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Chloride is a key anion involved in cellular physiology by regulating its homeostasis and
rheostatic processes. Changes in cellular Cl− concentration result in differential regulation
of cellular functions such as transcription and translation, post-translation modifications,
cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl−

modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus,
and the endoplasmic reticulum. In extracellular fluid (ECF), Cl− is present in blood/plasma
and interstitial fluid compartments. A reduction in Cl− levels in ECF can result in cell vol-
ume contraction. Cl− is the key physiological anion and is a principal compensatory ion for
the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we
have increased our understanding of cellular signaling mediated by Cl−, which has helped
in understanding the molecular and metabolic changes observed in pathologies with al-
tered Cl− levels. Here, we review the concentration of Cl− in various organs and cellular
compartments, ion channels responsible for its transportation, and recent information on its
physiological roles.

Introduction
Chloride (Cl−) is the most abundant ion in humans after sodium [1] and accounts for 70% of the total
anions in extracellular fluid (ECF) [2]. There are approximately 115 g of Cl− in an average human adult
body, making up to 0.15% of the total body weight as a key macromineral [3]. Cl− are vital for main-
taining osmotic pressure, muscle movement, and acid-base balance in the body [3]. Cl− homeostasis is
generally overlooked but is known to govern several key physiological functions inside and outside the cell
[2,4–9]. Along with cations, Cl− is responsible for maintaining ionic homeostasis, osmotic pressure, and
acid–base balance. Therefore, disturbances of Cl− levels are indicative of metabolic disorders including
hypochloremic metabolic alkalosis and hyperchloremic metabolic acidosis [2,10]. Cl− does not follow the
electrochemical equilibrium in most mammalian cells. In several cells, including primary sensory neu-
rons, leukocytes, epithelial, sympathetic ganglion, and muscle cells, intracellular Cl− is maintained above
equilibrium levels. The transport of Cl− occurs via channels, exchangers, and co-transporters that utilize
chemical as well as electrical gradients [2,11].

Cl− is a component of a daily diet in the form of sodium chloride (NaCl). It is classified as an electrolyte
as it carries a negative charge along with its positive counterparts, K+ and Na+. Cl− is mainly found in a
diet consisting of seaweed, rye, vegetables such as lettuce, tomatoes, olives, celery, fruits such as apples,
melons, berries, and bananas, as well as red meats [12–14]. Most of the Cl− also comes from added salt in
several food preparations [14]. The dietary intake levels for Cl− vary with development as shown in Table
1: 0.3 g/day for infants aged 7–11 months, 1.7 g/day for children aged 1–3 years, 2.0 g/day for children aged
4–6 years, 2.6 g/day for children aged 7–10 years, 3.1 g/day for children aged 11–17 years, and 3.1 g/day for
adults, including pregnant and lactating women [8]. Cl− deficiency is extremely rare as the average diet
is high in NaCl [8]. A loss of Cl− is accompanied by a loss of sodium (Na) ions, observed in patients with
prolonged diarrhea, vomiting, or excessive sweating [15,16]. Additionally, diuretics or high blood glucose
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Table 1 Chloride levels in various human organs

Organ Fetus (mM) Infant (mM) Adult (mM)

Skin 90–96 67–72 71

Heart 41 45–50 45

Liver 57–62 42–55 38

Kidney 60–67 61 58

Brain 72 66 41

Blood 96–106 90–110 98–106

In various human organs, Cl− levels (mM/L) decrease with age, except for the heart and blood. In the heart and blood, Cl− levels show a small increase.
All values were obtained from previous studies [26,82].

levels can result in decreased Cl− levels [17]. In contrast, hyperchloremia (above the reference range of 97−107
mmol/L) is caused by an excessive intake of NaCl, severe dehydration, or metabolic abnormalities [3]. Excreted Cl−
levels in urine are independent of Cl− intake, making it difficult to evaluate the status of Cl− in the body [17]. There
are limited studies where the role of Cl− was evaluated in pathological conditions [2]. Only studies on cardiovascular
diseases tend to incorporate a control such as normal Na+ and low Cl− levels to implicate Cl− in determining the
outcome and survivability of patients [5,7,18–23].

Cl− is specifically necessary for the formation of hydrochloric acid (HCl) in the stomach, which activates several
gastric enzymes involved in the digestion [24]. The concentration of Cl− in the stomach is 150 mM, whereas in the
blood it is 98–106 mM [25]. Therefore, Cl− must be secreted in the lumen against the concentration gradient. The
membrane potential at the apical surface of the resting cell is −70 mV [24]. This facilitates Cl− secretion against the
electrical gradient. In conditions like excessive vomiting, the loss of stomach content results in an abnormal feedback
mechanism for acid-mediated secretion of digestive enzymes [24]. Several clinical conditions are related to the de-
creased concentration of Cl− in the serum, termed hypochloremia (typically below the reference range of 97−106
mmol/L)-, which manifests in metabolic alkalosis [26]. Conversely, high Cl− concentration above the reference range
results in hyperchloremia. An excessive loss of bicarbonate tends to cause a proportional increase of Cl− [27] as a re-
sult of excessive carbonate loss observed during severe diarrhea [2,26] or the intake of certain medications such as
acetazolamide and triamterene.

Cl− is a key ion of the extracellular fluid compartment (ECF), and with a concentration of 155 mM, it makes up 66%
of all the ECF anions [27]. In addition to ECF, Cl− is also present in the intracellular spaces, albeit at lower concentra-
tions [27]. The slight concentration difference between two different compartments is due to capillary impermeability
to proteins such as albumin [27]. The intracellular Cl− concentration depends on the cell types and function with
respect to other ions [4]. On average, the intracellular concentration of Cl− ranges from 5 to 60 mM [28]. Muscle cells
have a resting potential of approximately −70 mV and a low Cl− concentration of 3–4 mM [29]. However, cells with
high membrane potential, such as erythrocytes, have a higher concentration of Cl− of around 70 mM [30]. This higher
concentration is essential in moving Cl− into and out of the cell effectively during the phenomenon of ‘chloride shift ’
between the plasma and the red blood cells [30,31].

In this review, we summarize the recent information on the role of Cl− in organ (Figure 1) and cellular (Figure
2) physiology. Although abnormal Cl− levels are indicators of several physiological conditions, the ion channels and
transporters that conduct ions remain understudied compared with their cationic counterparts [32].

Chloride and organ systems
Cl− levels in the body are regulated by kidneys [33]. In the glomerular ultrafiltrate, Cl− is the most prevalent ion
after sodium. Most of the Cl− is filtered and reabsorbed in the renal tubules by both active and passive transportation
mechanisms [34]. In addition to the kidneys, the intestines also absorb Cl [35]. In this section, we will discuss the
role of each organ system and its Cl− levels. During early development and preterm infancy, Cl− levels (Table 1) are
influenced by sodium, Cl− intake, and gestational age [36].

Chloride in the kidneys
The excretion of Cl− is mainly done via the kidneys (Figure 1). Approximately 99% of the Cl− filtered through the
kidney gets reabsorbed along with Na+ [37]. Therefore, only a small fraction gets excreted [27]. Reabsorption occurs
either at the paracellular proximal tubule via Cl− channels and transporters, or at the apical membrane via Cl−/anion
exchangers or basolateral via Cl−/carbonate exchanger [38]. In the kidneys, the proximal tubule and the ascending
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Figure 1. Chloride concentrations in adult human organs

The Cl− concentration in adult human organs varies in different organ systems. The Cl− concentration in the brain (41 mM), heart

(overall 45 mM, and specifically right ventricle 339 mM and left ventricle 201 mM), muscle (25 mM), kidney (58 mM), blood (98–106

mM), gut (150 mM), skin (71 mM), liver (38 mM), and lungs (30 mM). Associated human diseases for various organs are high-

lighted. All the values were obtained from previous studies [26–28,31,36,40,50,81–83,88,116,156,157,169,195–206]. Images were

generated by Biorender.

loop of Henle are responsible for reabsorbing the majority of the filtered Cl− in the body [33]. In contrast, the distal
tubule and collecting duct absorb a very small amount of Cl− [39]. However, they still play a significant physiological
role in maintaining Cl− homeostasis [40]. Proximal convoluted tubule (PCT) absorbs most of the water and 50%
of Cl− along with Ca2+, Mg2+, and HPO4

2−. In basal membranes, the Na+/K+ ATPase generates an electrochemical
gradient that facilitates the reabsorption of Cl− by Na+/ Cl− symporters in the apical membrane. While Na+ is actively
transported from the basal side of the cell into the interstitial fluid, Cl− and Na+ are pumped into the interstitial fluid
by a paracellular route between cells through leaky tight junctions.

In the collecting ducts of the kidneys, vacuolar H+-ATPase and Slc26a11 regulate pH and renal acid–base secre-
tion [41]. Bicarbonate transporters also cause an uptake of NaCl [42]. All the bicarbonate transporters carry HCO3

−

and/or CO3
− along with at least one either Na2+ or Cl− [42]. In the connecting segments and the collecting tubules

of the kidneys, aldosterone, a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal
cortex, is another vital component in facilitating the reabsorption of NaCl [43]. Therefore, a deficiency in this hor-
mone would result in hyperkalemic and hyperchloremic acidosis (Figure 1). The key mechanism involves aldosterone
by increasing the number of Na and Cl− transporters in the luminal membrane [44,45]. When tubular reabsorption
of Cl− is enhanced, it leads to a Na imbalance and extracellular volume expansion, which causes hypertension and
hyporeninemia [5]. Kidneys must adapt to metabolic acidosis and acid-base disturbances [46]. Kidneys mainly adapt
to these imbalances via Cl− excretion [47]. Kidneys increase acid secretion by enhancing NH4Cl secretion via the api-
cal sodium/hydrogen exchanger (NHE3), which also works in tandem with the Na+/K+/2Cl− cotransporter [48,49].
When there is a prolonged period without sodium excretion, the lack of ion exchange pushes the system to reabsorb
bicarbonate and return pH levels to normal [50]. Recently, the outcome of hypochloremeia was evaluated in patients
with decompensated cirrhosis. Surprisingly, hypochloremia increases mortality in patient [51].
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Figure 2. Schematic representation of chloride concentration in the cell organelles

The Cl− concentration in an extracellular and cellular compartment maintains cellular homeostasis. The extracellular Cl− concen-

tration (110 mM), cytosol (36 mM), early endosome (40 mM), late endosome (65 mM), lysosome (118 mM), mitochondria (0.9–22.2

mM), nucleus (35–85 mM), endoplasmic reticulum (3 mM), and Golgi apparatus (50 mM) [83,133,134,169,175,192,207,208].

Chloride in the gut
Cl− in the gut comes from the consumption of table salt as well as foods containing other types of Cl− salts. Most of
the Cl− is absorbed from the intestines during digestion [52] (Figure 1). Cl− in the intestinal lumen gets absorbed
by three different mechanisms: a passive or paracellular pathway, an electroneutral pathway involving the Na/H and
Cl−/carbonate exchange, and a carbonate-dependent Cl− absorption pathway [35].

Hydrochloric acid in gastric juice is composed of Cl− that is secreted into the stomach [53]. Parietal cells located in
the middle part of the glands of the fundus-body region of the stomach produce HCl by secreting H+ and Cl− [54]. Hy-
drochloric acid activates digestive enzymes, controls foodborne microorganisms, limits microorganism growth in the
intestine, and facilitates the absorption of several nutrients [53]. At pH below 4.0, gastric juices have an anti-microbial
effect [53], which is recognized as a ‘gastric bactericidal barrier’ since 1925 [55]. The H+K+ATPase (the proton pump)
in the basolateral and apical membranes of the gut control the secretion of hydrochloric acid into the stomach [56,57].
Moreover, recently identified Cl− channels can also facilitate the secretion of Cl−. Some of these are calcium-activated
Cl− channels (CaCC), cystic fibrosis conductance regulator (CFTR), and chloride type-2 (ClC-2) channels [58,59].
Na+/K+ ATPase pumps, potassium channels, and Na+/K+/Cl− transporters move Cl− across basolateral membranes
[58–60]. Another major function of Cl− in the gut is facilitating water absorption [59]. Cl− contributes to the osmotic
gradient needed to regulate water secretion into the gut [61] (Figure 1). As water cannot be actively secreted, the driv-
ing force is the osmotic gradient generated by negative ions like Cl−, as well as carbonate [58]. Na+ participates as the
counter ion in the paracellular regions [62].

Chloride in the brain
Cl− in the brain is associated with the regulation of ionic homeostasis and water concentrations [63]. Water accounts
for 80% of the total brain, but its transport needs an osmotic gradient by anions [64]. The balance between trans-
porters and Cl− channels in the plasma membrane regulates and maintains the intracellular concentration of Cl−
[65]. Neurons and astrocytes express a plenteous set of Cl− channels and transporters belonging to several protein
families with unique modes of regulation and activation [65]. Abnormal levels of Cl− are associated with brain dis-
orders, trauma, hypoxic-ischemic encephalopathy, edema, and post-traumatic seizures (Figure 1) [32]. In the brain,
the concentration of Cl− levels is low (Figure 1), but in cerebral spinal fluid, the concentration is around 120 mM
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[66]. There is mounting evidence that disorders of the nervous system are caused by abnormal homeostasis of the
intracellular concentration of Cl− [65]. This also causes significant abnormalities in neuronal excitability and neuro-
transmission.

In the central nervous system, Cl− channels and transporters (Table 2) are essential for the growth and devel-
opment of neurons, the uptake of neurotransmitters, intracellular pH regulation, cell volume regulation, control of
membrane potential, cell proliferation, apoptosis, and, most importantly, the adjustment of [Cl−]i to its equilibrium
potential [67]. In neurons and astrocytes, Cl− channels, such as CLIC1 [68–70], are pivotal in regulating ion and
water homeostasis as they play a key role in action potential generation and impulse conduction [70]. By regulating
the postsynaptic reactions of GABA and glycine neurotransmitters, Cl− plays a critical role in modulating neuronal
excitability [71,72]. GABA and glycine receptors are ligand-gated Cl− channels that respond to GABA and glycine
neurotransmitters, respectively. When these receptors are activated, they cause an influx or efflux of Cl−, depending
on the electrochemical potential of Cl− for the cell. These Cl− fluxes lead to inhibitory and sometimes excitatory
responses [72]. GABAergic signals are the primary inhibitory transmitters in the adult brain and are an important
part of coordinating the assembly of neuronal circuits in the developing brain [73]. GABA is the primary neuro-
transmitter active within the developing brain and facilitates the proliferation of neuronal progenitor cells [74]. The
dysregulation of GABAergic signaling has been linked to a variety of neurological and neurodevelopmental disor-
ders, including epilepsy, schizophrenia, Down’s syndrome (DS), and autism spectrum disorders [75]. In relapsing
remitting multiple sclerosis, elevated Cl− levels of ≥123.2 mmol/L were associated with an increased frequency of
relapse as compared with patients with a cerebrospinal fluid Cl− level of <123.2 mmol/L [76]. Cl− in cerebrospinal
fluid is a key electrolyte in maintaining the ionic homeostasis of the brain and spinal cord [76]. In fact, for a long
period, spinal fluid Cl− levels were associated with tuberculous meningitis [77]. Any variability in Cl− concentration
in cerebrospinal fluid could result in neurological conditions such as hydrocephalus, meningitis, and encephalitis.

In the brain, Cl− was characterized for regulating the circadian rhythm [78]. Circadian rhythm is regulated by
the suprachiasmatic nucleus (SCN), which predominantly comprises of GABAergic neurons. In SCN, GABAergic
neurons elicit excitatory responses, which are facilitated by an increase in intracellular Cl− levels [79]. Also, the Cl−
levels in cortical pyramidal neurons were found to be associated with the sleep–wake cycle [78]. During the sleep part
of the cycle, Cl− levels decrease, but during the wake part of the cycle, the levels increase [78]. The increase in Cl− levels
during wakefulness is associated with inhibitory synaptic transmission in the cortex [80]. In sleep-deprived animals,
alterations in Cl− levels were found to be sufficient to correct the drop in their cognitive performance levels [80]. The
major mechanism in this Cl−mediated sleep–wake regulation is the equilibrium potential for the GABAA receptor
[80,81]. Decreasing Cl− to hyperpolarizing equilibrium potential for the GABAAR in animals deprived of sleep was
sufficient to restore performance levels [80]. These findings indicate that targeting Cl− regulatory mechanisms could
improve therapeutic effects in sleep disorders.

Chloride in the liver
In the liver, there is limited information available on the physiological role of Cl−. Cl− levels in newborns were found
to be 55 mM, whereas in adults they were reported to be at 38.3 mM (Figure 1) [82,83]. Surprisingly, in the same
tissue, although the cytosolic Cl− levels were found to be higher, these levels still showed a general decrease from 60
mM in newborns to 38 mM in adults [83]. The alteration in levels of Cl− could be attributed to the food or ion in-
take or to different expressions of ion channels and transporters in adults as compared with newborns. Additionally,
mitochondria in the liver cells of newborns had approximately 5 mM of Cl−, approximately 30-fold lower than the
cytosolic Cl− levels [83]. However, with age, the Cl− levels do not show as strong of an inverse trend in the mitochon-
dria as observed for cytosolic Cl− levels [83]. Though there is a strong electrochemical gradient between the cytosol
and mitochondria for Cl−, the levels indicate a tight regulation, possibly by ion channels and transporters [83].

Hepatocytes have Cl− channels in several intracellular compartments as well as at the plasma membrane [84].
The regulation of intracellular organelle acidification and cell volume depends on these channels [84]. Ca2+-activated
Cl− channels have been found in the plasma membranes of hepatocytes [84]. The mitochondrial voltage-dependent
anion channel, members of the newly discovered CLIC family of intracellular chloride channels (CLIC-1 and CLIC-4),
members of the ClC channel family (ClC-2, ClC-3, ClC-5, and ClC-7), and a newly discovered intracellular channel,
MCLC (Mid-1 related chloride channel), are among the Cl− channel molecules that have been demonstrated to be
expressed in hepatocytes [11,83,85,86].

There has not been much research done on the significance of Cl− alterations for the prognosis of cirrhosis patients
(Figure 1). In critically ill patients with decompensated cirrhosis, two independent studies found hypochloremia to
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Table 2 Chloride ion channels and transporters

Name Localization Pathophysiology Conductance (pS) Permeability

ClC1 Plasma membrane Myotonia congenital 1–2 Cl− > Br− > I−

ClC2 Plasma membrane Leukodystrophy 2–3 Cl− > Br− > I− > Cl− (in cell
swelling)

ClC3 Plasma membrane and late
endosomes

Degeneration of CNS and
retina

∼40 Cl− > I−

ClC4 Endosomes Epilepsy ∼1 Cl− > I−

ClC5 Endosomes Dent’s disease and impaired
renal endocytosis

NO3
− > Cl− > Br− > I−

ClC6 Late endosomes Lysosomal storage in neurons ∼100 (from bilayer
recordings)

–

ClC7 Lysosomes Osteopetrosis, CNS, and
retina degeneration

–

ClCKa Plasma membrane of inner
ear and kidney

Diabetes insipidus – Cl− > Br− > NO3 > I−

ClCKb Plasma membrane of inner
ear and kidney

Bartter’s syndrome 20–25 (with barttin subunit) Br− > I− > Cl−

CFTR Plasma membrane Cystic fibrosis, acute
pancreatitis, chronic
obstructive pulmonary
disease, and the
hyper-responsiveness in
asthma

∼10 Br− ≥ Cl− > I− > F−

GABAARs Plasma membrane Neurological functions,
seizures, hypotonia, and
hyperreflexia

∼28, 18, and 12 Cl− > HCO3
−

ORCC Plasma membrane Cystic fibrosis 30–60 Cl− ≥ Br− > I−

TMEM16A; Anoctamin-1;
ANO1

Plasma membrane Up-regulation in
gastrointestinal stromal
tumors (GISTs), in breast
cancer, and in head and neck
squamous cell carcinomas
(HNSCCs); up-regulated in
asthma

1–14 I− > NO3
− > Br− > Cl− >

F− > CH3SO4

TMEM16B; Anoctamin-2;
ANO2

Plasma membrane Anxiety modulation ∼10 SCN− (14) > I− > NO3
− >

Br−

TMEM16F; Anoctamin-6;
ANO6

Plasma membrane Mutated in Scott syndrome 1–3 I− > Br− > Cl− > F− >

aspartate

CLIC1 Cytoplasm, exosomes,
plasma membrane,
intracellular membrane,
mitochondria, and
nucleoplasm

Myelodysplastic syndrome
and several cancers

35–50 (from bilayer
recordings) with sub states

I− > SCN− ≥ Cl− ≥ NO2
−

and NO3
−≥ Br− ≥ F− (in

symmetrical ionic conditions)
I− > F− = SCN− > Cl− =
NO2

− and NO3
− = Br− (in

asymmetrical ionic conditions)

CLIC2 Cytoplasm, nucleus, and
endoplasmic reticulum

X-linked cognitive disability,
congestive heart failure,
cardiomegaly, erythematosus,
seizures, myopia, and atrial
fibrillation

30–40 (from bilayer
recordings)

Cl > Choline

CLIC3 Nucleus, exosome, and
plasma membrane

Fetal growth restriction,
pre-eclampsia, and breast
cancer

∼1–2 nS –

CLIC4 Cytoplasm, mitochondrial
associated membrane
(cardiomyocytes), nucleus,
exosomes, golgi apparatus,
plasma membrane, and
intracellular membrane

Several cancers, benign
familial infantile seizures, and
pulmonary hypertension

10, 30, and 57 (from bilayer
and tip dip recordings)

–

CLIC5 Nucleus, inner mitochondrial
membrane (cardiomyocytes),
exosomes, Golgi apparatus,
plasma membrane,
intracellular membrane, and
secretory vesicles in renal
glomeruli

Renal dysfunction, juvenile
myoclonic epilepsy, migraine,
macular degeneration, and
childhood acute
lymphoblastic leukemia

∼105 (from bilayer
recordings)

–

CLIC6 Cytoplasm, exosomes,
nucleus, and plasma
membrane

Familial goiter and
developmental delay

1–3 Cl− > Br− > F−

Continued over
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Table 2 Chloride ion channels and transporters (Continued)

Name Localization Pathophysiology Conductance (pS) Permeability

VDAC1 Plasma membrane and
mitochondrial outer
membrane

Cystic fibrosis, mitochondrial
myopathy, and
calcium-induced neurotoxicity

200–250 Cl− > K+ > Na+ > glutamate
> ATP > acetylcholine >

dopamine

VDAC2 Mitochondrial outer
membrane

Alzheimer’s, thyroid cancer,
temporal lobe epilepsy (TLE),
hypoxia, iron deprivation, and
adipogenesis

1–2 nS Cl− > K+ (from nanodiscs)

VDAC3 Mitochondrial outer
membrane

Hepatocellular carcinoma 3–4 nS Cl− > K+ (from nanodiscs)

IMAC Mitochondrial inner
membrane

Type 2 diabetes, Parkinson’s
disease, atherosclerotic heart
disease, stroke, Alzheimer’s
disease, and cancer

107–150 Cl− > SO4
2−> Pi 1,2,3-BTC

> 1,3,5-BTC

VRAC; VSOR; VSOAC Plasma membrane Angiogenesis, cancer,
ischemic, and apoptosis

10–90 I− ≥ Br− > Cl− > F− >

taurine > glutamate

PAC; ASOR; PAORAC;
TMEM206

Endosomes Ischemic stroke, cancer, and
hypoxia

40–10 SCN− > I− > NO3
− > Br− >

Cl−

Numerous chloride channels and transporters are highlighted by their localization in the cell, pathophysiology, conductance, and perme-
ability. ClC1, chloride channel 1; ClC2, chloride channel 2; ClC3, chloride channel 3; ClC4, chloride channel 4; ClC5, chloride channel
5; ClC6, chloride channel 6; ClC7, chloride channel 7; CLIC1, chloride intracellular channel 1; CLIC2, chloride intracellular channel 2;
CLIC3, chloride intracellular channel 3; CLIC4, chloride intracellular channel 4; CLIC5, chloride intracellular channel 5; CLIC6, chloride
intracellular channel 6; ClCKA, kidney-specific chloride channel A; ClCKB, kidney-specific chloride channel B; CFTR, cystic fibrosis trans-
membrane conductance regulator; GABAARs, γ-aminobutyric acid type A receptors; IMAC, mitochondrial inner membrane anion chan-
nel; ORCC, outward rectifying Cl− channel; PAC, proton-activated Cl− channel; PAORAC/ASOR, acid-sensitive outwardly-rectifying an-
ion channel; TMEM16A/ANO1, calcium-activated chloride channel ANO1/TMEM16A; TMEM16B/ANO2, calcium-activated chloride chan-
nel ANO2/TMEM16B; TMEM16F/ANO6, calcium-activated chloride channel ANO6/TMEM16F; VDAC1, voltage-dependent anion-selective
channel 1; VDAC2, voltage-dependent anion-selective channel 2; VDAC3, voltage-dependent anion-selective channel 3; VRAC,
volume-regulated anion channel; VSOR, volume-sensitive outwardly rectifying anion; VSOAC, volume-sensitive organic osmolyte/anion chan-
nel [4,67,68,84,98,103,122,123,126,135,136,139,140,144,145,165,168,176–194].

be associated with short-term mortality, but not hyponatremia [87,88]. Interestingly, hypochloremia was found to be
a more significant indicator of a patient’s prognosis than hyponatremia [89].

Chloride in the lungs
Cl− levels in the lungs are essential to maintaining membrane excitability, transepithelial transport, and homeostasis
of ions as well as water [72]. The Cl− concentration in lung cells is maintained by a plethora of ion channels and trans-
porters [90]. The earliest diagnosis involving Cl− was made for cystic fibrosis transmembrane conductance regulator
(CFTR), a condition where the sweat of affected children tastes saltier than normal children [91]. In CFTR patients,
there is a notable increase in Cl− levels of sweat to 60 mM as opposed to normal levels of 30 mM (Figure 1) [91]. If
the Cl− is not moving in the correct direction, water is unable to hydrate the surface of cells. This causes thick and
sticky mucus to cover the cells, resulting in many of the symptoms related to cystic fibrosis. In addition, patients with
a chronic cough have been reported to have both reduced pH and Cl− levels [92].

In the lungs, Cl− and water move paracellularly to maintain both electroneutrality and osmotic balance [93]. Pas-
sive absorption of Cl− by various pathways is driven in response to the electrical driving force generated by active
Na+ absorption. However, transepithelial Cl− transporters are implicated in active alveolar secretion and cardiogenic
edema formation [93]. In airways surface the liquid Cl− concentration is approximately 123 mM [94], and in the
airway epithelia, the range is from 30 to 50 mM [95]. Furthermore, it was shown that both transepithelial alveolar
Cl− and fluid flux can reverse from an absorptive to a secretory mode in lung hydrostatic stress [93]. When Cl− was
replaced with iso-osmolar NO3

−, it attenuated alveolar fluid clearance [93]. Cl− must follow electroneutrality in lung
cells [93]. Failure to maintain electroneutrality limits transepithelial Na+ flux, hence, affecting alveolar fluid clearance
[93]. The idea of a significant role for transepithelial Cl− transport in alveolar fluid secretion is further supported by
the fact that alveolar fluid secretion is prevented in Cl− free perfused lungs [93].

Cl− channels are highly expressed in the lung in both the lung parenchyma and the pulmonary blood vessels.
They can develop pulmonary diseases (Figure 1) because of their compromised function or regulation [90]. The
major challenges in the identification of Cl− channels and transporters are weak, non-selective inhibitors or a lack of
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genetic studies [9]. The major channels and transporters implicated in lung cells are TMEMs [96], cAMP-activated
Cl−channels [97], ClC family [98], ligand-gated Cl− channels [99], SLC26 [100], CLIC4 [101,102], and CLIC6 [103].

Chloride in the muscles
Cl− regulates the excitability of muscle cells in skeletal muscles via their movements in and out of cells [32,104–107].
The electrical potential of the cells is stabilized by this flux, preventing abnormal muscle contraction. Although the
resting Cl− conductance is not high, Cl− levels increase the excitability of cardiac cells in cardiac muscle, also known
as the myocardium [108] (Figure 1).

Various vascular responses involve Cl− currents, indicating the existence Cl− channels such as transmembrane pro-
tein 16 (TMEM16)/anoctamin (ANO), bestrophins, voltage-gated Cl− channels (CLCs), cystic fibrosis (CF) trans-
membrane conductance regulator (CFTR) [109–112]. Vascular smooth muscle cells have been found to harbor all
known Cl− channel families, with the exception of the GABA-/glycine-receptor family [109]. It has been proposed
that at least one member of the voltage-activated ClC family, ClC-3, is involved in cell proliferation, myogenic con-
striction, and anti-apoptotic activity in rat vascular smooth muscle cells (VSMCs) [113]. VSMCs also exhibit the
transmembrane conductance regulation associated with cystic fibrosis [114].

Myotonia congenita (MC), a genetic neuromuscular channelopathy, affects the skeletal muscle fibers, which are
the striated muscles under the control of the somatic nervous system [115]. It is also associated with the abnormal
functioning of Cl− channels such as ClC-1 (Figure 1) [32,116,117]. Myotonia, the disease’s hallmark, is defined as a
delay or failure of relaxation in contracted skeletal muscle [115]. It causes prolonged rigidity, leading to cramping,
stiffness, and muscle hypertrophy [115]. The CLCN1 gene, which codes for voltage-gated chloride (CIC-1) channels in
the sarcolemmal membrane, is mutated in MC [116]. Repetitive depolarization and myotonia are caused by abnormal
hyperexcitability of skeletal muscle cells due to defective CIC-1 channels [118].

In addition to VSMCs, Cl− channels have also been discovered in cardiac tissues. Levels of Cl− in the serum can
determine the survival outcome after cardiac insults such as a heart attack or chronic heart failure [18–21,23]. Phar-
macological and genetic approaches have indicated that IAA-94-sensitive Cl− channels such as chloride intracellular
channels (CLICs), CLIC1, CLIC2, CLIC4, and CLIC5 are present in the cardiac tissue [119–123]. Blocking or absence
of these channels increased myocardial infarction after ischemia and reperfusion injury [119,124–127]. Similarly,
voltage-dependent anion channel (VDAC) ablation also results in dilated cardiomyopathy and cell death [128–130].
In skeletal muscle fibers, intracellular Cl− levels have a small potentiating effect on the Ca2+ release, which influences
the cellular Ca2+ levels [131]. Pharmacological approaches have also implicated Cl− fluxes in charge compensation
in smooth muscle cells [132]. It was further shown that different channels and transporters are involved in smooth
and cardiac muscle cells [132].

Chloride in intracellular organelles
Cl− levels in the ECF are 110 mM, but in the cytosol, the levels are as low as 45 mM [133]. With the advent of
new nano sensors and technologies, it is possible to quantify the absolute concentration of Cl− concentrations in
various cellular compartments [133,134]. The Cl− concentration inside cellular organelles is tightly regulated for
their physiological function [65]. The regulation is vital for maintaining ionic homeostasis and water concentrations.
Different Cl− concentrations in different cellular compartments are provided in Figure 2.

Chloride ion channels and transporters
Cl− is moved across the cellular membrane through ion channels and transporters [135]. They are activated by pH,
Ca2+, voltage, and volume [4]. After being ignored for several decades, Cl− channels and transporters have been dis-
covered through the cloning of VDACs [136–138], ClC family [139,140], GABAA receptors [141–143], and CLIC
proteins [144–146], as well as through the identification of mutations in the cystic fibrosis transmembrane con-
ductance regulator (CFTR) [147]. So far, over 53 Cl− transporting proteins have been identified [90]. These ion
channels and transporters are associated with several human disorders or disease-like symptoms (Table 2) [148].
The major challenge in the Cl− channel and transport fields is the lack of pharmacological agents that can activate,
block, inhibit, or facilitate membrane trafficking of these proteins. A major multidisciplinary effort is required to
push for Cl− channels and transporters as drug candidates. Most of the Cl− channels and transporters are listed
as potential drug targets that are not extensively studied [149]. Recently, a few Cl− transporters have been iden-
tified as targets of FDA-approved drugs [9,11]. For example, diuretics target SLC12 cation-Cl− co-transporters,
which are used to reduce volume overload in hypertension and heart failure [150]. Barbiturates and benzodiazepines
are known to target GABA-gated Cl− channels, and are commonly used for anxiety disorders, depression, and
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insomnia [151]. Ivacaftor was approved in 2012, and several correctors approved in 2015 for CFTR were highly
specific steps to exclusively target Cl− channels [152]. More importantly, several drug candidates, such as acam-
prosate, alprazolam, bendroflumethiazide, benthiazide, bumetanide, butabarbital, butalbital, chlorothiazide, chlor-
diazepoxide, chlorthalidone, clobazam, clonazepam, clorazepic acid, crofelemer, cyclothiazide, desflurane, diazepam,
enflurane, estazolam, eszopiclone, ethacrynic acid, ethchlorvynol, etomidate, flumazenil, flurazepam, furosemide,
glutethimide, halazepam, halothane, hydrochlorothiazide, hydroflumethaiazide, indapamide, isoflurane, ivermectin,
lindane, lorazepam, lubiprostone, lumacaftor, meprobamate, metharbital, methohexital, methoxyflurane, methy-
clothiazide, methyprylon, metolazone, midazolam, oxazepam, pentobarbital, polythiazide, prazepam, primidone,
propofol, quazepam, quinethazone, secobarbital, sevoflurane, talbutal, temazepam, thiamylal, thiopental, tiagabine,
topiramate, torsemide, triazolam, trichloromethiazide, triclofos, targeting Cl− channels, and transporters are listed
with FDA clinical trial efforts [153]. There are several Cl− channels and transporters characterized as summarized in
Table 2.

Perspectives
1. Cl− are major anions in the body, and recent literature suggests that a decrease in Cl− levels in the body

can result in detrimental effects [6,9,18,22,50,65,67,76,90,91,115,120,154,155]. A specific mechanism
to increase Cl− in organs could improve the survival rate and the health of human beings.

2. Cl− levels vary in different organ systems during development; however, there is no
clear information on how these chloride ions are important in development and aging
[3,4,9,23,75,94,107,112,120,133,156–161]. Recognition of variability in ion concentration during
development and aging will facilitate novel targets for development-related pathological conditions.

3. Cl− levels in organelles and cells are tightly regulated by ion channels and transporters. Identification
and regulatory mechanisms of these channels and transporters hold the key to modulating cellular
and extra-cellular Cl− levels [4,71,72,83,133,145,146,162–175].
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