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Abstract: Energy consumption in vehicle driving is greatly influenced by traffic scenarios, and
the intelligent traffic system (ITS) has a key role in solving the real-time optimal control of hybrid
vehicles. To this end, a new energy management control strategy based on vehicle-to-everything
(V2X) communication for vehicle speed prediction was proposed to dynamically adjust the engine
and motor power output according to the traffic conditions. This study is based on intelligent network
connectivity technology to obtain forward traffic state data and use a deep learning algorithm to
model vehicle speed prediction using the traffic state data. The energy economy function was
modeled using the MATLAB/Sinumlink platform and validated with a plug-in hybrid vehicle model
simulation. The results indicate that the proposed strategy improves the vehicle energy economy by
13.02% and reduces CO2 emissions by 16.04% under real vehicle driving conditions, compared with
the conventional logic threshold-based control strategy.

Keywords: plug-in hybrid electric vehicle; smart grid connection; deep learning; energy economy;
energy management

1. Introduction

According to the National Telematics Industry Standard System Construction Guide-
lines published by the Chinese Ministry of Transportation, with the development of intel-
ligent transportation systems, intelligent transportation systems should form a standard
system that can support telematics applications and meet the needs of transportation
management and services by 2025 [1]. The use of intelligent transportation systems to
achieve the real-time optimal control of hybrid vehicles has significantly drawn the at-
tention of scholars. The overall development of hybrid vehicles is closely related to the
design of energy management strategies. To develop an optimal energy management
strategy, the predicted vehicle speed is used to calculate the future vehicle energy demand,
which is used to adjust the vehicle’s power distribution in real time to obtain a suitable
fuel economy and thus alleviate the congestion and auto emissions in urban areas [2,3].
Owing to the time-varying nature and high uncertainty of the real driving environment,
it is necessary to shift from the prediction of future vehicle speed using historical data
or standard operating conditions to accurately predicting the vehicle speed using vehicle
networking technologies, as well as Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) communication technologies to achieve multiple information fusion, such as traffic
information and surrounding vehicle driving status [4,5].

Based on three typical working conditions, the key feature parameters were extracted
and subjected to principal component analysis in the study of Pan et al. [6]. Yang Yalian
et al. established a prediction model based on model prediction with multi-order Markov
and neural networks to predict vehicles’ speed, based on which they proposed a method for
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model prediction of energy management strategy [7].For vehicles with fixed routes, such
as buses, speed analysis using Global Positioning System (GPS)/Geographic Information
System (GIS) information was used by Li et al. [8] and established a green speed guidance
model for buses. Yang et al. used GPS data of cabs to estimate the average speed of a road
with cab trajectory data and combined it with neural networks to design a speed prediction
model [9]. The abovementioned studies have focused on developing energy management
strategies based on speed prediction for fixed operating conditions using GPS information
and historical databases. However, in the actual driving process, the vehicle operating
conditions are a random and uncertain process, and the control effect of hybrid vehicle
energy management under a specific cycle of operating conditions has certain limitations.
At present, the most effective method is to use intelligent transportation technology for
speed prediction, road information, traffic flow conditions, weather conditions, and real-
time control of the vehicle power system to achieve efficient and clean use of fuel. To obtain
more accurate speed prediction information and solve the problem of real-time energy
management and optimization of hybrid vehicles, this paper proposes a speed prediction
method based on V2V and V2I communication. This study comprises three parts: first,
a traffic model of a traffic light intersection for urban traffic is established to simulate
real-time vehicle speed and traffic information when V2V and V2I communications are
available; second, deep learning is used to train multi-step advance speed prediction
through the information provided by V2V and V2I communications; finally, based on the
predicted speed and current State of charge (SOC) values, a control strategy based on a
combination of logic threshold and instantaneous optimization is used to dynamically
allocate the demand torque to create a hybrid vehicle with optimal energy economy.

2. Hybrid Power Drive Train Modeling
2.1. Hybrid Vehicle Model

In this study, we chose a plug-in single-axis parallel hybrid system as the object of
study, and a plug-in single-axis parallel hybrid system structure is shown in Figure 1. From
the figure, it can be seen that the engine, clutch, motor, and other key components along
the same axis, through the clutch combination, allow only the engine to provide power
directly to the vehicle, but also with the motor joint drive; in the clutch disconnected state,
the motor alone drives the vehicle or regenerative brakes to charge the battery.
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Figure 1. Structure of plug-in single-axis parallel hybrid power system. 

Figure 1. Structure of plug-in single-axis parallel hybrid power system.

Based on the MATLAB/Simulink simulation platform, a combination of experimental
modeling and theoretical modeling was used to model a powertrain model, which consists
of the engine, clutch, electric motor, battery and continuously variable transmission (CVT),
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and main gearbox. According to the main parameters of the vehicle (Table 1), the key
components as well as the whole vehicle model are modeled for the research object.

Table 1. Main parameters of hybrid vehicles.

Part Parameter Value

Vehicle

Vehicle mass m/kg 1350
Windward area A/m2 2.28

Air resistance coefficient Cd 0.32
Wheel radius r/m 0.295

Tire rolling resistance coefficient fr 0.0135

Engine
Maximum power Pemax/kw 68

Maximum torque Temax/(N·M) 137
Rotational speed ωe/(r·min−1) 800–6000

Motor
Maximum power Pmmax/kw 60

Maximum torque Tmmax/(N·M) 140
Rotational speed ωm/(r·min−1) 0–6000

Battery Capacity Q/(A·h) 40
Nominal voltage U/V 336

CVT
Speed ratio icvt 0.422–2.432

Main reduction ratio 5.24

2.1.1. Engine Model

Engine fuel consumption is an important index for evaluating the engine performance
and is a key parameter for developing energy management strategies. The engine model
in this study was established through bench experiments using the experimental table
look-up method.

The fuel consumption of the engine under different loads was measured at different
engine speeds [10], and the obtained bench test data were processed using the interpolation
fitting method to fit the relationship between the effective fuel consumption rate, speed,
and engine torque, as shown in Figure 2.
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2.1.2. Motor Model

In this study, a disk-type permanent magnet synchronous motor, which is smaller and
lighter than the conventional motor in the hybrid power system, is selected as the second
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power source. The disk-type permanent magnet synchronous motor is spatially coupled to
the magnetic field generated by the three symmetrical currents during torque and power
control, in which the three-phase winding armature coordinate system of the stationary
stator a, b, c is replaced by the two-phase winding d-q right-angle coordinate system [11].
The dynamic model and motion control equations of the permanent magnet synchronous
motor can be introduced after the park transformation, as follows:

Ud = Rid + Ld
did
dt − pωmLqiq

Uq = Riq + Lq
diq
dt − pωmLdid + pωmKe

Tm = 1.5pKeiq

(1)

dωm

dt
=

Tm − Bωm − TL
J

(2)

where R is the resistance (Ω); Ud and Uq are the phase voltages (V) of the d- and q-
axes, respectively; id and iq are the phase currents (A) flowing through the d and q axes,
respectively; Ld and Lq are the inductances (H) generated by the d-and q-axes, respectively;
ωm is the rotor angular velocity (rad/s); p is the number of electrode pairs; Ke is the
counter-electromotive force coefficient (V/rad·s−1); TL is the load torque (Nm); B is the
viscous frictional assisted damping; and J is the motor rotational inertia (kg/m2).

When calculating the power consumption or energy return of the motor, the steady-
state interpolation model of the motor is used instead of its cumbersome mechanism
formula, thus improving the efficiency of the calculation. The relationship between the
speed, torque, and efficiency of the motor is shown in Figure 3.
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2.1.3. Battery Model

To simplify the complexity of the battery, in this study, we adopted an internal re-
sistance model, which is the battery equivalent to an open-circuit power supply with an
internal resistance in series in the circuit; it is a model based on experimental data that
equates the battery to an ideal voltage source in series with a resistance, ignoring the effect
of temperature on the battery.

From the charge/discharge test on the battery, the relationship curve between the
battery electric potential charge/discharge internal resistance and the battery SOC can be
derived, as shown in Figure 4a,b.
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2.1.4. Transmission Model

The mathematical model of the master and slave pulleys of the transmission is ex-
pressed as:

Tcvt−in = Tdrep − Izωz

Tcvt−out = Tcvt−in · icvt · ηcvt − Ibωb
(3)

where Tcvt−in is the CVT input torque, Tcvt−out is the CVT output torque, Tdrep is the
demand torque of the hybrid system, Iz is the rotational inertia of the active pulley on the
input shaft, Ib is the rotational inertia of the driven pulley on the output shaft, ωz is the
active pulley speed, and ωb is the driven pulley speed.

The CVT speed ratio is calculated by the following formula:

icvt =
ωz

ωb
(4)

The CVT efficiency model can be derived by measuring the CVT speed ratio versus
torque at the RPM through bench tests. The CVT efficiency model is shown in Figure 5.
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2.1.5. Whole Vehicle Model

The driving force analysis of the car shows that the car is only subject to rolling, air,
ramp, and acceleration resistances in the driving process. Assuming that the vehicle is
driven on a road with slope, α, only the longitudinal dynamics of the vehicle are considered,
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and the lateral deflection and the handling stability of the vehicle are not considered [12].
The equilibrium equation of the car driving is as follows:

Fw = mg cos α +
Cd Av2

b
21.25

+ mg sin α + δm
dv
dt

(5)

where A is the windward area of the vehicle, Cd is the air resistance coefficient, m is the
mass of the car, g is the acceleration owing to gravity, α is the slope of the road, vb is
the speed of the car (km/h), v is the speed of the car (m/s), and δ is the rotating mass
conversion factor.

2.2. Traffic Model

In this study, based on the Wiedemann following model, the traffic simulation software
VISSIM was used to establish the urban traffic microscopic traffic model. The constructed
simulation scenario is shown in Figure 6, wherein the traffic signal position time and
intersection are configured and the traffic flow, vehicle acceleration, and deceleration are
set [13,14]. The simulated vehicle obtains the speed and traffic information of the first
30 vehicles in front of the target vehicle through V2X communication technologies to
provide data support for speed prediction. Owing to the randomness and diversity of the
actual driving cycle, the traffic model can only reflect the route characteristics with strong
regularity. In this study, a specific traffic scenario traffic light intersection is selected, and
the delay, error rate, road gradient, and collision of vehicle communication are ignored to
simplify the traffic model and to facilitate the evaluation of the effectiveness and accuracy
of the vehicle speed prediction model [15].
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Figure 6. Schematic diagram of traffic scene simulation.

VISSIM can record the driving trajectory, speed, acceleration, and other information
of each vehicle in the simulation scenario. The vehicle at 800 m from the traffic light at
the intersection is selected as the target vehicle for the study in the simulation scenario,
and a data collection point is set every 30 m from the target vehicle to collect the position,
speed, and acceleration information of the first 30 vehicles in front of the target vehicle. The
obtained data are used as real-time vehicle speed and traffic information obtained through
V2V and V2I communication.
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3. Vehicle Speed Prediction
3.1. Vehicle Speed Prediction Model Architecture

In the process of vehicle driving, due to the change of vehicle speed, range is relatively
large, the vehicle driving data passed to the neuron nodes may cause the activation function
to exceed the limit, and the network does not converge or converge slowly when the neural
network is training, thus causing the accuracy of the network output to decline. Therefore,
before the network training, we team data for the normalization process, extracting the
mean and standard deviation of multivariate time series arrays of traffic models and
using data normalization calculations to speed up the efficiency of training. In this study,
two commonly used optimization models, ADAM and SGD, are selected, and then the
optimization results are compared; the ADAM optimization model with less errors is
selected for training. The model is not only suitable for dealing with sparse gradients
but also non-smooth objectives owing to its momentum and adaptive characteristics [16].
The ADAM model was established; the activation function used in this paper is ReLU
function, function formula: f(x) = max(0,x). Compared with the sigmod function and the
tanh function, it has the following advantages: (1) it overcomes the problem of gradient
disappearance and (2) it speeds up the training speed. The biggest problem in deep learning
is the gradient disappearance problem, which is especially serious in the case of using
saturated activation functions such as tanh and sigmod, while the ReLU function is much
faster to train by virtue of its linear, non-saturated form. Using grid search to automatically
find hyperparameters, the same set of data is trained by grid search with a different number
of hidden layers, number of nodes per layer, learning rate, and number of iterations as
variables and root mean square error as an indicator, and the parameter used for the final
minimum root mean square error is the optimal parameter for grid search. Each parameter
ranges from the number of iterations (10, 100, 1000, 1000), the number of hidden layers
[1-5], the number of nodes per layer (8, 16, 32, 64, 128, 256, 512), and the learning rate
(0.1, 0.01, 0.001, 0.0001). The prediction model framework diagram is shown in Figure 7.
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According to the basic structure and training algorithm of the deep learning network
determined in the previous section, the root mean square error of training in ascending
order when choosing different numbers of hidden layers and number of neurons is shown
in Table 2. The model was run to determine the optimal parameters with two hidden layers,
256 nodes per layer, a learning rate of 0.1, and 100 iterations.
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Table 2. Root mean square error of the deep learning network.

Number of Hidden
Layers

Number of Nodes
per Layer Learning Rate Number of Iterations RMSE

2 256 0.1 100 0.056996938
2 64 0.001 1000 0.095363609
2 64 0.1 1000 0.095460914
1 512 0.0001 1000 0.097611815
1 256 0.001 1000 0.101234831
2 512 0.1 100 0.103126287
3 512 0.0001 100 0.111647338
1 8 0.0001 10 1.444064856
1 8 0.01 10 1.470003366
1 8 0.1 10 1.497559309

3.2. Deep Learning Network

In this study, when a deep learning network is used for training, the input quantity is
the position, speed, and acceleration of the first 30 vehicles in front of the target vehicle, and
the output quantity is the predicted vehicle speed and acceleration of the target vehicle at
different prediction steps [17]. The input and output vectors of the deep learning network
can be represented by Equations (6) and (7), respectively.

Nin = {S(1), S(2), · · ·S(n); V(1), V(2), · · ·V(n); a(1), a(2), · · ·a(n)} (6)

Nout = {V(1), V(2), · · ·V(p); a(1), a(2), · · ·a(p)} (7)

where Nin is the input vector of the deep learning network; Nout is the output vector of
the deep learning network; S(1), S(2), ..., S(n) is the location of the first n vehicles in front
of the target vehicle; V(1), V(2), ..., V(n) is the speed of the first n vehicles in front of the
target vehicle; a(1), a(2), ..., a(n) is the acceleration of the first n vehicles in front of the target
vehicle; V(1), V(2), ..., V(p) is the predicted vehicle speed of the target vehicle when the
predicted time domain is p; and a(1), a(2), ..., a(p) is the predicted acceleration of the target
vehicle when the predicted time domain is p.

By training the input of the vehicle driving information in front of the target vehicle
and the output of the driving information of the corresponding target vehicle in the future
time period, the speed prediction model can be obtained. Provided that the information
time series of the first n vehicles in front of the target vehicle is given, the speed information
in the prediction time domain of the corresponding target vehicle can be calculated, that is,
the speed information of a certain time in the future. The composition of the deep learning
network used in this study is shown in Figure 8.
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The established neural network was trained according to the network structure param-
eters determined above as well as the training algorithm, and the multiple time series data
were divided into training, validation, and test sets in the ratio of 6:2:2. The errors (absolute
errors) of the training and test sets in the last five steps are shown in Figure 9. It is shown
that the absolute errors are 1.30 and 0.60 smaller for the prediction time domain of 3 s and
10 s, respectively, indicating that the parameters, such as the number of hidden layers and
nodes selected by automatic optimization search are reasonable. From Figures 10 and 11,
the selected validation dataset, the overall error of the prediction time domain is within
[0, 2] for 3 s and within [0, 1] for 10 s. The prediction values obtained using this deep learn-
ing network were consistent with the target values, and the performance of the network
was suitable. Therefore, the established deep learning network is considered to meet the
expected results and can better perform the vehicle speed prediction calculation.
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In order to verify the effectiveness of the speed prediction model, it is shown that the
speed prediction model achieves effective prediction, not only in the traffic light scenario,
but also in other scenarios, such as congested roads. Traffic flow allocation is set up in
VISSIM to build a traffic congestion scenario, as shown in Figure 12. The data collector is set
in the road section, and the collected data are input to the vehicle speed prediction model
to obtain the prediction results, as shown in Figure 13. Under the congestion scenario,
the prediction time domain is 10 s, vehicle speed error is within [0, 0.5] overall, and the
prediction accuracy is high.
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In two traffic scenarios, the predicted values obtained using this speed prediction
model are basically consistent with the actual values; therefore, it is considered that the
established speed prediction model, which satisfies the expected results, can perform
accurate speed prediction calculations.

4. Real-Time Optimized Energy Management Algorithm
4.1. Evaluation of Energy Consumption Economy of Plug-In Hybrid Electric Vehicles

The energy management control strategy is aimed at making the energy consumption
economically optimal in the predicted time domain to achieve an overall better result. The
energy of the plug-in hybrid vehicle comes partly from grid charging and partly from
fuel [18]. In this study, the energy consumption economy is used as the objective function
to minimize the grid and fuel costs.

Ed(t) =

t f∫
0

Pf Q f (t) + Pe
Pb(t)

ηg
dt (8)

Here, t f is the terminal moment; Pf denotes the fuel price (L/rmb); Pe denotes the
price per kWh (KW/rmb); ηg denotes the grid charging efficiency, which is considered as
0.98; Q f (t) is the amount of fuel consumed at moment t; and Pb(t) refers to the charging
and discharging power of the battery at moment t, which is greater than 0 when discharging
and less than 0 when charging.

Pb(t) =
Tm(t)ωm(t)

9550ηm(t)ηb(t)
(9)

Here Tm(t) and ωm(t) are the motor torque and speed at moment t, respectively; ηm(t)
is the motor efficiency at moment t; and ηb(t) is the battery charging and discharging
efficiency at moment t.

In Equation (8), when the powertrain charges the power battery while driving, the
energy at this time originates from the fuel rather than the grid; therefore, the energy
economy function of this part should be:

Ed = Pf ηt
Pb(t)

ηgηm(t)
(10)

4.2. Energy Management Control Strategy

In this study, we apply a control strategy combining logical threshold and transient
optimization by obtaining the current vehicle state (such as demand torque and SOC value),
comparing it with the set logical threshold parameters, evaluating its operation mode,
conducting transient optimization in the specified area combined with the vehicle energy
economy function, and achieving optimal energy economy in other areas through the
threshold value. Finally, the optimal distribution of power source torque in the predicted
time domain is achieved.

The logical threshold parameters of the control strategy are vehicle demand torque,
maximum engine output torque, optimal engine output torque, and battery SOC value,
where the change in battery SOC value largely causes a change in mode. According to the
operating mode and characteristics of the plug-in hybrid vehicle, the constraints that make
the target value of the SOC meet the normal driving conditions and are as follows:

SOCmin ≤ SOCt ≤ SOCmax

Tm−min(ωm,t) ≤ Tm,t ≤ Tm−max(ωm,t)

Te−min(ωe,t) ≤ Te,t ≤ Te−max(ωe,t)

(11)
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Here, t is the time variable, ωm is the motor speed, Tm is the motor torque, ωe is the
engine speed, and Te is the engine torque.

The determination of the SOC threshold is important for the change of mode, and
in this study, the genetic algorithm (GA) [19] is used to optimize the SOC threshold. The
genetic algorithm optimization process is parameter coding, using a binary coding range
of 00000–11111 to code the parameters: initial population setting, selecting a population
size of 100 based on empirical parameters, and the maximum number of iterations is 100;
selection, crossover, and variation, using the roulette wheel method of selection strategy
with a crossover probability of 0.85 and a variation probability of 0.01; fitness function
setting, the optimization goal of the genetic algorithm is the optimal energy economy of
the whole vehicle, setting the fitness function as:

L = minEd(t) (12)

The optimization results in the continuous evolution of the population and the value of
the fitness function of the optimal individual decreases continuously and finally converges
at approximately 27.5, when the most corresponding individuals SOCdown = 0.25 and
SOCup = 0.38.

The specific process of the energy management strategy according to the key parame-
ters of the threshold value is as follows:

(1) The battery SOC value is greater than SOCup (power consumption Charge Deplet-
ing (CD) mode).

1©When the demand speed of the vehicle is less than the upper speed limit of the
engine operation, or the demand torque of the vehicle is greater than zero and less than
the maximum torque range provided by the electric motor, the pure electric drive mode
is adopted.

2©When the demand speed of the vehicle is greater than the upper speed limit of the
engine operation and the demand torque of the vehicle is greater than the maximum torque
provided by the electric motor, the hybrid drive mode is adopted, and an instantaneous
search is performed according to the energy economy function of the engine and the electric
motor to determine the torque distribution of the power source at this time.

(2) Battery SOC value is greater than SOCdown and less than SOCup (power mainte-
nance Charge Sustaining (CS) mode).

1©When the demand speed of the vehicle is less than the upper limit of the engine
working speed or the demand torque of the vehicle is greater than zero and less than the
minimum torque provided by the engine high-efficiency zone, the pure electric drive mode
is used.

2©When the demand speed of the vehicle is greater than the upper limit of the engine
working speed and the demand torque of the vehicle is greater than zero and less than the
maximum torque that can be provided by the engine high-efficiency zone, the pure engine
drive mode is adopted.

3©When the demand speed of the vehicle is greater than the upper limit of the engine
working speed and the demand torque of the vehicle is greater than the maximum torque
that the engine can provide, the hybrid drive mode is adopted, and an instantaneous search
for optimization is performed according to the energy economy function of the engine and
the motor to determine the torque distribution of the power source at this time.

(3) The battery SOC value is less than SOCdown (traveling charging mode).
In the engine active charging mode, the engine works in the optimal economic curve,

with a larger torque to battery active charging, such that the battery quickly returns to the
above SOCdown value.

The mode switching conditions and torque distribution of the energy management
control strategy are listed in Table 3.
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Table 3. Energy management control strategy.

Mode Conditions Torque Distribution

CD
Electric drive

SOC > SOCup
N ≤ Nup−lit or 0 ≤ Treq ≤ Tebest

{
Tm = Treq

Te = 0

CD
Hybrid drive

SOC > SOCup
N > Nup−lit; Treq ≥ Tebest

Instant Advantage Search

CS
Electric drive

SOCdown ≤ SOC ≤ SOCup
N ≤ Nup−lit or 0 ≤ Treq ≤ Tebest

{
Tm = Treq

Te = 0

CS
Engine drive

SOCdown ≤ SOC ≤ SOCup
N > Nup−lit or 0 ≤ Treq ≤ Tebest

{
Te = Treq

Tm = 0

CS
Hybrid drive

SOCdown ≤ SOC ≤ SOCup
N > Nup−lit; Treq ≥ Tebest

Instant Advantage Search

Charging SOC < SOCdown

{
Te = Tebest

Tm = Te − Treq

Brake Recovery Treq < 0
{

Tm = Treq

Te = 0

4.3. The Proposed Real-Time Energy Management

In summary, a real-time energy management, as illustrated in Figure 14, is proposed
based on V2X vehicle speed prediction.Sensors 2021, 21, x FOR PEER REVIEW 14 of 18 

 

 

0 5 10
30

35

40

45

50

V
(m

/s
)

t(s)

Deep Learning TrainingPredicted vehicle speed

0 5 10
30

35

40

45

50

V
(m

/s
)

t(s)

Deep Learning TrainingPredicted vehicle speed

V2X-based vehicle speed prediction

0 100 200 300
0

10

20

30

40

50

60

70

V(
m/

s)

t(s)

0 100 200 300
-1.0

-0.5

0.0

0.5

1.0

a(
m

/s^
2)

t(s)

Urban working conditions Traffic scene modeling Obtain vehicle information

V2V              V2I
0 100 200 300

0

10

20

30

40

50

60

70

V(
m/

s)

t(s)

0 100 200 300
-1.0

-0.5

0.0

0.5

1.0

a(
m

/s^
2)

t(s)

Urban working conditions Traffic scene modeling Obtain vehicle information

V2V              V2I

Urban working traffic scenario modeling

Torque distribution 
strategy

GA algorithm 
optimizes the 

threshold value

Energy optimization in 
real time

Hybrid vehicle model

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

140

E
n

g
in

e
 t
o

rq
u
e

(N
·m

)

Engine speed(rpm)

 
d

0

t
( ) ( )

ft

b

f f e

g

P
E t P Q t P dt


= +

（）

Hybrid Electric Vehicle Energy Management

Multivariate time series data

Input

Feature Extraction

Time series 
prediction

Output

S1 Sn V1 Vn a1 an

Data normalization calculation

ADAM optimization 
algorithm

Automatic 
Optimization by Grid 

Search

ADAM optimization 
algorithm

Prediction results

 

Figure 14. Overall structure of the proposed energy management. 

As shown in Figure 14, the proposed energy management includes three steps, as 

follows: 

(1) The first step is to establish an urban road network using VISSIM to simulate ve-

hicle V2X communication under urban conditions to obtain real-time vehicle speed and 

traffic information. The traffic scenario of traffic light intersection is established, and the 

rules of traffic signal position time, intersection, traffic flow, and vehicle expectation plus 

or minus speed are set. 

(2) The second step is to establish a vehicle speed prediction model using a deep 

learning neural network to obtain information through V2V and V2I to predict the speed 

of the target vehicle in the next 10 s. 

(3) The third step is to optimize the logic threshold value based on the GA algorithm 

combined with a real-time optimization algorithm to predict the torque distribution of the 

whole vehicle in the time domain to achieve optimal fuel economy and reduce carbon 

emissions. 

5. Analysis of Simulation Results 

In this study, the road section of Hongguang Avenue from the northeast gate of 

Chongqing University of Technology to the fork in the direction of the two lanes, as shown 

in Figure 15a, was selected as the research object to model the traffic scenario and verify 

Figure 14. Overall structure of the proposed energy management.



Sensors 2021, 21, 5370 14 of 18

As shown in Figure 14, the proposed energy management includes three steps, as follows:
(1) The first step is to establish an urban road network using VISSIM to simulate

vehicle V2X communication under urban conditions to obtain real-time vehicle speed and
traffic information. The traffic scenario of traffic light intersection is established, and the
rules of traffic signal position time, intersection, traffic flow, and vehicle expectation plus
or minus speed are set.

(2) The second step is to establish a vehicle speed prediction model using a deep
learning neural network to obtain information through V2V and V2I to predict the speed
of the target vehicle in the next 10 s.

(3) The third step is to optimize the logic threshold value based on the GA algo-
rithm combined with a real-time optimization algorithm to predict the torque distribution
of the whole vehicle in the time domain to achieve optimal fuel economy and reduce
carbon emissions.

5. Analysis of Simulation Results

In this study, the road section of Hongguang Avenue from the northeast gate of
Chongqing University of Technology to the fork in the direction of the two lanes, as shown
in Figure 15a, was selected as the research object to model the traffic scenario and verify
the energy management strategy of the hybrid power system based on the V2X speed
prediction proposed in the text. In this study, a road of approximately 2.5 km was selected
as the test road; the road passed through a total of four traffic light intersections, and the
maximum design speed of the road was 60 km/h. The traffic scenario modeling of the road
was conducted in Vissim, as shown in Figure 15b.
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Figure 15. Test road: (a) Test road under high precision map; (b) Test road under VISSIM scene modeling.

In the testing process, this study stipulates that all vehicles in the traffic scenario are
equipped with V2X communication functions, ignoring the delay, error rate, road slope,
and collision of vehicle communication. Real-vehicle data collection is conducted as input
conditions, and the whole vehicle model is built based on the MATLAB/Simulink platform
to verify the impact of the energy management strategy based on the logic threshold and
transient optimization algorithm proposed in this study on the energy economy of the
whole vehicle.

Optimization Results and Analysis

According to the above strategy, Figure 16 shows the comparison of engine output
power and motor output power, and that the torque distribution under different control
strategies is different; thus, the power distribution is different. As in the 90 to 110 s stage,
the vehicle speed is high and stable, reducing the engine output power and effectively
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reducing fuel consumption. From Figure 17, it can be seen that the battery SOC decreases
more slowly and fluctuates less after adopting the energy management strategy.
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Figure 17. SOC change curve.

The engine and motor operating points were compared and analyzed. From
Figures 18 and 19, it can be seen that the operating points of the engine are mostly concen-
trated near the optimal economy curve after optimization using the energy management
strategy, and the fuel consumption is reduced; similarly, the motor is also partially in the
relatively high-efficiency operating area. Under the energy management strategy proposed
in this study, the total fuel consumption is 2.27 L, the total electricity consumption is
5.42 kwh, and the energy economy is CNY 17.70. Compared with the energy management
strategy based on logical thresholds, the proposed energy management strategy reduces
fuel consumption by 19.5%, increases electricity consumption by 43.38%, improves energy
economy by 13.02%, and reduces CO2 emissions by 16.04%. The fuel economy was sig-
nificantly improved, which again shows that the established energy management control
strategy is effective. A comparison of the performance of the two control strategies is
shown in Table 4.
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Table 4. Comparison of economic performance on the test road.

Performance
Parameters

Fuel
Consumption

L/100 km

Electricity
Consumption
kwh/100 km

Energy
Economy

(CNY)

Economic
Improvement (%)

CO2 Emissions
(g/km)

CO2 Emissions
Reduction (%)

Based on logical
thresholds 2.82 3.78 20.35 - 68.64 -

Based on logic
threshold with

transient
optimization

2.27 5.42 17.7 13.02 57.63 16.04

6. Conclusions

In this study, a plug-in single-axle parallel hybrid vehicle model is built, and the
proposed energy management control strategy is validated based on the model, which
effectively reduces fuel consumption and improves the energy economy.

A speed prediction model based on a deep learning network was designed to improve
the accuracy of vehicle speed prediction. Combined with VISSIM to build a scenario,
the speed prediction is performed by simulating the speed and traffic information of the
vehicle in front of the target vehicle through V2V and V2I communication technologies
under the conditions of intelligent network connection to ensure the real-time accuracy of
the energy management strategy.
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Subsequently, an energy management control strategy based on a combination of logic
threshold and instantaneous optimization is designed to achieve optimal power allocation
for hybrid vehicles based on power demand, and the effectiveness of the strategy is verified
through actual urban cycling conditions, which significantly improves the energy economy
and reduces carbon emissions.

Future work will focus on using deep learning networks to predict the vehicle speed
for the entire real smart grid vehicle driving cycle and validate it experimentally. The
predicted vehicle speed will be further combined with a globally optimized energy man-
agement control strategy to achieve an optimal energy consumption economy for the entire
driving cycle.

Author Contributions: Conceptualization and methodology, M.Y. and J.C.; formal analysis and
writing—original draft preparation, J.C.; dataset collection and analysis, K.M. and X.L.; supervision
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