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Symptoms of post-traumatic stress disorder (PTSD) are common in military populations,
and frequently associated with a history of combat-related mild traumatic brain injury
(mTBI). In this study, we examined relationships between severity of PTSD symptoms and
levels of extracellular vesicle (EV) proteins and miRNAs measured in the peripheral blood in
a cohort of military service members and Veterans (SMs/Vs) with chronic mTBI(s).
Participants (n � 144) were divided into groups according to mTBI history and severity
of PTSD symptoms on the PTSD Checklist for DSM-5 (PCL-5). We analyzed EV levels of
798 miRNAs (miRNAs) as well as EV and plasma levels of neurofilament light chain (NfL),
Tau, Amyloid beta (Aβ) 42, Aβ40, interleukin (IL)-10, IL-6, tumor necrosis factor-alpha
(TNFα), and vascular endothelial growth factor (VEGF). We observed that EV levels of
neurofilament light chain (NfL) were elevated in participants with more severe PTSD
symptoms (PCL-5 ≥ 38) and positive mTBI history, when compared to TBI negative
controls (p � 0.024) and mTBI participants with less severe PTSD symptoms (p � 0.006).
Levels of EV NfL, plasma NfL, and hsa-miR-139–5p were linked to PCL-5 scores in
regression models. Our results suggest that levels of NfL, a marker of axonal damage, are
associated with PTSD symptom severity in participants with remote mTBI. Specific
miRNAs previously linked to neurodegenerative and inflammatory processes, and
glucocorticoid receptor signaling pathways, among others, were also associated with
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the severity of PTSD symptoms. Our findings provide insights into possible signaling
pathways linked to the development of persistent PTSD symptoms after TBI and biological
mechanisms underlying susceptibility to PTSD.
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is highly prevalent in
military populations and frequently associated with
deployment-related mild traumatic brain injury (mTBI) (Hoge
et al., 2008; Schneiderman et al., 2008). The risk for the
development of PTSD after exposure to traumatic experiences
varies among individuals and populations (Holmes and
Singewald, 2013), and biological mechanisms underlying
susceptibility to PTSD development remain largely unknown.
Finding biomarkers associated with persistent PTSD symptoms
following mTBIs may shed light on the underlying pathobiology
and may lead to novel molecular targets for the development of
personalized therapies.

Extracellular vesicles (EVs) such as exosomes and
microvesicles are released by cells throughout the body,
including neurons and glia (Fauré et al., 2006; Krämer-Albers
et al., 2007). EVs have a lipid bilayer and contain a cargo that
includes proteins (e.g., cytokines and growth factors) and
microRNAs (miRNAs) (Taylor and Gercel-Taylor 2013;
Snijders et al., 2018), which are small non-coding RNAs that
are thought to play a major role in the regulation of gene
expression and epigenetic alterations (Taylor and Gercel-
Taylor, 2013). EVs have been linked to the pathology of age-
related neurodegenerative conditions, play a role in angiogenesis
and have immunodulatory properties (Perez-Gonzalez et al.,
2012; Dinkins et al., 2017; DeLeo and Ikezu, 2018; Oggero
et al., 2019). Moreover, neuroinflammatory activity can be
initiated by EVs, which contain biologically active cytokines in
their cargo and surface (Gupta and Pulliam, 2014; Fitzgerald
et al., 2018). Importantly, EVs readily cross the blood brain
barrier (BBB) to the peripheral circulation, where they can be
accessed and isolated, allowing for the quantification of their
protein andmiRNA content (Gupta and Pulliam, 2014; Fitzgerald
et al., 2018).

TBI of all severities has been associated with remote
neurodegeneration, persistent inflammation, and vascular
changes (Johnson et al., 2013; Woodcock and Morganti-
Kossmann, 2013; Mckee and Daneshvar, 2015; Jassam et al.,
2017). PTSD has been linked to inflammation and immune
dysregulation, with reports of elevated peripheral blood levels
of cytokines in association with PTSD symptoms in participants
with TBI (Gill et al., 2010; Passos et al., 2015; O’Donovan et al.,
2017; Rodney et al., 2020). Our group has previously reported
correlations between PTSD symptom severity and EV levels of
neurofilament light chain (NfL), a protein found in large
myelinated axons and a marker of axonal injury and
degeneration in military populations with a positive history of
mTBI (Menke et al., 2015; Zetterberg 2016; Guedes et al., 2020a).
Differential expression of circulating miRNAs has been observed

in mTBI as well as PTSD (Bhomia et al., 2016; Gheysarzadeh
et al., 2018; Lee et al., 2019; Snijders et al., 2019). Nevertheless, the
potential of EV proteins and miRNAs as biomarkers of PTSD
and/or PTSD symptoms in chronic TBI populations remains
largely unexplored.

In this study, we aimed to analyze the molecular signature
associated with severity of persistent PTSD symptoms in a cohort
of combat-exposed service members and Veterans (SMs/Vs) with
and without remote mTBI(s). The levels of 798 miRNAs in
peripherally circulating EVs were evaluated. In addition, we
measured the EV and plasma levels of eight proteins: NfL,
Tau, Amyloid beta (Aβ) 42, Aβ40, interleukin-6 (IL-6), IL-10,
tumor-necrosis factor-alpha (TNFα), as well as vascular
endothelial growth factor (VEGF). NfL, tau, Aβ42, and Aβ40
are candidate TBI biomarkers that have been linked to
neurodegenerative processes (Brody et al., 2015; Mustapic
et al., 2017; Khalil et al., 2018); whereas IL-10, IL-6, TNFα are
cytokines implicated in inflammatory responses (Morganti-
Kossmann et al., 2002; Taylor and Gercel-Taylor 2014); and
VEGF is an angiogenesis and vascular injury marker (Arany
et al., 2008; Vempati et al., 2014).

MATERIALS AND METHODS

Study Design and Population
Participants in the current study were all enrolled in the Chronic
Effects of Neurotrauma Consortium (CENC) Multicenter
Prospective Longitudinal Study (PLS), an observational study
of mTBI among post-9/11 era SMs/Vs (Walker et al., 2018), now
funded under the Long Term Impact of Military Brain Injury
Consortium (LIMBIC). The LIMBIC-CENC PLS study assesses
SMs/Vs for all potential concussive events (PCEs) during lifetime
and determines a mTBI diagnosis for each event based on DoD-
VA common definition of mTBI. Blood was stored in the CENC
biorepository until analyzed. The inclusion criteria for the parent
study were: 1) a history of Operation Enduring Freedom (OEF)/
Operation Iraqi Freedom (OIF)/Operation New Dawn (OND)
deployment confirmed by Veterans Affairs (VA) or the
United States Department of Defense (DoD) records; 2) a
history of combat exposure during any deployment; 3) adult
age >18 years. Exclusion criteria included the following: 1) history
of moderate, severe or penetrating TBI (i.e., initial Glasgow Coma
Scale <13, coma duration >½ hrs., post-traumatic amnesia
duration >24 h, or traumatic intracranial lesion on head CT);
2) history of 1) major neurologic disorder (e.g., stroke, spinal cord
injury), 2) major psychiatric disorder (e.g., schizophrenia)
defined as resulting in a significant decrement in functional
status or loss of independent living capacity. Common
neurologic (e.g., mini-stroke, neuropathy) and common
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psychiatric comorbidities (e.g., depression, bipolar disorder) were
permitted.

The sample for the current study, a cross-sectional analysis of
baseline evaluations, was derived from an early ‘Snapshot’
Biomarker Discovery dataset of participants enrolled at the
four original CENC sites (Veteran Affairs Medical Centers: in
Richmond, VA; Tampa, FL; Houston, TX; San Antonio, TX). All
participants provided written informed consent to participate,
and all sites received approval from their respective institutional
review boards, including blood collection, and followed their
ethical standards. A convenience sample of 151 participants with
available EV protein and miRNA data was analyzed in this study.
Participants were classified into four groups based on TBI history
and severity of PTSD symptoms as measured by the PTSD
Checklist for DSM-5 (PCL-5) (Blevins et al., 2015): 1) Control,
subjects (i.e. -TBI and -PTSD) negative for any lifetime TBI and
PCL-5 score under 38 (n � 28); 2) +mTBI/-PTSD, participants
with positive history of mTBI and with PCL-5 score under 38 (n �
71); 3) +mTBI/+ PTSD, mTBI participants with PCL-5 score of
38 or higher (n � 45). Participants without prior mTBI and with
PCL-5 score equal or higher than 38 (n � 7) were excluded from
the analysis, and the remaining 144 participants were included in
this study. Investigators were blinded to the group allocation for
protein and miRNA analysis.

Assessment of Post-Traumatic Stress
Disorder Symptoms
PCL-5 is a 20-item questionnaire, corresponding to the DSM-5
symptom criteria for PTSD. PCL-5 results in an overall score of
0–80, obtained by summing the individual scores (range 0–4) for
the 20 items. Higher PCL-5 scores indicate a greater symptom
burden. PCL-5 is commonly used to assess PTSD symptoms and
to help determine appropriate steps and treatment options for
patients who may have PTSD (Blevins et al., 2015; Bovin et al.,
2016). The PCL-5 cutoff of 38 is comparable to the established
and validated 17-item PCL cutoff of 50 in military populations
(Hoge et al., 2014).

Determination of Traumatic Brain Injury
Using a modification of the Ohio State University TBI
Identification (OSU TBI-ID) instrument (Corrigan and
Bogner, 2007), participants were screened for PCEs sustained
during military deployments and across their entire lifetime,
including childhood. Each PCE was further investigated via
the Virginia Commonwealth University Retrospective
Concussion Diagnostic Interview (VCU rCDI) (Walker et al.,
2015), which rendered a preliminary mTBI diagnosis for each
event based on DoD-VA common definition of mTBI. The
preliminary TBI diagnosis was reviewed by the site principal
investigator, and vetted against the unstructured free text portion
of the interview and available medical documents recorded in
proximity to the event (i.e., first responder, emergency
department, or in-theatre documentation) as previously
described (Walker et al., 2018). The TBI severity of each event
was also evaluated and if any event was assessed more severe than
an mTBI, the participant was excluded from the study.

Additionally, if any uncertainty regarding the TBI diagnosis
remained, the event was adjudicated by a central diagnosis
committee consisting of national experts in TBI. Using these
TBI determinations, participants were classified into mTBI
positive or TBI negative control group and the lifetime
number of mTBIs per individual was summed.

Laboratory Methods
Extraction of Extracellular Vesicle miRNA
Whole blood samples were collected and, within 2 h, were
centrifuged at 3,000 rpm for 10 min (4°C). Plasma aliquots
were stored at −80°C until analyzed. Plasma samples were
thawed on ice and centrifuged at 3,000 rpm for 5 min to pellet
and removal of cells and debris. Qiagen ExoRNeasy Serum/
Plasma Kits (Qiagen, Germantown, MD, United States) was
used to extract miRNAs from EVs as per manufacturer’s
instructions. For miRNA extraction, 400 µL of plasma samples
per participant was used, and miRNAs were eluted in 20 µL of
water. After this, the RNA extract was cleaned and concentrated
using the RNA Clean and Concentrator-5 kit (Zymo Research
Corp., Irvine, CA, United States), and eluted in 10 μL of water.
The concentration, purity, and integrity of the EV miRNA
product was determined using Bioanalyzer (Agilent, Santa
Clara, CA, United States) and Qubit (Thermo Fisher Scientific,
Waltham, MA, United States).

miRNA Profiling Analysis
Analysis was performed with nCounter® Human v3 miRNA
Expression Panels (NanoString Technologies, WA,
United States). The expression panel contained 798 miRNA
probes; this was the maximum number of probes available for
analysis in human samples. Spike-in synthetic targets were
introduced to control for variability in miRNA extraction and
ligation: Arabidopsis thaliana miR-159a (ath-miR-159a),
Caenorhabditis elegans (cel)-miR-248 and miR-254, and Oryza
sativa (osa)-miR-414 and 442. They are incorporated in the code
sets and used for analysis along with positive and negative
controls. All hybridizations took place around 18 h, and all
counts were obtained at MAX mode, with the creation of 555
images per sample. Analysis of raw miRNA data was performed
using the nSolver analysis software (version 4.0, NanoString
technologies). Code count normalization was performed with
the geometric median for the 50 highest expressed genes.
MiRNAs with an p-value of less than 0.05 (after adjustment
for false discovery rate, FDR) were considered as differentially
expressed and used for subsequent analysis. Target filter analysis
(Ingenuity Systems Inc., CA, United States), which allows the
identification of biologically relevant targets, was performed for
relevant miRNAs. In the analysis, we prioritized human studies
with experimentally validated and predicted mRNA targets, with
targets related to inflammatory responses, neurological disease,
cardiovascular disease, organismal injury and abnormalities and
psychological disorders.

Extracellular Vesicle Isolation for Protein Analysis
We used 500 µL of frozen human plasma to obtain EVs for
protein analysis. EVs were precipitated by using ExoQuick™
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Plasma Prep and Exosome Precipitation Kit (EXOQ5TM-1,
System Biosciences Inc., Mountainview, CA, United States),
which allow EV isolation at low gravitational centrifugal forces
(Peterson et al., 2015). Plasma samples were first treated with
thrombin and incubated at room temperature for 5–10 min.
Then, samples were centrifuged at 10,000 rpm for 5 minutes
and the supernatant was transferred into a clean tube for EV
isolation. After this, we added 126 µL of ExoQuick solution to
each thrombin-treated plasma sample, mixing well by inverting
the tube, and incubated the resulting mixture for 30 min at 4°C.
Tubes were kept upright during incubation. Then, vials were
centrifuged at 1,500 × g for 30 min, according to the
manufacturer’s instructions. After the centrifugation, EVs
appeared as pellets at the bottom of the tube. The supernatant
was aspirated from each tube, and each pellet was resuspended in
500 µL of 1 x phosphate-buffered saline (PBS). Samples were then
stored at −80°C. We used TSG101 (EV and exosome marker)
ELISA to confirm the presence of EVs in the samples.

Protein Quantification
For the protein quantification, each sample received equal
amounts of mammalian protein extraction reagent (M-PER) to
lyse EVs (Thermo Scientific, Inc., Rockford, IL, United States),
containing three times the suggested concentrations of protease
inhibitors (cOmplete™ ULTRA Tablets protease Inhibitor
Cocktail, MiliporeSigma, Burlington, MA, United States).
These suspensions were used to measure protein
concentrations. EV and plasma levels of NfL (NF-light Simoa
Assay, item 103,186, Quanterix, Lexington, MA, United States),
Tau, Aβ42, Aβ40 (Neurology 3-Plex A, item 101,995, Quanterix),
IL-10, IL-6, TNFα (Cytokine 3-Plex A, item 101,160, Quanterix),
and VEGF (VEGF Discovery Kit, item 102,794, Quanterix) were
analyzed using a Simoa HD-1 analyzer (Quanterix), according to
the manufacturer’s instructions. The Simoa HD-1 analyzer uses
an ultrasensitive paramagnetic bead-based enzyme-linked
immunosorbent assay. Each sample was analyzed in
duplicates. Samples with coefficients of variance (CVs) higher
than 20% were excluded from subsequent analysis.

Statistical Analysis
Comparison of demographic, and clinical characteristics between
groups were conducted using Chi-square test (χ2), Mann-
Whitney U tests, and Kruskal-Wallis test. Non-parametric
tests were used for biomarker analysis, instead of parametric
tests, as data were not normally distributed. Comparisons of
miRNA levels between groups were performed by using Kruskal-
Wallis test followed by Dunn’s test and Benjamini-Hochberg for
FDR. miRNAs with adjusted p < 0.05 were considered
differentially expressed. For the protein analysis, we used
Kruskal-Wallis test followed by Dunn’s test, and Bonferroni
method to correct for multiple comparisons. We examined
relationships between PTSD symptoms and differentially
expressed miRNA and protein levels by using Spearman
correlations tests as well as linear regression models. Linear
regression models were built for each of the statistically
significant biomarkers, and included PCL-5 scores as the
outcome, controlling for potential confounders (demographics,

total number of mTBIs and time since the last mTBI). All data
were analyzed using R (version 4.0.2) statistical packages. R and
GraphPad Prism were used to produce graphs (version 8.4.3).

RESULTS

Demographics and Clinical Characteristics
Demographic and clinical characteristics including PCL-5 scores
of the 144 final participants are described in Table 1. The cohort
was predominately male (89%) with a median age of 37 (IQR �
31–49). No significant differences on the demographic variables
of age, gender, and education between mTBI/PTSD groups were
observed. For TBI positive groups, TBI characteristics including
total number of mTBIs, time since first mTBI and time since last
mTBI were also not significantly different.

MiRNA Analysis
We analyzed 798 miRNAs and found 12 differentially expressed
miRNAs (Table 2, Supplementary Table S1). Pairwise
comparisons were performed to assess differences in miRNA
expression levels between groups. After correcting for FDR,
differentially regulated miRNAs were as follows: +mTBI/-
PTSD vs control (hsa-miR-139–5p, hsa-miR-204–5p, hsa-miR-
372–3p, hsa-miR-509-3-5p, hsa-miR-615–5p, hsa-miR-
1277–3p); +mTBI/+PTSD vs control (hsa-miR-3190–3p, hsa-
miR-615–5p, hsa-miR-1185-1-3p, hsa-miR-3196, hsa-miR-
372–3p, hsa-miR-139–5p); +mTBI/+PTSD vs +mTBI/-PTSD
(hsa-miR-374a-3p).

To evaluate relationships between miRNA levels and severity
of PTSD symptoms, we also calculated correlations between levels
of differentially expressed miRNA and PCL-5 scores (Figure 1,
Supplementary Table S2). We observed that levels of hsa-miR-
139–5p (ρ � 0.26, p � 0.006) and hsa-miR-1185-1-3p (ρ � 0.24,
p � 0.010) significantly correlated with PCL-5 scores. Marginally
significant correlations were observed between hsa-miR-3190–3p
(ρ � 0.16, p � 0.086), hsa-miR-422–5p (ρ � -0.17, p � 0.065) and
PCL-5 scores. We also built linear regression models including
total number of TBIs and time since last TBI to evaluate links
between PCL-5 scores and miRNA levels (Table 3). We found a
significant association between PCL-5 scores and hsa-miR-
139–5p. In addition, combining hsa-miR-139–5 and protein
biomarkers resulted in model improvements (Table 3).

To explore functional associations of differentially regulated
miRNAs linked to the development of more severe TBI
symptoms, we performed a target filter analysis including
miRNAS that were differentially expressed in the +mTBI/
+PTSD group when compared to the +mTBI/-PTSD and
control groups. The target analysis revealed canonical
pathways linked to nervous system physiology,
neurodegenerative diseases, mitochondrial dysfunction,
oxidative phosphorylation, immunological function and
inflammatory responses (e.g, IL-6 and IL-10), VEGF signaling,
cardiac hypertrophy and cardiac beta-adrenergic signaling, as
well as insulin secretion, estrogen receptor, and glucocorticoid
receptor signaling canonical pathways (Supplementary Figures
S1–S4).
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Protein Analysis
We compared EV (Figure 2) and plasma (Figure 3) levels of
proteins among control, +mTBI/-PTSD, and +mTBI/+PTSD
groups (Supplementary Table S3). Significant group
differences were found for EV NfL (p � 0.003) and plasma
NfL (p � 0.048). Pairwise comparison showed higher levels of
EV NfL in the +mTBI/+PTSD when compared to the +mTBI/-
PTSD (p � 0.006) and control groups (p � 0.024). For plasma NfL,
pairwise comparisons showed significant differences between +
mTBI/+PTSD and +mTBI/-PTSD groups (p � 0.049). No other
significant differences among groups were observed. Group
differences for EV IL-6 levels were marginally significant (p �
0.054).

To evaluate associations between PTSD symptoms and levels
of proteins in EV and plasma, we performed correlation analysis
(Figure 1, Supplementary Table S2). EV NfL (ρ � 0.41, p �
0.004) and plasmaNfL (ρ � 0.26, p � 0.006) correlated with PCL-5
scores. No other significant correlations between PCL-5 and
proteins were observed. Marginally significant correlations
were observed between PCL-5 scores and EV IL-6 (ρ � 0.22,
p � 0.078), plasma TNFα (ρ � -0.19, p � 0.093), and EV Aβ40 (ρ �
0.28, p � 0.086). To further investigate associations between PCL-
5 scores and biomarker levels, we built linear regression models
including possible confounders such as total number of mTBIs
and time since last TBI. We observed a significant association
between PCL-5 scores levels of EVNfL and plasma NfL (Table 3).
Additionally, we found a marginally significant association
between plasma VEGF and PCL-5 scores (p � 0.073).

DISCUSSION

This cross-sectional study evaluated peripheral blood EV levels of
miRNAs and a panel of proteins among SMs/Vs with prior
combat deployment, and their associations with mTBI history
and current PTSD symptoms measured by the PCL-5
questionnaire. Participants who sustained one or more mTBIs
were divided into two groups according to their PCL-5 scores.

The control group consisted of those negative for any lifetime TBI
and having lower PTSD symptom severity scores (PCL-5 below
38). We observed elevated EV and plasma levels of NfL in SMs/Vs
with mTBI and more severe PTSD symptoms (PCL-5 score of 38
or higher). Moreover, changes in expression profiles of EV
miRNAs were linked to PTSD symptom burden. These
findings contribute to the efforts to develop prognostic
biomarkers of TBI-related behavioral health disorders, and
shed light on possible molecular mechanisms associated with
the development of persistent PTSD symptoms in TBI
populations.

EV biological functions in health and disease are yet to be
completely understood (Margolis and Sadovsky, 2019;
Guedeset al., 2020b). Short and long distance cell-to-cell
communication mediated by EVs has been established as one
of their important biological functions (Valadi et al., 2007;
Frühbeis et al., 2013; Raposo and Stoorvogel, 2013; Cocucci
and Meldolesi, 2015; Fitzgerald et al., 2018). EVs might also
contribute to central nervous system (CNS) protective
mechanisms as they assist in clearance processes such as the
removal of unwanted proteins (Bulloj et al., 2010; Dinkins et al.,
2017). They may also play a role in the development of
neurodegenerative conditions as EVs have been linked to
packaging and spreading of misfolded proteins, a mechanism
shared by a number of neurodegenerative diseases (Perez-
Gonzalez et al., 2012; Budnik et al., 2016; Thompson et al.,
2016; Dinkins et al., 2017). In Alzheimer’s disease (AD), EVs
have been implicated in the lateral and long-distance propagation
of tau and might contribute to the biogenesis of Aβ fragments
(Sharples et al., 2008; Bulloj et al., 2010; Perez-Gonzalez et al.,
2012). Additionally, EVs play roles in inflammatory responses
and angiogenesis (Gupta and Pulliam, 2014; Todorova et al.,
2017; Fitzgerald et al., 2018; Oggero et al., 2019). Our group has
explored the potential of EVs as biomarkers in TBI in previous
studies. We have shown higher levels of EV NfL (Guedes et al.,
2020a) and EV tau (Kenney et al., 2018) in individuals with
history of 3 or more mTBIs when compared to those with 1 or 2
mTBIs. In addition, we observed links between higher levels of

TABLE 1 | Demographic and clinical characteristics.

Characteristic Control (-TBI/-PTSD) (n = 28) +mTBI/-PTSD (n = 71) +mTBI/+PTSD (n = 45) Significance

Sex (male) 25 (89%) 60 (85%) 40 (89%) p � 0.723
x2 � 0.648
df � 2

Age 37 (31, 51) 38 (31, 47) 36 (30, 49) p � 0.864
Education p � 0.269 x2 � 0.65 df � 5.19
College 1 year to 3 years 10 (36%) 34 (48%) 17 (38%)
College 4 years or more 13 (46%) 32 (45%) 19 (42%)
High school graduate 5 (18%) 5 (7.0%) 9 (20%)
Number of mTBIs N/A 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) p � 0.837a

Time since first mTBI (years) N/A 19 (12, 25) 13 (9, 26) p � 0.190
Time since last mTBI (years) N/A 9 (5, 12) 8 (5, 11) p � 0.408
PCL-5 (score) 7 (3, 16) 19 (9, 28) 49 (44, 61) N/A
PHQ9 (score) 2.0 (0.8, 4.0) 7.0 (3.0, 9.8) 14.0 (11.0, 18.0) p < 0.001

Participants were classified into three groups based on TBI history and severity of PTSD symptoms as measured by PCL-5: 1) Control (i.e., -TBI and -PTSD); 2) +mTBI/-PTSD (i.e., history
of TBI and PCL-5 < 38); 3) +mTBI/+PTSD (i.e., history of TBI and PCL-5 > 38). Abbreviations: TBI (traumatic brain injury); PCL-5 (PTSD Checklist for DSM-5); PHQ-9 (Patient Health
Questionnaire, Version 9). Statistics presented: n (%); Median (IQR). Statistical tests performed: Chi-square test (χ2), Mann-Whitney U tests, and Kruskal-Wallis test. aCompared between
+mTBI/-PTSD and +mTBI/+PTSD groups. Statistically significant p values are marked in bold.
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EV NfL and EV tau and more severe neurobehavioral and PTSD
symptoms (Kenney et al., 2018; Guedes et al., 2020a).
Interestingly, we have also shown associations between EV
levels of specific miRNAS, including hsa-miR-139–5p, and
severity of neurobehavioral symptoms (Devoto et al., 2020).

In this study, levels of EV NfL were higher among participants
with TBI history and more severe PTSD symptoms when
compared to those with less PTSD symptoms and controls.
EV NfL was also associated with symptom severity in
correlation analysis and regression models controlling for
demographics, number of TBIs and time since last injury. In
addition, a marginally significant correlation between EV Aβ40
and PCL-5 scores was also found. A broad literature supports the
relevance of NfL as a biomarker of nervous system pathologies
involving axonal injury or degeneration, including mTBI
(Neselius et al., 2012; Bacioglu et al., 2016; Shahim et al., 2016;
Yuan et al., 2017). Higher levels of NfL in blood have been
observed in several neuroinflammatory and neurodegenerative

conditions such as AD (Menke et al., 2015; Meeter et al., 2016;
Preische et al., 2019). Elevated NfL in blood has also been shown
to correlate with severity of chronic depression, postconcussive
and PTSD symptoms in mTBI patients (Guedes et al., 2020a;
Shahim et al., 2020). Here, we also observed links between the
severity of PTSD symptoms and the levels of miRNAs that have
been previously associated with some pathologies of
neurodegenerative diseases. Our findings suggest a connection
between the severity of persistent chronic PTSD symptoms years
after mTBI and neurodegenerative changes. PTSD has been
associated with structural alterations in areas of the frontal
cortex, hippocampus and amygdala in animal models and
human subjects, and functional changes within neural
networks (Pitman et al., 2012; Fan et al., 2019; Zandvakili
et al., 2020). We hypothesized that changes in brain
connectivity with chronic axonal pathology might be, at least
in part, underlying links between TBI and persistent PTSD
symptoms. Further studies are necessary to evaluate possible

TABLE 2 | Differentially regulated miRNAs in group comparisons.

Pairwise comparison miRNA FC Log2FC Adj pa Up/down

+mTBI/+PTSD vs Control hsa-miR-3190–3p 1.305 0.384 0.012 Up
hsa-miR-615–5p 1.326 0.407 0.033 Up
hsa-miR-1185-1-3p 1.191 0.252 0.033 Up
hsa-miR-3196 1.368 0.452 0.036 Up
hsa-miR-372–3p 1.273 0.349 0.038 Up
hsa-miR-139–5p 0.867 −0.206 0.048 Down
hsa-miR-375 1.300 0.378 0.059 Up
hsa-miR-204–5p 1.188 0.248 0.087 Up
hsa-miR-1277–3p 1.184 0.244 0.154 Up
hsa-miR-509-3–5p 1.149 0.201 0.210 Up
hsa-miR-425–5p 1.078 0.109 0.615 Up
hsa-miR-374a-3p 0.994 −0.009 0.781 Down

+mTBI/+PTSD vs + mTBI/-PTSD hsa-miR-374a-3p 0.860 −0.217 0.041 Down
hsa-miR-1185-1-3p 1.131 0.178 0.057 Up
hsa-miR-425–5p 0.886 −0.174 0.089 Down
hsa-miR-139–5p 1.154 0.206 0.095 Up
hsa-miR-3190–3p 1.089 0.123 0.131 Up
hsa-miR-509-3-5p 0.918 −0.124 0.253 Down
hsa-miR-3196 1.069 0.096 0.358 Up
hsa-miR-204–5p 0.917 −0.125 0.374 Down
hsa-miR-1277–3p 0.934 −0.098 0.392 Down
hsa-miR-375 0.966 −0.049 0.868 Down
hsa-miR-372–3p 1.004 0.005 0.892 Up
hsa-miR-615–5p 1.031 0.044 0.973 Up

+mTBI/-PTSD vs Control hsa-miR-139–5p 0.751 −0.413 0.001 Down
hsa-miR-204–5p 1.295 0.373 0.015 Up
hsa-miR-372–3p 1.269 0.344 0.034 Up
hsa-miR-509-3-5p 1.252 0.324 0.035 Up
hsa-miR-615–5p 1.287 0.364 0.037 Up
hsa-miR-1277–3p 1.268 0.342 0.038 Up
hsa-miR-375 1.345 0.428 0.054 Up
hsa-miR-3196 1.279 0.356 0.081 Up
hsa-miR-425–5p 1.217 0.283 0.094 Up
hsa-miR-3190–3p 1.198 0.261 0.104 Up
hsa-miR-374a-3p 1.155 0.208 0.107 Up
hsa-miR-1185-1-3p 1.052 0.074 0.640 Up

ap values for pairwise group comparison after FDR adjustment. Statistically significant p values are marked in bold.
Participants were classified into three groups based on TBI history and severity of PTSD symptoms as measured by the PTSD Checklist for DSM-5 (PCL-5): 1) Control (i.e., -TBI and
-PTSD); 2) +mTBI/-PTSD; 3) +mTBI/+PTSD. Comparisons of miRNA levels between groups were performed by using Kruskal-Wallis test followed by Dunn’s test. Benjamini-Hochberg
Procedure for false discovery rate (FDR) was used to adjusted p values. miRNAs with adjusted p < 0.05 were considered differentially regulated and are marked in bold. Abbreviations:
mTBI (mild traumatic brain injury), PTSD (Post-traumatic stress disorder), FC (fold change), Up (upregulated), Down (Downregulated), Adj p (adjusted p value).
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roles of neurodegenerative changes and cell signaling
mechanisms involving EVs in the development of persistent
PTSD symptoms following TBI.

In the miRNA analysis, hsa-miR-3196, hsa-miR-372–3p, hsa-
miR-615–5p, hsa-miR-1185-1-3p, hsa-miR-3190–3p, and hsa-
miR-139–5p were differentially regulated in participants with
more severe TBI symptoms. We observed a downregulation of
hsa-miR-374a-3p in participants with mTBI and more severe
PTSD symptoms in comparison to those with mTBI and less
severe symptoms. miR-374a-3p has been linked to
downregulation of pro-inflammatory markers associated with
insulin resistance (Doumatey et al., 2018), and targets
molecules that are part of oxidative phosphorylation,
mitochondrial dysfunction, neuroinflammation, and
amyotrophic lateral sclerosis canonical signaling pathways,
among others. In addition, we found that hsa-miR-139–5p was
downregulated in the mTBI groups when compared to controls
and linked to severity of PTSD symptoms in regression models.

Moreover, regression models including EV or plasma NfL were
improved with the inclusion of hsa-miR-139–5p. Importantly,
hsa-miR-139–5p is also suppressed in the blood of rats resilient to
chronic stress, suggesting a link between this miRNA and
vulnerability to stress (Chen et al., 2015), but possible
associations between hsa-miR-139–5p and TBI-related PTSD
symptoms had not been previously reported.

Our finding of downregulated hsa-miR-139–5p in the mTBI
groups also confirms previous studies in animal models, showing
a downregulation of hsa-miR-139–5p in the dentate gyrus in
association with chronic mTBI (Puhakka et al., 2017). Decrease in
peripheral blood EV hsa-miR-139–5p in Alzheimer’s disease
(AD) patients when compared to controls has also been
reported (Lugli et al., 2015). hsa-miR-139–5p has been
implicated in neurodegenerative processes in an AD model via
the targeting of metabolism- and circadian rhythm-related genes,
and is considered a candidate biomarker for prion diseases (Noh
et al., 2014). hsa-miR-139–5p targets CASP3, which encodes the

FIGURE 1 | Correlations between PCL-5 scores and biomarker levels within the TBI group. Spearman correlation coefficients (ρ) and significance levels (p) are
shown for (A) EV NfL, (B) plasma NfL, (C) hsa-miR-139–5p, (D) hsa-miR-1185-1-3p. Only significant correlations are shown. Regression line is shown in blue.
Abbreviations: neurofilament light chain (NfL); PTSD Checklist for DSM-5 (PCL-5); extracellular vesicle (EV).
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caspase 3 protein. CASP3 is part of canonical pathways
functionally associated with mitochondrial dysfunction,
oxidative phosphorylation, amyotrophic lateral sclerosis,
Huntington’s disease Signaling, and Parkinson’s disease
signaling, among others. Caspase 3 is important in the
activation cascade of caspases in apoptosis, and a major
mediator of apoptosis in neurons (Brentnall et al., 2013;
D’Amelio et al., 2009). Moreover, caspase 3 is involved in the
cleavage of β-amyloid precursor protein (APP), which is targeted
by hsa-miR-372–3p and linked to cell death in AD (Nishimura
et al., 2002). APP cleavage by caspase 3 also occurs in rodent
models of traumatic axonal injury (Stone et al., 2002). Other
components of the amyloid processing pathway are the calpain
small subunit 1 gene (CAPNS1), a hsa-miR-3196 target, and
protein kinase cAMP-activated catalytic subunit beta (PRKACB),
which is also part of axonal guidance and synaptogenesis
signaling pathways and targeted by hsa-miR-372–3p.

The cAMP Response Element-Binding Protein (CREB)
signaling in neurons canonical pathway is modulated by hsa-
miR-3196, hsa-miR-372–3p, hsa-miR-615–5p, hsa-miR-1185-1-
3p, hsa-miR-3190–3p, hsa-miR-374a-3p, and hsa-miR-139–5p.
CREB acts as a transcription factor binding to the cAMP response
element (CRE) of the promoters of its target genes (Wang et al.,
2018). In neurons, CREB signaling is associated with processes
such as proliferation, differentiation, neurogenesis, and plasticity
(Sakamoto et al., 2011; Wang et al., 2018). CREB is a major
regulator of neurotrophins such as brain derived growth factor
(BDNF), and BDNF promotes the activation of CREB through
tropomyosin receptor kinase (Trk) B receptors (Yossifoff et al.,
2008; Wang et al., 2018). SHC1 (SHC adaptor protein 1) is part of
the CREB signaling in neurons canonical pathway and a target of
hsa-miR-139–5p. SHC1 is also involved in several canonical
pathways that include synaptogenesis, actin/cytoskeleton,
VEGF, IL-6, estrogen receptor, and glucorticoid receptor
signaling. The Shc family of adaptor proteins has multiple
domains that allow the recruitment of multiple signaling
molecules, and plays a major role in cell signaling mediated by
integrins and growth factors (Ravichandran, 2001; Ahmed and
Prigent, 2017).

In this study, all miRNAS that were differentially regulated in
participants withmore severe PTSD symptoms have target molecules
that are part of the Glucocorticoid receptor (GR) signaling canonical
pathway. GR, in addition to mineralocorticoid receptors, mediate the

effects of Glucocorticoids (GCs), steroid hormones that are
synthesized in the adrenal cortex and have potent anti-
inflammatory effects (Yehuda 2009; Sundahl et al., 2015;
Scheschowitsch et al., 2017). The hypothalamic–pituitary–adrenal
(HPA) axis coordinates hormonal and inflammatory stress responses
to stress. The activation of the HPA in response to acute stress
culminates in GC release, which plays a role in the coordination of
hormonal and behavioral stress responses (Leistner and Menke,
2020). Changes in the HPA axis are a characteristic of PTSD
pathophysiology (Yehuda, 2009), and associations between PTSD
and changes in GR sensitivity involving the FK506 binding protein 5
(FKBP5) gene recently emerged (Li et al., 2020). PTSD has also been
associated with an increased risk of cardiovascular disease (CVD)
(Edmondson et al., 2013; Scherrer et al., 2019; Ebrahimi et al., 2021),
which might be due to comorbid conditions (Scherrer et al., 2019),
and insulin resistance (Michopoulos et al., 2016; Blessing et al., 2017).
Accordingly, in this study, miRNAs that were differentially regulated
in participants with more severe PTSD symptoms were also
associated with insulin secretion signaling, cardiac hypertrophy
and cardiac beta-adrenergic signaling canonical pathways.

PTSD has been previously linked to low grade systemic
inflammation, characterized by elevated blood levels of
inflammatory markers (Maes et al., 1999; Passos et al., 2015;
Speer et al., 2018). Chronic PTSD symptoms have been associated
with peripheral blood elevations of IL-6 in civilians and military
populations (Gill et al., 2010; Lindqvist et al., 2014; Rodney et al.,
2020). Cytokines mediate cell-to-cell communication as soluble
factors and in association with EVs, where they might be surface-
bound or encapsulated (Fitzgerald et al., 2018). In this study, we
observed higher levels of EV IL-6 in those with mTBI and more
severe PTSD symptoms, but group comparisons were only
marginally significant. miR-1185-1-3p modulates the mRNA
levels of GSK3B, which has been linked to peripheral and
central inflammatory diseases, and promotes the expression of
cytokines such as TNF-α and IL-6 (Beurel 2011; Garcia-Lacarte
et al., 2019). In addition, hsa-miR-3196, hsa-miR-372–3p, hsa-
miR-615–5p, and hsa-miR-139–5p were associated with the IL-6
canonical signaling pathway as seen in the miRNA target analysis.
Further investigation of links between EV levels of cytokines and
the development of PTSD symptoms in military populations are
warranted.

Limitations of this study include the relatively small sample
size and number of participants with severe PTSD symptoms,

TABLE 3 | Linear Regression Models for PCL-5 scores.

Predictors Est p Est p Est p Est p Est p

(Intercept) 54.50 <0.001 27.18 0.001 12.35 0.216 33.57 0.012 15.07 0.104
Age −0.62 0.024 -0.43 0.016 0.06 0.768 −0.50 0.057 −0.27 0.192
EV NfL 12.93 0.001 10.36 0.007
Plasma NfL 1.79 <0.001 1.61 <0.001
hsa-miR-139–5p 1.82 0.003 2.82 0.002 1.35 0.020
R2/R2 adjusted 0.287/0.221 0.216/0.186 0.094/0.052 0.460/0.381 0.263/0.221

Linear regression models were used to evaluate links between PCL-5 Scores and biomarker levels, controlling for demographics, time since last TBI (years) and number of TBIs. Only
significant predictors are shown.Models combining either EV NfL or plasma NfL and hsa-miR-139–5p are also provided. Abbreviations: Est. (estimates); traumatic brain injury (TBI); PCL-5
(PTSD Checklist for DSM-5); Neurofilament light (NfL).
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though the largest to date exploring this novel biomaker, and the
variability in number of mTBIs and years since last TBI, and
results must be considered exploratory and hypothesis generating
in this Biomarker Discovery dataset. Additionally, we evaluated
PTSD symptoms using a questionnaire that allows for
quantification of symptom severity, but is not a stand-alone
diagnostic tool. Our cohort was predominantly white and
male, which limits our ability to generalize our findings.
Further, all were combat-deployed which limits our findings to

combat-related TBI and PTSD symptom severity and is not
generalizable to civilian populations. Levels of miRNA in
peripheral blood may be influenced by other factors, such as
medication use, that were not evaluated in this study.
Furthermore, proteins and miRNAs analyzed here are found
at low concentrations in the peripheral circulation. Even though
we selected methods with high sensitivity to measure their
concentrations, EV proteins and miRNAs were not detectable
in some samples. The methods used in this study do not allow us

FIGURE 2 | EV levels of protein biomarkers. Participants were classified into three groups based on TBI history and severity of PTSD symptoms asmeasured by the
PTSD Checklist for DSM-5 (PCL-5): 1) Control (i.e., -TBI and -PTSD); 2) +mTBI/-PTSD; 3) +mTBI/+PTSD. Group comparisons were performed by using Kruskal-Wallis
test followed by Dunn’s test, and Bonferroni method to correct for multiple comparisons. p values refer to pairwise comparisons (A) or to overall group comparisons
(B–H). Biomarker concentrations were represented as median ± IQR. Concentrations were log transformed to improve data visualization in the graphs.
Abbreviations: Neurofilament light (NfL), Amyloid beta 42 (AB42), Amyloid beta 40 (AB40), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor -alpha (TNFα),
and endothelial growth factor (VEGF).
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to identify the tissue of origin, or to distinguish miRNA and
proteins that are located inside the vesicles from those that are
bound to the EV membrane. Future technical advancements
could further improve EV analysis as well as detection of
molecules found at low levels in the peripheral circulation
that might reflect pathological processes underlying the
development of PTSD symptoms following mTBIs.

Despite these limitations, our findings could inform
subsequent larger prospective studies examining
longitudinal changes in EV biomarkers, which are

warranted to validate our results and to understand the
role of EVs in the pathophysiology of chronic mTBI and
PTSD. Longitudinal studies could identify relationships
between levels of biomarkers and PTSD symptoms over
time, and biomarkers that could predict those most at
risk of developing severe PTSD symptoms at later
timepoints. This line of research may lead to novel avenues
for the treatment of PTSD, and may facilitate clinical
interventions prior to the onset of symptoms and
underlying pathological processes.

FIGURE 3 | Plasma levels of protein biomarkers. Participants were classified into three groups based on TBI history and severity of PTSD symptoms as measured
by the PTSD Checklist for DSM-5 (PCL-5): 1) Control (i.e., -TBI and -PTSD); 2) +mTBI/-PTSD; 3) +mTBI/+PTSD. Group comparisons were performed by using Kruskal-
Wallis test followed by Dunn’s test, and Bonferroni method to correct for multiple comparisons. p values refer to pairwise comparisons (A) or to overall group
comparisons (B–H). Biomarker concentrations were represented as median ± IQR. Concentrations were log transformed to improve data visualization in the
graphs. Abbreviations: Neurofilament light (NfL), Amyloid beta 42 (AB42), Amyloid beta 40 (AB40), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor -alpha
(TNF-α), and endothelial growth factor (VEGF).
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CONCLUSION

Here, we found links between levels of NfL and the severity of
PTSD symptoms in persons withmilitary combat deployment and
varying mTBI histories. We also observed an association between
persistent PTSD symptoms and the EV levels of miRNAs,
especially hsa-miR-139–5p. Our results shed light on possible
mechanisms underlying individual susceptibility to the
development of persistent or later-in-life PTSD symptoms.
Specifically, NfL and hsa-miR-139–5p were linked to the
severity of PTSD symptoms in group comparisons, correlation
analysis and regression models controlling for potential
confounders. NfL is a marker of axonal damage that is elevated
in neurodegenerative conditions. Similarly, hsa-miR-139–5p has
been previously associated to neurodegenerative processes. Our
results suggest a possible role for axonal degeneration and
neurodegenerative changes in the development of persistent
chronic PTSD symptoms years after mTBI.
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