best), this tends to move the anion
HOMO to positive energy, i.e., make the anion unbound. This
error can be remedied by correcting the potential, e.g., with the
Perdew−Zunger SIC correction40 or by asymptotic and other
corrections41 (the F− anion that caused some concern was
bound in the so-called LB94 potential41). This problem of the
DFAs, and hybrid functionals as well, has continued to
generate interest.42−45 Obviously, if we have a good
approximation to the exact KS potential, and therefore a
HOMO orbital energy of the anion close to minus the EA, the
anion does not suffer from the problem of unboundedness. It is
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the purpose of this work to investigate whether the B-GLLB-
VWN approximation31 to the exact KS potential is able to
describe anions, and to establish the accuracy with which the
anion HOMO orbital energy approximates minus the EA.
The B-GLLB-VWN potential is based on the partitioning of

vxc, which naturally emerges from its definition in the Kohn−
Sham (KS) theory as a functional derivative of Exc with respect
to the electron density ρ(r)46,47
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In eq 2, g̅(r2, r3) is the pair-correlation function integrated
over the coupling parameter λ of the electron−electron
interaction λ/r12. Then, the derivatives of the densities ρ(r2)
and ρ(r3) in the numerator of eq 2 yield identical results,
adding up to the full potential of the xc hole v̅xchole (the
coupling constant integration of the hole and its potential are
indicated with an overbar)
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The term in the potential coming from the derivative of g̅
produces the so-called response potential v̅resp
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The total vxc is the sum of eqs 3 and 4

v r v r v r( ) ( ) ( )xc 1 xchole 1 resp 1= ̅ + ̅ (5)

The hole potential is approximated with the original Slater
ρ1/3 form (practically identical to the LDA exchange only form,
see ref.31), to which the Becke88 correction48 is added. The
response potential is approximated with the step potential
derived in ref.32 and is denoted GLLB
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No optimization or parameter variation is applied. The only
parameter is the Kg factor in eq 6 which in the derivation of ref
32 was determined at K = 0.382 for the uniform electron gas
(in which case the GLLB response potential becomes exact).
We refer to ref 31 for a comprehensive discussion of this
approximation and examples of its use. As a brief explanation
of how the B-GLLB-VWN potential improves upon (semi)-
local DFAs, we note here that it has been observed31 that the
DFA orbital energies are too high lying (too destabilized, not
negative enough) for the following reason. The LDA exchange
potential (which is the main part of almost all DFA potentials)
consists of a hole potential which is adequately stabilizing
(practically the Slater ρ1/3 potential), −3[3/(8π)]1/3ρ(r)1/3,
plus a response part. The LDA exchange response part is
destabilizing, +[3/(8π)]1/3ρ(r)1/3. This destabilization is much
too strong. This is evident from pictures of the LDA or GGA
potentials compared to exact KS potentials: the DFA potentials
run in the bulk atomic or molecular region usually rather
parallel to the exact KS potential, but on the order of 5 eV
destabilized. The B-GLLB-VWN does not use the too strongly

repulsive LDA exchange response potential but replaces it with
the much less repulsive GLLB approximation of eq 6. It has
been found that the occupied orbital energies are then suitably
stabilized compared to DFAs, the HOMO energy for a series
of neutral benchmark molecules only deviating from the IP by
a few tenths of an electronvolt at most. We here investigate
whether this is also true for negative ions.
We note in passing that the same GLLB response potential

approximation offers a cheap method of correcting the KS one-
electron energy band gap to the total energy based
fundamental gap in solids.49−51

II. B-GLLB-VWN ORBITAL ENERGIES AND ELECTRON
AFFINITIES OF MOLECULES

Table 2 collects the HOMO energies of a series of closed-shell
anions computed with various potentials, to be compared to
vertical electron detachment energies (VDE). The DFT
calculations have been performed with the ADF code52−54

using an even-tempered STO basis denoted ET/TEST/ET-
QZ+5PALT in the ADF2017.113 documentation. It consists of
an all electron quadruple-ζ basis set (s- and p-functions) plus
five polarization functions (three d- and two f-type functions),
two diffuse functions (s- and p-functions), and two tight
functions of s- and p-type. This basis set is very generous, since
STO bases converge rapidly for diffuse systems like these
anions. In Table 1, we demonstrate this convergence for a few

examples from our series of molecules. A straightforward TZP
basis (triple-ζ 2s, 2p basis plus a 3d polarization function) is
inadequate since it lacks diffuse functions. Augmentation with
one diffuse function of type s, p, and d to form the AUG/
ATZP basis brings the basis close to completeness. Further
addition of a polarization function has no effect, and the
further extension to ET/TEST/ET-QZ+5PALT makes hardly
any change (a few hundredths electronvolts at most). The
equilibrium geometries of all the anions used in these
calculations were determined with CCSD(T) calculations
using the Gaussian 09 software55 with an aug-cc-pvtz Gaussian
basis set and default options for the SCF, CCSD(T), and
geometry optimization thresholds. Hessian evaluations were
performed on all the equilibrium structures to check the nature
of minima points on the potential energy surface. A few
benchmark theoretical values for the VDE were obtained from
CCSD(T) calculations on both anion and neutral systems
when the experimental numbers required verification or
clarification, see discussion below.
The asymptotic decay of the electron density at a fixed

geometry is known to be exponential according to the vertical

ionization energy I at that geometry, r( ) e I2 2ρ ∼ − . The
Kohn−Sham calculation provides an electron density that
decays as the slowest decaying orbital density, the HOMO

density, with exponential decay e 2 2 HOMO∼ − − ϵ (assuming the
KS potential to go to zero at infinity). So strictly speaking, we

Table 1. Dependency of the Computed (B-GLLB-VWN)
HOMO Energies (eV) on the Basis Set Size

TZP ATZP ATZ2P ET-QZ+5 Palt

CH3
− +0.131 −0.273 −0.272 −0.299

LiH− −0.409 −0.564 −0.564 −0.564
Li2

− −0.621 −0.631 −0.631 −0.639
NO− −0.041 −0.312 −0.330 −0.350
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should compare the calculated HOMO orbital energy to the
vertical ionization energy of the anion, i.e., the energy
difference between the anion at its equilibrium geometry and
the neutral molecule at exactly the same geometry. The
experimental so-called vertical (electron) dissociation energy
(VDE)80 measures the vertical ionization energy from the
ground vibrational state rather than from the bottom of the
potential energy well. Given the level of accuracy that the
various DFAs are reaching, we can make a meaningful
comparison of the HOMO orbital energies to these VDEs
without correcting for the zero point vibrational energy. In fact,

in all the studied compounds, zero point energy corrections to
VDE can be considered negligible, being lower than 0.06 eV.
The experimental EA represent the energy differences

between the vibrational ground states of anions and neutral
molecules, with negligible (for our goals) corrections
associated with the rotational motions. As can be seen from
the table, in a few cases (CH3

−, SiH3
−, and CHCH2

−) the
difference of the experimental EA with the experimental VDE
is large, several tenths of an electronvolt, up to 0.5 eV. These
are cases where the anions exhibit considerable geometry
relaxation compared to the neutral molecule. In these cases,

Table 2. HOMO Energies (eV) of Closed-Shell Molecular Anions Obtained through Several xc Functionalsa

aThe state resulting from electron detachment from the HOMO is given (as well as the starting ground state of the negative ion). bVertical
detachment energy, the frozen-geometry energy gap between anion and neutral species. The opposite of VDE is used in this paper as an
experimental value of the HOMO for the evaluation of the MAE and MSE. VDE values were evaluated from the referenced experimental
photoelectron spectrum; CCSD(T) benchmark values for the VDE are provided if verification or clarification of the experimental numbers is
required, see text. cElectron affinities, the zero-point energy difference between the anion and neutral molecules.
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VDEs were evaluated by us from the referenced (in the table)
experimental photoelectron spectrum, by taking the energy
value of the most intense peak in the spectrum. In cases where
the geometry relaxation is very small, the EA and VDE values
may not be distinguishable, and in the table we then use the
same numerical value. In fact, in those cases, the zero point
energies of the anion and neutral species are expected to
almost cancel each other out.
The first columns of Table 2 demonstrate the well-known

fact that, in many cases, the anion HOMO orbital energy is at
positive energy for typical DFAs like the GGA BLYP and
hybrid B3LYP, and still in some cases for the long-range
corrected CAM-B3LYP. These positive orbital energies are
arbitrary, being determined completely by the finite extent of
the basis functions. If one would extend the basis set to
completeness, including also infinitely extended basis functions
(plane waves), the orbital energy will go down to zero,6

describing a free electron with zero kinetic energy. The
HOMO orbital energy turns negative for most anions with the
CAM-B3LYP functional, but still the HOMO level is much too
high lying, the orbital energies are considerably above the
negatives of the VDE values. The consistently too high lying
HOMO levels with the BLYP, B3LYP, and CAM-B3LYP
functionals lead to a positive mean signed error (MSE) almost
identical to the mean absolute error (MAE) with respect to the
VDE. These positive errors diminish in the order BLYP,
B3LYP, and CAM-B3LYP but are all large. This behavior is
visible in the error bars for these functionals in Figure 1.

In contrast, the B-GLLB-VWN anion HOMO orbital
energies are always negative, hence the anions are stable,
except for the case of allyl (+0.01 eV). In many cases, the
HOMO orbital energies are very close to (minus) the VDE
values, often 0.1 eV or less, and only some molecules have
larger errors of ca. 0.2 eV. The MAE is only 0.14 eV, the MSE
a bit lower at −0.11 eV. The performance of B-GLLB-VWN
for this set of molecules is excellent. For comparison, the
results of an earlier approximation of the exact KS potential,
the statistical average of orbital dependent potentials (SAOP),
are also displayed. The performance of the SAOP potential is

also good, but the MSE and MAE are, with −0.39 eV and
+0.40 eV, distinctly worse than for B-GLLB-VWN.
We note that CCH− and CCCCH− are special cases. The

determination of the VDE is complicated by the presence of
two close-in-energy states of the neutral molecule (2∑+ and
2Π) and, consequently, overlapping features and high levels of
anisotropy in the photoelectron spectrum.75 The low-lying
2∑+ and 2Π states of the neutral molecule being so close (for
CCCCH almost degenerate), there is considerable vibronic
coupling between them. Such vibronic coupling effects are
absent from the straightforward Born−Oppenheimer (clamped
nuclei) KS calculations. Thus, CCSD(T)/aug-ccpVTZ calcu-
lations were performed, obtaining VDE values based on the Δ
method. In CCH, the CCSD(T) calculations find the ground
state to be the 2∑+ state, ca. 0.5 eV below the excited 2Π state,
while for CCCCH the near degeneracy of the 2∑+ and 2Π
states is confirmed. In these cases, the EA was also computed
(including geometry relaxation effects) at the same level of
theory, as a test of the used post-HF method. These CCSD(T)
values for the EA (for the 2∑+ states) are included in the table
in parentheses and compare very well to the experimental
values.
We observe that, in these cases, the HOMO is calculated to

be a π orbital for all functionals, with the single exception of
SAOP in case of CCH (and BLYP for CCH, which is left out
of consideration because the orbital energies are unrealistic
anyway). The π HOMO orbital energy has to be associated
with the 2Π ← 1Σ+ experimental VDE and shows very good
agreement with it for B-GLLB-VWN for both CCH− and
CCCCH−. However, this is the second VDE in these
molecules (clearly so for CCH−, but almost equal to the first
VDE in CCCCH−). On the other hand, the HOMO−1 σ
orbital energy, which is to be associated with the first VDE
(2Σ+ ← 1Σ+) is clearly inaccurate. If we limit the evaluation of
the B-GLLB-VWN errors to the HOMO energies, that is, we
exclude the HOMO−1 evaluation of CCH− and CCCCH−,
the MAE and MSE errors fall to the really low values of +0.14
and −0.08 eV. However, the fact remains that B-GLLB-VWN
is not able to predict the correct HOMO in both these
molecules (or the near degeneracy in CCCCH−).
The picture for SAOP is mixed, with good results for CCH−,

notably its π orbital energy, but remarkably poor for
CCCCH−.
The allyl anion case shows an unusually large discrepancy

between the SAOP and B-GLLB-VWN potentials which
cannot be easily explained. The B-GLLB-VWN orbital energy
is a puzzling (barely) positive +0.010, in error by a significant
but not excessive +0.47 eV, while the negative SAOP value of
−1.302 eV has a much larger error in the opposite direction.
Most molecules are closed-shell and yield open-shell anions.

In Table 3, we present a sample of open-shell anions, which
have been calculated with the unrestricted version of the B-
GLLB-VWN potential. In the unrestricted case, we have
separate manifolds of α and β spin orbitals and orbital energies.
In this case, we compute different response potentials for the
orbitals of different spins, using the different energies of the
highest occupied spin orbital in the spin-adapted version of eq
6:
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Figure 1. Mean signed error (MSE) and mean absolute error (MAE)
of the HOMO orbital energy of the closed shell anions of Table 2
with respect to the experimental VDEs (vertical electron dissociation
energies), according to the various GGA and hybrid functionals, and
from the model potentials SAOP and B-GLLB-VWN.
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Again, we note the much too high lying HOMO (actually a
singly occupied highest molecular orbital or SOMO) with
BLYP, B3LYP, and CAM-B3LYP, see also Figure 2.
Many of the B-GLLB-VWN and SAOP HOMO levels are

excellent. The opposite signs of MSE and MAE imply that the
HOMO energies have a systematic error, being consistently
too negative. CH2

− has an unpaired electron in the π orbital
perpendicular to the molecular plane. The vertical ionization is
to the singlet state of CH2 at the same geometry, but geometry

relaxation and singlet−triplet intersystem crossing bring the

neutral CH2 molecule to its triplet ground state, on which the

EA is based. The B-GLLB-VWN orbital energy of the π

SOMO is in excellent agreement with the VDE.
There appears to be a problem with the dihalogens: the

result for F2
− is a remarkable outlier, and also Cl2

− and ClF−

are poor, when compared to the theoretical (CCSD(T)) VDE

values.

Table 3. HOMO Energies (eV) of Open-Shell Molecular Anions from Unrestricted SCF Computations Obtained through
Several xc Functionals

aVertical Detachment Energy, the frozen-geometry energy gap between anion and neutral species. The opposite of VDE is used in this paper as
experimental value of the HOMO for the evaluation of the MAE and MSE. VDE values were evaluated from the referenced experimental
photoelectron spectrum; CCSD(T) benchmark values for the VDE are provided if verification or clarification of the experimental numbers is
required, see text. bElectron Affinities, the zero-point energy difference between the anion and neutral molecules. cDue to SCF convergence
problems, the ET/ET-QZ3P-1DIFFUSE basis set (ADF.2017.113) was used in this case. dEstimated in this paper by adding the expermental EA to
the computed (CCSD(T)/aug-pVTZ) relaxation energy of the neutral molecule. eThe assignment of the anion and neutral states is not
experimentally available.
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Overall, the SOMO orbital energies are in worse agreement
with the VDE than with the closed shell anions. Much of this
increased error is coming from the dihalogens: if we omit these
three cases, the MSE and MAE drop to −0.20 and +0.23 eV. It
is nevertheless true that these poorer results for the
unrestricted cases invite a further scrutiny of the possible
causes, which will be the subject of further work.

III. B-GLLB-VWN ORBITAL ENERGIES AND ELECTRON
AFFINITIES FOR CLOSED SHELL ATOMIC ANIONS
AND NEUTRAL ATOMS

In Table 4, results for atomic anions are presented. The
HOMO eigenvalues obtained with the GGAs BLYP, B3LYP,

and CAM-B3LYP are positive and therefore not meaningful.
They should be zero in a complete basis but are positive due to
the finite range of the basis functions. The atomic results for B-
GLLB-VWN and SAOP are somewhat inferior to the
molecular ones. The response potential has a very small
contribution in the HOMO region, the repulsive jump
behavior of this potential only starting in the sub-HOMO
region. The atoms ((ns)k or (np)k configuration) have
relatively many electrons in the outer shell. Apparently, the
repulsive behavior of the GLLB model response potential is

not strong enough in that region. This is particularly manifest
in the poor result of the hydrogen anion, where the GLLB
potential is zero by construction. We note that for these atomic
anions the SAOP and GLLB results in most cases straddle the
experimental EA values of the neutral atom, SAOP putting the
HOMO level too high, and B-GLLB-VWN too low. The
halogen results are the poorest, with much too deep lying
HOMOs, behavior which we have also seen for the molecular
dihalogens. For completeness, we also make a comparison of
the HOMO energies of a series of closed shell neutral atoms
with B-GLLB-VWN (and other DFA potentials; Table 5).
Here, we also check on the deeper lying levels. Looking at the
HOMO energies first, it can be noted that again GGA, hybrid,
and range-separated functionals yield poor (much too high
lying) HOMO levels. Clearly, B-GLLB-VWN has the best
performance, with errors of only a few tenths of an
electronvolt. It is considerably better in these cases than
SAOP. These observations can be extended to the lower
valence levels. It should be kept in mind that for the levels
below the HOMO, we should (and do) compare to the exact
KS orbital energies rather than to the experimental IPs. In
particular for the core levels we can no longer compare to IPs,
since the differences between the exact KS orbital energies and
IPs become significant (on the order of 10 eV), see ref 33. For
semicore levels like Ne 2s and Ar 3s, B-GLLB-VWN and
SAOP are still good, while the conventional DFAs again have
too high lying levels. For the deep core levels, the picture
becomes mixed. In fact, the important observation is that all
DFAs perform pretty well. Maybe B-GLLB-VWN is the best
overall, but notably CAM-B3LYP is rather accurate for a
number of core levels.

IV. CONCLUSIONS

We conclude that the use of a good approximation to the exact
KS potential solves the problem of the instability of anions that
has been noted with approximations like LDA and GGAs. It is
not necessary to have recourse to hybrids. In fact, the occupied
orbitals of hybrids still lie too high. The occupied orbital
energies of the Hartree−Fock model are typically too low (ca.
1 eV), so this model offers, in general, stable anions. But
Hartree−Fock also has the problem that its orbital shapes and
hence the one-electron density is not particularly good. In
cases where there is significant electron correlation, notably at
elongated bond lengths and when there is multiple
bonding,47,82 the Hartree−Fock densities are deficient. For
negative ions, Hartree−Fock densities are better than LDA,
GGA, and hybrid densities. Then, a possible strategy to obtain
reliable total energies is to perform a HF SCF calculation and
feed the HF density into a GGA or hybrid energy expression,
as for instance practiced in density-corrected DFT calcu-
lations.45,83,84 A similar approach can of course be followed
with accurate KS potentials like B-GLLB-VWN and SAOP.
Hybrids, and in particular Hartree−Fock, also have the

problem that the unoccupied orbitals lie much higher than the
exact KS ones, making them an unphysical basis for excited
state calculations. They describe approximately the diffuse
orbital for an added electron, while the (exact) unoccupied KS
orbitals describe approximately (actually rather accurately)
excited electrons. This is why many excitations have energies
close to an unoccupied−occupied orbital energy difference ϵa
− ϵi and are described in a KS orbital basis as simple orbital-to-
orbital transitions, while they are comprised of several (often

Figure 2. Mean signed error (MSE) and mean absolute error (MAE)
of the orbital energies of the highest (singly) occupied orbital
(HOMO) of the open shell anions of Table 3 with respect to the
experimental VDEs (vertical electron dissociation energies), accord-
ing to the various GGA and hybrid functionals, and from the model
potentials SAOP and B-GLLB-VWN.

Table 4. HOMO Energies (eV) of Several Closed-Shell
Atomic Anions and the Opposite of the Experimental EA As
Reference Value

BLYP B3LYP
CAM-
B3LYP SAOP

B-
GLLB-
VWN −EA

H− +1.387 +0.886 −0.340 −0.517 −1.520 −0.754
Li− +0.539 +0.577 −0.109 −0.329 −0.830 −0.618
Na− +0.473 +0.282 −0.176 −0.347 −0.791 −0.549
K− +0.621 +0.433 −0.073 −0.360 −0.696 −0.497
F− +1.289 +0.021 −1.876 −2.626 −3.706 −3.401
Cl− +0.306 −0.722 −2.408 −3.463 −4.306 −3.613
Br− −0.100 −1.062 −2.700 −3.812 −4.327 −3.364
MSE +2.47 +1.89 +0.73 +0.19 −0.48
MAE +2.47 +1.89 +0.73 +0.32 +0.48
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many) orbital−orbital transitions in the HF or in hybrid MO
bases.9

In the special case of charge-transfer transitions from a
donor molecule or fragment D to acceptor A, the KS
unoccupied orbital energies do not provide a good estimate
of an excitation energy ϕi → ϕa as orbital energy difference Δϵ
= ϵa(A) − ϵi(D). Such transitions approach the difference IPD

− EAA between the ionization energy IPD of the donor D and
the electron affinity EAA of the acceptor A if the acceptor and
donor are spatially widely separated. The KS orbital energy
ϵi(D) of the orbital on the donor then is a good approximation
of an ionization energy of D but the KS orbital energy ϵa(A)
does not approximate the electron affinity of the acceptor. In
the calculation of charge-transfer excitation energies, we should
use for the orbital energy of the acceptor that of the negative
ion.85 We have demonstrated in this paper that the B-GLLB-
VWN approximation to the KS potential is providing this
anion orbital energy with the same accuracy as the orbital
energies (close to ionization energies) of neutral molecules. It
therefore offers an avenue to correction of TDDFT
calculations in such a way that they can also be used for
charge transfer excitations.
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