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Meta-Analysis Based on Nonconvex 
Regularization
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The widespread applications of high-throughput sequencing technology have produced a large number 
of publicly available gene expression datasets. However, due to the gene expression datasets have the 
characteristics of small sample size, high dimensionality and high noise, the application of biostatistics 
and machine learning methods to analyze gene expression data is a challenging task, such as the low 
reproducibility of important biomarkers in different studies. Meta-analysis is an effective approach to 
deal with these problems, but the current methods have some limitations. In this paper, we propose the 
meta-analysis based on three nonconvex regularization methods, which are L1/2 regularization (meta-
Half), Minimax Concave Penalty regularization (meta-MCP) and Smoothly Clipped Absolute Deviation 
regularization (meta-SCAD). The three nonconvex regularization methods are effective approaches for 
variable selection developed in recent years. Through the hierarchical decomposition of coefficients, our 
methods not only maintain the flexibility of variable selection and improve the efficiency of selecting 
important biomarkers, but also summarize and synthesize scientific evidence from multiple studies 
to consider the relationship between different datasets. We give the efficient algorithms and the 
theoretical property for our methods. Furthermore, we apply our methods to the simulation data and 
three publicly available lung cancer gene expression datasets, and compare the performance with state-
of-the-art methods. Our methods have good performance in simulation studies, and the analysis results 
on the three publicly available lung cancer gene expression datasets are clinically meaningful. Our 
methods can also be extended to other areas where datasets are heterogeneous.

With the rapid development of biotechnology and its wide applications, many database repositories of 
high-throughput gene expression data have been created and published. For example, Gene Expression Omnibus 
(GEO) currently has stored more than 2.76 million samples over 105,000 studies1. The gene expression datasets 
have been widely used in the prediction and diagnosis of diseases, and their application prospects are increasingly 
promising.

It is desirable to consider variable selection into the analysis of gene expression data due to its small sample 
size and high dimensionality. Variable selection not only enhances generalization by reducing overfitting, but 
also enhances interpretability by simplifying the model, i.e., identifying important biomarkers associated with 
the disease and helping to find the best solution for patients in the treatment process. For a single dataset, there 
exist many variable selection methods, such as Least Absolute Shrinkage and Selection Operator (LASSO)2, L1/2 
regularization3–5, Minimax Concave Penalty (MCP)6, Smoothly Clipped Absolute Deviation (SCAD)7–9, Group 
LASSO10, elastic net11, Hard Ridge12, SCAD-L2

13, Complex Harmonic Regularization (CHR) penalty14 and so on. 
These methods are effective in discovering important biomarkers in a single dataset. However, it is well known 
that the analysis of gene expression data is still a challenging task due to high noise and low reproducibility of 
important biomarkers. There are two main reasons for this challenging task. One is that the decisive biomarkers 
that regulate the phenotypes are usually very sparse compared to the total number of biomarkers in the entire 
genome, and their effects are usually weak, therefore, the results of individual studies are not remarkable and diffi-
cult to reproduce. The other is that the different experimental datasets may come from inconsistent experimental 
conditions, sample preparation methods, measurement sensitivities or precision, and also from different study 
groups, biological sample selections. Therefore, the important genes in some studies may be not remarkable in 
other studies, which we call the data have the heterogeneity. The data heterogeneity reveals the complexity of gene 
expression data and significantly obstructs gene expression technology in clinical applications.
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Since many genomic databases are publicly available, meta-analysis is an effective approach to address the 
heterogeneity among different datasets and make full use of different datasets. Meta-analysis is a significant tech-
nique for clinical diagnosis, which plays an important role in summarizing and synthesizing scientific evidence 
from multiple studies. Classic meta-analysis methods, which aggregate the summary statistics from individual 
datasets to obtain total scores and then evaluate them based on statistical significance of all studies, including p 
values15, ranks16,17, effect sizes18–21. Li and Tseng22 apply Fisher’s method combining p values by summation of 
log-transformed p values, and the method increases the biological interpretation of meta-analysis results. Similar 
strategies can be applied to combine effect sizes of Random Effects Model (REM) or Fixed Effects Model (FEM) 
from individual studies. A comprehensive review of these methods is given in the researches23–25. These methods 
perform well in identifying differentially expressed genes, but they ignore the correlations between the covariates 
(genes). There are some approaches that attempt to model the preprocessed microarray datasets using latent 
variable-based models26–30. In general, latent variables are not observable in the data, but can be inferred from 
other observed variables. Huo et al.31 use latent variable to quantify homogeneous and heterogeneous differen-
tially expressed signals across studies to detect genes that are differentially expressed in only a subset of the com-
bined studies. Rashid et al.32 utilize a penalized Generalized Linear Mixed Model based on latent variable to select 
gene signatures and address between-study heterogeneity. These methods provide the potential to pool informa-
tion across genes, making it possible to more clearly infer which genes are differentially expressed. Compared 
with the previous classical meta-analysis methods, these methods are more complex, which limit their applica-
tion in practice. Recently, Zhang et al.33 set different constant terms for multiple studies in the logistic regression 
model to measure the heterogeneity of the samples. This method assumes that the same variables in multiple 
studies should make the same contribution to their corresponding responses. In other words, this method con-
ducts variable selection in an ‘all-in-or-all-out’ fashion. In this paper, we consider that some important genes in 
some studies are likely to be ineffective in other studies, and it is important to allow such flexibility.

Some researchers propose the bi-level selection methods which consider the coefficients of each variable 
(gene) from all datasets as a group, and simultaneously shrink these groups and the variables within these groups 
by the penalty function to study the correlation between variables and identify important genes. Existing bi-level 
selection methods include composite MCP34, group Bridge35 and group exponential LASSO36, meta-SVM37 etc. 
These methods of the aforementioned references generally treat the coefficients of one gene from different data-
sets as a group, and conduct two levels selection. The first is to determine whether a particular gene is related to 
the response variable in all datasets, and the second is to determine which dataset contains the identified gene 
related to the response variable. These methods consider both the heterogeneity and the correlation between the 
datasets. However, for M independent datasets =X y{( , )}m m m

M
1, each of which contains nm samples and p variables, 

these methods consider to solve the problem which has the n Mpm
M

m1∑ ×=  dimensional measurement matrix 
=

∼
X X X Xdiag( , , , )M1 2 , the nm

M
m1∑ =  dimensional response =y y y y( , , , )T T

M
T T

1 2 ��  and the Mp dimensional 
unknown coefficients β β β β= ( , , , )T T

M
T T

1 2 , where the superscript T represents the transpose of the vector. 
Since the gene expression data has the characteristics of small sample size and high-dimensional, these methods 
greatly increase the variable dimension, so it may increase the difficulty of solving the problem.

Zhou and Zhu38 propose a new group variable selection method “hierarchical LASSO” that can be used for 
gene-set selection. The hierarchical LASSO not only removes unimportant groups effectively, but also main-
tains the flexibility of selecting variables within the group. They also showed that the new method offers the 
potential for achieving the theoretical “oracle” property. Li et al.39 propose meta-LASSO for variable selection 
with high-dimensional meta-analyzed data. The meta-LASSO not only improves the ability to identify important 
genes with the strength of multiple datasets, but also maintains the flexibility of selection between datasets to 
consider the data heterogeneity.

For many practical applications, LASSO often cannot find the most sparse solutions (this is extremely impor-
tant for model selection), and it is inefficient when the errors in data have heavy tail distribution2. Zhao and Yu40 
give the Strong Irrepresentable Condition for the model selection consistency of LASSO, and show that to induce 
sparsity, LASSO shrinks the estimates for the nonzero coefficients too heavily. When Strong Irrepresentable 
Condition fails, the irrelevant covariates are correlated with the relevant covariates enough to be picked up by 
LASSO to compensate the over-shrinkage of the nonzero parameters. Therefore, to get universal consistency, 
some nonconvex regularization methods have been proposed in recent years, such as L1/2 penalty, Minimax 
Concave Penalty (MCP) and Smoothly Clipped Absolute Deviation (SCAD) penalty etc. These methods achieve 
both selection consistency and nearly unbiasedness, which make them widely applied in signal/image process-
ing, statistics and machine learning, such as biological feature selection14,41–44, compressed sensing and low rank 
matrix completion8,45–48, sparse signals separation and image inpainting49,50, and dictionary learning51 etc.

In this paper, we propose the meta-analysis based on three nonconvex regularization methods (L1/2 regu-
larization, MCP regularization and SCAD regularization), dubbed as meta-Half, meta-MCP and meta-SCAD 
respectively. Our methods combine the advantages of meta-analysis and the nonconvex regularization meth-
ods. We propose the efficient algorithms which apply the nonconvex iterative thresholding algorithms based on 
approximate message passing (Half-AMP, MCP-AMP and SCAD-AMP)52,53 to solve our models. Furthermore, 
we apply our methods to the simulation data and three publicly available lung cancer gene expression datasets, 
and compare the performance of our methods with other four state-of-the-art methods, which are meta-LASSO, 
composite MCP, group Bridge and group exponential LASSO. The experiments results show that our methods 
have favorable performance.

Methodology
In this section, we study the meta-analysis based on the three nonconvex regularization methods (L1/2 regulariza-
tion, MCP regularization and SCAD regularization).
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Consider M independent datasets = =X yD {( , )}m m m
M

1, each of which contains nm samples. Denote 
=X x x x( , , , )m m m m n

T
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 (i = 1, 2, ⋯, nm) is ith sample in the mth dataset which contains p vari-
ables (genes), and ymi is the response variable, in this paper, we consider the response variable is a binary pheno-
type (for example, if the ith sample of the mth dataset is a disease patient, ymi is 1, and 0 otherwise). The p genes 
are assumed common in all datasets. We assume the conditional probability that ymi takes value 1 given the gene 
expression vector xmi follows the logistic regression model 

 ββ
=

=
= + = =

x
x

x
Pr y
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i n m Mlog
( 1 )
( 0 )
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where βm0 is an intercept and 
( , , )m m mp

T
1β β β=  is the unknown coefficients for the mth data. Due to hetero-

geneity between datasets, we allow βm0 and βm in (1) to vary with m. We hope to find the true nonzero compo-
nents of βm for each dataset.

Compared with the variable selection of single dataset model, the variable selection of the M datasets models 
are distinguishing and peculiar. On the one hand, each variable has M coefficients, which belong to the same 
explanatory variable. Therefore, there is some correlation or similarity, which makes it impossible to make coef-
ficient estimation and variable selection separately, otherwise this correlation will be ignored. On the other hand, 
the significance of variables is not identical, so we cannot simply synthesize estimation. The penalization methods 
with meta-analysis make full use of this particularity to study data differences. These methods conduct variable 
selection by maximizing, 

P( , ) ( ; ),
(2)m

M

m m m
1

0∑ β ββ λ−
=


where ℓm(βm0, βm) is the log-likelihood for the mth dataset and has the following form 

∑β β ββ β β= + − + +
=
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P is a penalty function and λ is the regularization parameter that controls the complexity of the machine.
In this paper, we focus on the three nonconvex regularization methods (L1/2 regularization, MCP regulari-

zation and SCAD regularization), and through the hierarchical decomposition of coefficients that maintain the 
flexibility of variable selection as well incorporate the relationship between different datasets. We consider the 
following hierarchical reparameterization: 

h m M j p, 1, 2, , ; 1, 2, , (3)mj j mj  β ξ= = = .

The parameter hj is the effect of the jth gene, and the different m for ξmj reflects the different effects of the jth 
gene among M datasets. If hj = 0, then 

β β β β= = 0( , , , )j j j Mj
T

1 2 , this indicates that the jth gene is not signif-
icant in all M datasets. If hj ≠ 0, then whether the βmj is equal to 0 depends on whether ξmj is equal to 0. Since the 
M datasets may have heterogeneity (the M datasets may come from inconsistent experimental conditions, sample 
preparation methods, measurement sensitivities or precision, and also from different study groups, biological 
sample selections.), then one gene is important in some datasets may be not remarkable in other datasets. 
Through ξmj contral βmj to keep the selection flexibility among M datasets. If the M datasets have no heterogeneity, 
then hj = βmj for m = 1, ⋯, M defined in (2) and ξmj = 1 for all j and m. With reparameterization (3), we propose 
a meta-analysis method based on nonconvex regularization. Our method selects important genes by solving 
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where ℓm(βm0, h, ξm) is the likelihood function and has the following form 
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1 2 ξ ξ ξ ξ= , and h ⋅ ξm 
means the element-wise product. P( ⋅ ) is a nonconvex penalty function. In this paper, considering the three non-
convex penalty function, the L1/2 penalty, the MCP penalty and the SCAD penalty. The L1/2 penalty function is 

 P x x x( ; )L i
p
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1/2
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1/2

1/2
λ λ= = ∑ = ∣ ∣ . MCP penalty function has the following form 
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( ) { }1 max 1 , 0s s . The SCAD penalty function has the following form 
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we call these three nonconvex penalties for the methods (4) as “meta-Half ”, “meta-MCP” and “meta-SCAD”, 
respectively.

Algorithm
In this section, we give the efficient algorithms (Algorithm 1) to solve our models. Note that we can assume that 
the mean of the predictor variable is zero (through the location transformation). (4) can be decomposed into two 
nonconvex problems, each of which views h or ξ as fixed. We propose to iteratively solve β0, h, and ξ in (4). First, 
we fix β0 and ξ in (4) to maximize h. We next fix β0 and h to maximize ξ. Finally, we maximize over β0 by fixing h 
and ξ. Iterate these steps until the algorithm converges. Since at each step, the value of the objective function (4) 
decreases, the solution is guaranteed to converge. Specifically, the algorithm is described as follows

Step 3 and step 4 are general nonconvex regularization problem. We52,53 propose the nonconvex iterative 
thresholding algorithms based on approximate message passing (Half-AMP, MCP-AMP and SCAD-AMP) to 
solve the nonconvex regularization problem, and verified the effectiveness of the algorithms through theoret-
ical analysis and experiment. In this paper, for the two problems in step 3 and step 4, we apply the Half-AMP 
algorithm, the MCP-AMP algorithm and the SCAD-AMP algorithm to solve the meta-Half, meta-MCP and 
meta-SCAD respectively.

In order to solve the above two problems in step 3 and step 4, we first consider the solution of the traditional 
logistic regression model. Here we omit the intercept term (in fact, just rewrite the input variable as x x(1, )i i

T T
 = ), 

the logistic regression can be expressed as the following optimization problem 

 
x xyargmin ( ) argmin [ ( ) ln (1 exp( ))]
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i i i
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 Differentiating ℓ(β) with respect to β, we can get 

∑
β

β
βµ
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∂

= − −
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Algorithm 1.  The iterative optimization algorithm for solving our meta-analysis based on nonconvex 
regularization models.
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Newton-Raphson iteration algorithm which requires computing the second derivative, the Hessian matrix has the 
following form 
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 Hence, given the current estimated value βold of β, the new estimated value βnew is updated as following 
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 where the value of the derivative (and second derivative) is calculated at the point βold. The equation (9) can be 
expressed by matrix form. Let X be a N × P matrix, where the i-th row is xi; W is a diagonal matrix, and the ele-
ments on the diagonal 
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 Therefore, Newton-Raphson iteration (9) can be expressed as 
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 It can be seen that each Newton-Raphson iteration actually solves the weighted least squares problem as follows 

 z X W z Xargmin( ) ( )
(14)

Tβ β β= − − .
β

Based on the solution process of the traditional logistic regression model, a similar iterative algorithm can 
be used to solve the logistic regression with nonconvex penalties problem, and only a slight deformation of the 
formula (14) is needed to obtain the iterative algorithm.

z X W z X Pargmin( ) ( ) ( ; ),
(15)

T
β β β β λ= − − +

β

 where P( ⋅ ; ⋅ ) is the nonconvex penalty function. It is easy to see that the minimization problem (15) is equiva-
lent to the maximization problem (2). The minimization problem (15) can be solved by the nonconvex iterative 
thresholding algorithms based on approximate message passing52,53 (which are based on linear regression y = Xβ, 
y ∈ RN, X ∈ RN×p). The algorithms are according to the following iteration: 

X r( ) , (16)k k T k( 1) ( ) ( )β βη= ++

r y X r X r1 ,
(17)
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 where p
N

δ =  represents a measure of indeterminacy of the measurement system, in this paper, considering the 
case δ is fixed for N → ∞. For a vector u = (u1, u2, . . . , uN), = ∑ =u ui

N
i1 /N, x x( ) ( )

x
η η′ = ∂

∂
. η is the thresholding 

function, in this paper, η represents the Half thresholding function, the MCP thresholding function and the 
SCAD thresholding function, respectively. The Half thresholding function is 

η λ
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 where 
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 The SCAD thresholding function is 
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Theoretical Properties
In this section, we study the theoretical properties of the meta-Half method. The meta-Half has the following 
uniform form 
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 there are two tuning parameters λh and λξ in (19), we first show that the two tuning parameters can be simplified 
into one. Specifically, let λ = λhλξ, we can show that (19) is equivalent to 
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Lemma 1. If  β ξ
∼ h( , , )0 is a local maximizer of (19). Then there exists a local maximizer h( , , )0

 β ξ  of (20) such that 
ĥξ ξ=hj mj j mj
�� �  and β β=

∼
0 0. Vice versa.

The proof is in the Supplementary. This lemma indicates that although (19) and (20) may provide different hj 
and ξmj, the final fitted models from them are the same. Therefore, we only need to tune one parameter λ = λhλξ 
other than tune λh and λξ separately in practice.

We then show that (20) can also be written in an equivalent form using the original regression coefficients βmj.

Lemma 2. Suppose ξ h( , )  is a local maximizer of (20), for j = 1, 2, ⋯, p, let β ξ= 

mj j mjĥ , � � � � �β β β β= ( ), , ,j j j Mj
T

1 2  

and � � � � �ξ ξ ξ ξ= ( ), , ,j j j Mj

T

1 2
,

(a) If 0jĥ = , then β = 0j
 ;

(b) If ĥ 0j ≠ , then β ≠ 0j
  and ĥ βλ=j j 1/2

1/2
 , ξ =

β

βλ







j
j

j 1/2

1/2
.

The proof is in the Supplementary.

Theorem 1. If h( , , )0β ξ   is a local maximizer of (20), then β with ĥ β ξ=mj j mj, is a local maximizer of
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1
2∑ ∑ ∑β λ β−β

= = =

where ( ), , , Mp
T

10 11 β β β β= . On the other hand, if β is a solution of (21), then β ξ  h( , , )0  is a solution of (20), 
where β β β β=� � � � �( , , , )M
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0 10 20 0 , j m

M
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1
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β

β
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λ

=








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= = =

= = ≠

ĥ
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where ĥ ĥ ĥ( )h , , , p1 2
� �= , ( ), , , Mp

T

11 12ξ ξ ξ ξ=� � � � � , � � � � �β β β β= ( ), , ,j j j Mj
T

1 2  and ( ), , ,j j j Mj

T

1 2
� � � � �ξ ξ ξ ξ= .

The proof is in the Supplementary. If we regard one gene’s effects among all datasets as a “group”, then (21) 
imposes an L1 penalty on each group and a square root penalty on individual elements within a group. The follow-
ing theorem shows the theoretical properties of the meta-Half.

Theorem 2. The meta-Half method possesses sparsity, unbiasedness and oracle properties.
The proof is in the Supplementary.

Experiments
In this section, we analyze the performance of our methods (meta-Half, meta-MCP and meta-SCAD) by simula-
tion and real-data analysis. We compare these three methods with other four methods, which are meta-LASSO, 
composite MCP, group Bridge and group exponential LASSO. The codes of our methods are available at GitHub 
(https://github.com/zhhui019/meta-nonconvex). The meta-LASSO is implemented by Li et al.39. The composite 
MCP, the group Bridge and the group exponential LASSO are implemented by Patrick Breheny and Yaohui Zeng’s 
R package “grpreg”.

Simulations.  Simulation studies are performed to compare the performance of the proposed meta-Half, 
meta-MCP and meta SCAD with the meta-LASSO, composite MCP, group Bridge and group exponential LASSO.

Generate simulated data.  In this simulation, we use the normal distribution to generate the gene expression xmi 
(m = 1, 2, ⋯, M; i = 1, 2, ⋯, nm) with M = 10 datasets, each dataset contains nm = 50 samples, and each sample 
contains p = 1, 000 genes. The response ymi is generated from a logistic model 

π = 0.2 π = 0.5 π = 0.9

meta-Half

Sensitivity 0.9693 (1.70E − 03) 0.9215 (4.97E − 03) 0.9229 (1.30E − 03)

Specificity 0.9862 (2.26E − 04) 0.9903 (6.36E − 05) 0.9837 (1.40E − 03)

Accuracy 0.9861 (2.24E − 04) 0.9901 (6.50E − 05) 0.9835 (1.41E − 03)

meta-MCP

Sensitivity 0.9651 (1.90E − 03) 0.9362 (3.90E − 02) 0.9205 (2.70E − 03)

Specificity 0.9884 (4.18E − 05) 0.9840 (2.02E − 05) 0.9846 (1.15E − 02)

Accuracy 0.9883 (4.16E − 05) 0.9838 (2.05E − 05) 0.9840 (1.13E − 02)

meta-SCAD

Sensitivity 0.9738 (1.60E − 03) 0.9306 (2.07E − 03) 0.9392 (2.50E − 03)

Specificity 0.9903 (1.44E − 05) 0.9853 (1.20E − 04) 0.9505 (4.20E − 03)

Accuracy 0.9903 (1.42E − 05) 0.9850 (1.44E − 05) 0.9504 (4.10E − 03)

meta-LASSO

Sensitivity 0.9065 (8.42E − 02) 0.9217 (6.60E − 02) 0.9425 (6.48E − 02)

Specificity 0.9710 (2.72E − 03) 0.9869 (3.07E − 03) 0.9940 (1.71E − 03)

Accuracy 0.9708 (2.79E − 03) 0.9866 (3.02E − 03) 0.9935 (1.69E − 03)

composite MCP

Sensitivity 0.8454 (1.46E − 01) 0.5428 (1.23E − 01) 0.3167 (7.60E − 02)

Specificity 0.9988 (6.02E − 04) 0.9992 (4.85E − 04) 0.9984 (7.02E − 04)

Accuracy 0.9985 (6.12E − 04) 0.9969 (1.02E − 03) 0.9922 (1.18E − 03)

group Bridge

Sensitivity 0.8734 (7.77E − 02) 0.6856 (1.11E − 01) 0.2842 (6.27E − 02)

Specificity 0.9997 (2.84E − 04) 0.9999 (1.05E − 04) 0.9999 (3.49E − 05)

Accuracy 0.9994 (3.42E − 04) 0.9983 (6.08E − 04) 0.9934 (6.74E − 04)

group exponential 
LASSO

Sensitivity 0.8809 (8.70E − 02) 0.7315 (1.67E − 01) 0.4661 (2.29E − 01)

Specificity 0.9984 (1.10E − 03) 0.9981 (9.33E − 04) 0.9976 (1.33E − 03)

Accuracy 0.9981 (1.09E − 03) 0.9967 (8.01E − 04) 0.9928 (1.37E − 03)

Table 1.  The sensitivity, specificity and accuracy of coefficient β of the seven methods: presented values are the 
mean (standard error).
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 where β β β β=∗ ∗ ∗ ∗( ), , ,m m m mp1 2   and we suppose that the intercept term 0m0β = .∗  We let β α θ=∗
mj mj mj simulate 

possible data heterogeneity, for m = 1, 2 ⋯, M; j = 1, 2 ⋯, 10, αmj are generated from N(3, 0. 52) and θmj are gener-
ated from Bernoulli(π0), for m = 1, 2 ⋯, M; j = 11, 12 ⋯, 1000, let β =∗ 0mj . This means that the first 10 genes of each 
dataset are important to the response with probability π0. The value αmj demonstrates whether the jth gene is impor-
tant in the mth dataset, and the value θmj demonstrates different levels of heterogeneity among different datasets, in 
this simulation, considering π0 = 0.9, 0.5, 0.2 to represent the low, medium and high heterogeneity. We run 30 repli-
cates and report the average measurement.

For the all methods, the tuning parameters are selected by minimizing the BIC: 

∑ βλ = − +λ
=

� �BIC S n( ) { 2 ( ) log ( )} ,
(22)m

M

m m m m
1

,

 where m ,
β λ is the estimated coefficients in the mth dataset, λ is the tuning parameter, Sm is the number of 

non-zero elements of β λm ,
 ,  β λ� �( )m m ,  is the log-likelihood for the mth dataset and has the form (5).

Analysis of simulation.  The variable selection performance of the seven methods is evaluated using the selection 
sensitivity, specificity and accuracy of coefficient β. The sensitivity is the proportion of non-zero mjβ ∗ ’s that are 
correctly estimated as non-zero, the specificity is the proportion of zero β ∗

mj’s that are correctly estimated as zero 
and the accuracy is the proportion of β ∗

mj’s that are correctly estimated.
The simulation results are summarized in Table 1 (The variable selection performance of the seven methods 

are evaluated using the selection sensitivity, specificity and accuracy of coefficient β). Table 1 shows that the spec-
ificity and accuracy of the coefficients β of all seven methods are similar. The sensitivity trend of coefficient β for 
all seven methods with the varying levels of heterogeneity is shown in Fig. 1. Figure 1 shows that the sensitivity 
(the proportion of non-zero mjβ ∗ ’s that are correctly estimated as non-zero) of the composite MCP, the group 
Bridge and the group exponential LASSO dramatically decreases as π0 increases, while the sensitivity of 
meta-Half, meta-MCP, meta-SCAD and meta-LASSO remains above 0.9 for π0 = 0.2, 0.5, 0.9. When π = 0.2, the 
sensitivity of meta-Half, meta-MCP and meta-SCAD are 0.9693, 0.9651 and 0.9738, respectively, which are sig-
nificantly higher than other methods. This result shows that our proposed meta-Half, meta-MCP and meta-SCAD 

Figure 1.  The sensitivity trend of coefficient β for all seven methods with the varying levels of heterogeneity.

Dataset
No. of 
Probs Classes (Class 0/Class 1)

No. of samples 
(Class 0/Class 1)

Affymetrix 
Platform

GSE10072 22284 Normal/ Lung Cancer 107 (49/58) U133A

GSE19188 54675 Normal/ Lung Cancer 156 (65/91) U133 Plus 2.0

GSE19804 54676 Normal/ Lung Cancer 120 (60/60) U133 Plus 2.0

Table 2.  The description of three publicly available lung cancer gene expression datasets.
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have the superior performance when data heterogeneity is strong (π0 is small). With the weakening of data heter-
ogeneity(π = 0.5, 0.9), the performance of the four meta methods (meta-Half, meta-MCP, meta-SCAD and 
meta-LASSO) tends to be comparable. The specificity and accuracy of the coefficients for all seven methods are 
similar.

Real-Data analysis.  In this section, we apply our methods (meta-Half, meta-MCP and meta-SCAD) to 
three publicly available lung cancer gene expression datasets, and compare our three methods with other four 
methods including meta-LASSO, composite MCP, group Bridge and group exponential LASSO.

Lung cancer datasets.  The three publicly available lung cancer microarray datasets come from disparate plat-
forms and can be download from GEO (https://www.ncbi.nlm.nih.gov/gds/). The three datasets are described 
as follows:

GSE10072 dataset. The dataset is gene expression signature of cigarette smoking, it contains 107 final expres-
sion samples from 58 tumors and 49 non-tumor tissues from 20 never smokers, 26 former smokers, and 28 
current smokers, each sample has 22283 genes. The original gene expression data is provided by Landi et al.54.

GSE19188 dataset. The dataset is expression data for early stage non-small-cell lung cancer (NSCLC), it con-
tains 156 samples from 91 tumor tissues and 65 adjacent normal lung tissue samples, each sample has 54675 
genes. The more information can be found in Hou et al.55.

GSE19804 dataset. The dataset is non-smoking female lung cancer in Taiwan, it contains 120 samples from 
60 tumors and 60 normal tumor tissues, each sample has 54675 genes. The more information can be found in Lu 
et al.56.

Each dataset is divided into two parts, about 70 percent of the datasets as training samples and the other 30 
percent as testing samples. Table 2 lists the details of the three datasets.

The original Affymetrix data was first normalized and log-transformed by a robust multi-array average (RMA) 
method57. After that, downloading and installing the appropriate custom chip definition files (CDFs) packages 
according to the type of microarray platform. The CDF package is necessary for probe annotation for Affymetrix 
data. The probes of the normalized data can be successfully mapped to Entrez Gene IDs by annotation packages 
in Bioconductor58. If multiple probes match a single Entrez ID, we calculated the median of values of those probes 
as the expression value for this gene.

We extract common genes from the three gene expression datasets as the merged set of genes. There are 13515 
common genes in three datasets and our analysis is based on those 13515 genes. We use a random partition in 
three lung cancer datasets, and apply aforementioned seven methods to select important genes, with the optimal 
tuning parameters chosen by the BIC as discussed above. We repeat this procedure 30 times and report the aver-
age measurement and standard error.

Evaluating the classification performance.   Table 3 demonstrates the prediction performance of the seven meth-
ods in three lung cancer datasets. The sensitivity, specificity and accuracy of training and testing predictions for 
all seven methods are shown in Fig. 2.

As shown in Table 3 and Fig. 2, for the training dataset and testing dataset, the sensitivity and accuracy of 
meta-Half, meta-MCP, meta-SCAD are consistently higher than the other four methods, and the specificity of 
all methods are similar. This result shows that our three methods are more effectively distinguish whether an 
individual is a disease patient compared to the other four methods. Therefore, our three methods have superior 
performance than the other four methods in the prediction and diagnosis of diseases.

Analysis of the selected genes.   Table 4 gives the names of genes selected in each dataset. We focus on the gene 
WIF1 which is bolded in the Table 4. WIF1, a secreted Wnt antagonist, is a downstream gene of the Wnt/β-catenin 
pathway, which exerts inhibition through direct binding to Wnt proteins59. WIF1 was found to be silenced by 
methylation in various human carcinomas including lung60, oral61, nasopharyngeal62, esophageal63, breast64 and 
colon cancer65 etc.

As shown in Table 4, our three methods (meta-Half, meta-MCP and meta-SCAD) all select gene WIF1 on 
both datasets GSE10072 and GSE19188, but not select gene WIF1 on dataset GSE19804. As we known that 

Methods

Training data Testing data

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

meta-Half 0.9766 (2.69E-02) 0.9673 (9.10E-03) 0.9903 (1.54E-05) 0.9449 (2.16E-02) 0.9464 (7.93E-03) 0.9437 (1.66E-05)

meta-MCP 0.9768 (5.37E-04) 0.9677 (1.70E-03) 0.9903 (8.56E-05) 0.9452 (1.99E-03) 0.9466 (6.94E-03) 0.9439 (1.35E-04)

meta-SCAD 0.9727 (3.13E-03) 0.9608 (1.77E-03) 0.9903 (2.19E-02) 0.9528 (4.64E-03) 0.9464 (4.80E-03) 0.9577 (2.50E-02)

meta-LASSO 0.9309 (1.01E-02) 0.8722 (1.87E-02) 0.9994 (2.15E-03) 0.8953 (2.11E-02) 0.8291 (3.58E-02) 0.9792 (1.25E-02)

composite MCP 0.9353 (1.45E-02) 0.9221 (2.05E-02) 0.9519 (1.85E-02) 0.8656 (1.94E-02) 0.8283 (2.23E-02) 0.9060 (2.85E-02)

group Bridge 0.6410 (1.88E-02) 0.4039 (2.59E-02) 0.9508 (2.23E-02) 0.6255 (2.06E-02) 0.3240 (3.15E-02) 0.9317 (2.98E-02)

group exponential Lasso 0.9385 (9.78E-03) 0.9155 (1.64E-02) 0.9655 (1.48E-02) 0.8942 (1.85E-02) 0.8432 (2.47E-02) 0.9589 (2.05E-02)

Table 3.  Performance comparisons of different methods in three lung cancer datasets. Presented values are the 
average (standard error).
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GSE10072 dataset is gene expression signature of cigarette smoking, GSE19188 dataset is expression data for early 
stage non-small-cell lung cancer (NSCLC) and GSE19804 dataset is non-smoking female lung cancer in Taiwan. 
Huang et al. showed that WIF1 is significantly associated with the smoking behavior in NSCLC patients66. It 
shows that our three methods can more realistically identify the important biomarkers from different datasets 
which have heterogeneity. The meta-LASSO selects gene WIF1 in all three lung cancer datasets, and the genes 
selected by meta-LASSO in the three lung cancer datasets are the same. The other three methods (composite 
MCP, group Bridge and group exponential LASSO) cannot select gene WIF1 in all three lung cancer datasets. 
Therefore, our three methods are superior to the other four methods when applied in the heterogeneity datasets.

The number of genes selected by meta-Half, meta-MCP, meta-SCAD and meta-LASSO are 11, 13, 9 and 13 
respectively. Figure 3 shows the overlap of commonly selected genes across the four different methods (meta-Half, 
meta-MCP, meta-SCAD, meta-LASSO) in three lung cancer datasets. The other three methods (composite MCP, 
group Bridge and group exponential LASSO) select fewer genes, so we don’t show the genes they selected in 
Fig. 3. As shown in Fig. 3(a), for the datasets GSE10072 and GSE19188, seven common genes are selected by 
meta-Half, meta-MCP and meta-SCAD, which are CXCL13, COL11A1, SPP1, MMP12, AGER, WIF1 and FCN3. 
Two common genes are selected by meta-Half, meta-MCP, meta-SCAD and meta-LASSO, which are SPP1 and 
WIF1. Figure 3(b) shows that for dataset GSE19804, four common genes selected by meta-Half, meta-MCP and 
meta-SCAD are CXCL13, SPP1, MMP12 and AGER. One common genes are selected by meta-Half, meta-MCP, 
meta-SCAD and meta-LASSO, which is SPP1. More unique non-overlapping sets of genes are selected by our 
three methods and meta-LASSO. In addition, some of the aforementioned genes have been reported in the liter-
ature. COL11A1 is collagen type XI alpha 1 chain. The over-expression of COL11A1 reportedly correlates with 
lymph node metastasis and poor prognosis in non-small cell lung cancer and ovarian cancer67. Zhang et al. sug-
gest that SPP1 and AGER are risk factors for lung adenocarcinoma, and these two genes may be utilized in the 

Figure 2.  Training and testing prediction performance of different methods on lung cancer datasets.  
(a) Training. (b) Testing.
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prognostic evaluation of patients with lung adenocarcinoma68. The advanced glycosylation end-product specific 
receptor (AGER) belongs to the immunoglobulin superfamily, whose abnormal expression has been detected in 
lung cancer69. MMP12 is matrix metallopeptidase 12 and may play a role in aneurysm formation and mutations 
in this gene are associated with lung function and chronic obstructive pulmonary disease (COPD)70. WIF1 was 
found to be silenced by methylation in lung60. Lea et al. shows that the Ficolin-3, encoded by the FCN3 gene and 
expressed in the lung and liver, is a recognition molecule in the lectin pathway of the complement system71. The 
aforementioned genes CXCL13, MMP12, AGER and FCN3 are only selected by our three methods, and the gene 
COL11A1 is selected by our three methods and group exponential LASSO.

To make it easier to demonstrate the interplay between the selected genes from the different methods, we con-
struct a network of interactions among the genes using the cBioPortal72,73. Figures 4, 5 and 6 show the interactive 
network of the genes selected by our three methods in three lung cancer datasets. Most of the genes selected by 
our three methods are linked to the frequently altered neighbor genes from the TCGA lung adenocarcinoma 
dataset. The expression of SPP1 is controlled by TP53. TP53 is tumor protein p53, this gene encodes a tumor 
suppressor protein containing transcriptional activation, DNA binding, and oligomerization domains. Mutations 

GSE10072 GSE19188 GSE19804

meta-Half

CXCL13 MMP12 COL11A1 CXCL13 MMP12 COL11A1 CXCL13 SPINK1 AGER

TOX3 SPINK1 FCN3 TOX3 SPINK1 FCN3 SPP1 COL10A1 GPM6A

SPP1 COL10A1 WIF1 SPP1 COL10A1 WIF1 MMP12 TOX3

GPM6A AGER GPM6A AGER

meta-MCP

CXCL13 SPP1 COL11A1 CXCL13 SPP1 COL11A1 CXCL13 SPP1

AGER MMP12 FCN3 AGER MMP12 FCN3 AGER MMP12

PPAP2C COL10A1 WIF1 PPAP2C COL10A1 WIF1 PPAP2C COL10A1

GPM6A TOX3 GPM6A TOX3 GPM6A TOX3

TOP2A TMEM100 TOP2A TMEM100 TOP2A TMEM100

meta-SCAD

CXCL13 MMP12 COL11A1 CXCL13 MMP12 COL11A1 CXCL13 MMP12 COL11A1

CYP4B1 SPINK1 FCN3 CYP4B1 SPINK1 FCN3 CYP4B1 SPINK1 FCN3

SPP1 AGER WIF1 SPP1 AGER WIF1 SPP1 AGER

meta-LASSO

PPBP SFTPC SPP1 PPBP SFTPC SPP1 PPBP SFTPC SPP1

CLDN10 AKR1B10 SFTPD CLDN10 AKR1B10 SFTPD CLDN10 AKR1B10 SFTPD

UPK3B APOLD1 XIST UPK3B APOLD1 XIST UPK3B APOLD1 XIST

SPINK1 COL10A1 WIF1 SPINK1 COL10A1 WIF1 SPINK1 COL10A1 WIF1

HLA-DQA1 /// LOC100509457 HLA-DQA1 /// LOC100509457 HLA-DQA1 /// LOC100509457

composite MCP SOSTDC1 COL11A1 SYNE1 SOSTDC1 COL11A1

group Bridge P2RY14 P2RY14 ATP1A2 P2RY14

group GDF10 FABP4 COL11A1 GDF10 FABP4 COL11A1 GDF10 FABP4 COL11A1

exponential

LASSO

Table 4.  Gene selections of seven methods in three lung cancer datasets.

Figure 3.  Overlap of commonly selected genes across the different methods in lung cancer datasets.  
(a) GSE10072 and GSE19188. (b) GSE19804.
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Figure 4.  Network view of the genes selected from meta-Half in lung cancer datasets. The genes corresponding 
to the selected variables are highlighted by a thicker black outline. The rest of the nodes correspond to the genes 
that are frequently altered and are known to interact with the highlighted genes (based on publicly available 
interaction data). The nodes are gradient color-coded according to the alteration frequency based on microarray 
data derived from the TCGA lung cancer dataset via cBioPortal. (a) GSE10072 and GSE19188. (b) GSE19804.

Figure 5.  Network view of the genes selected from meta-MCP in lung cancer datasets. (a) GSE10072 and 
GSE19188. (b) GSE19804.
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in this gene are associated with a variety of human cancers74. MMP12 and TOP2A are targeted by certain cancer 
drugs, and are only selected by our three methods.

In this part, we analyze the genes selected by the four methods (meta-Half, meta-MCP, meta-SCAD and 
meta-LASSO) in three lung cancer datasets. According to the network of interactions between genes, among the 
genes selected by our three methods, we find that some genes are connected to other frequently altered genes 
in publicly available datasets, and some genes are targeted by certain cancer drugs. Some functions may also 
need to be verified in the future. Results demonstrate that our three methods have good performance in the 
high-dimensionality gene expression data with heterogeneity.

Conclusion
With the rapid development of biotechnology and its wide applications, a large number of publicly available gene 
expression datasets have been produced. However, due to the gene expression datasets have the characteristics of 
small sample size, high dimensionality and high noise, the application of biostatistics and machine learning meth-
ods to analyze gene expression data is a challenging task, such as the low reproducibility of important biomarkers 
in different studies. The low reproducibility of important biomarkers is mainly caused by the heterogeneity of 
the different datasets. These problems reveal the complexity of gene expression data and significantly obstruct 
biotechnology in clinical applications. Meta-analysis is an effective approach to deal with these problems. It plays 
an important role in summarizing and synthesizing scientific evidence from multiple studies, and provides a 
more comprehensive understanding of the biological systems, but the current methods have some limitations. 
The nonconvex regularization method is an effective approach for variable selection developed in recent years. In 
this paper, we combine the advantages of meta-analysis and the nonconvex regularization method, and propose 
three novel methods, dubbed as meta-Half, meta-MCP and meta-SCAD, respectively. Through the hierarchical 
decomposition of coefficients, our methods not only consider the data heterogeneity to maintain the flexibility in 
selecting variables on different datasets, but also consider the correlation between multiple datasets to improve 
the ability of identifying important biomarkers. We give the efficient algorithms which apply the nonconvex itera-
tive thresholding algorithms based on approximate message passing (Half-AMP, MCP-AMP and SCAD-AMP) to 
solve our models and study the theoretical property of meta-Half. The theoretical property analysis of MCP-AMP 
and SCAD-AMP are the future work. We prove meta-Half possesses sparsity, unbiasedness and oracle properties. 
Furthermore, we apply our methods to the simulation data and three publicly available lung cancer gene expres-
sion datasets, and compare the performance of our methods with other four methods, which are meta-LASSO, 
composite MCP, group Bridge and group exponential LASSO. Simulation studies demonstrate our methods 
have the superior performance when data heterogeneity is strong. In the three publicly available lung cancer 
gene expression datasets, the analysis results show that our three methods have good performance in the gene 

Figure 6.  Network view of the genes selected from meta-SCAD in lung cancer datasets. (a) GSE10072 and 
GSE19188. (b) GSE19804.
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expression data of small sample size and high dimensionality from different sources (heterogeneity), and the 
selected important biomarkers have clinical significance. Our methods can also be extended to other areas where 
datasets are heterogeneous.
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