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Abstract

We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and
physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence
alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-
energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function.
Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native
from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts.
We then use this representation to train an support vector machine classifier to identify most likely native contacts in
otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources
of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence
homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is
available at http://compbio.robotics.tu-berlin.de/epc-map/.
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Introduction

Protein contact prediction identifies potential residue pairs in

spatial proximity in the native protein—without knowledge of the

native structure itself.

Accurate contact prediction is of great interest and value, as

even partial knowledge of residue-residue contacts for a target

protein enables the computation of that protein’s native structure

[1,2]. Information about native contacts can also be used to guide

conformational space search in ab initio protein structure

prediction [3,4]. Contact prediction therefore represents an

important intermediate step towards the long-standing goal of

tertiary structure prediction [5–7].

There are five broad categories of contact prediction methods:

contact prediction from evolutionary information, from sequence-

based machine-learning algorithms, from template structures,

from structure prediction decoys and by integrating sequence and

structural restraints. They differ in the type of information they use

to make predictions.

N Contact prediction from evolutionary information leverages the

fact that two contacting residues are likely to co-evolve to

maintain structural integrity of the protein. Thus, co-evolution

signals in multiple-sequence alignments (MSAs) can reveal

contacting residues in the protein structure.

N Machine-learning-based methods exploit evolutionary sequence

information in a slightly different way. They identify common

sequence patterns occurring around contacting amino acids.

These patterns can be learned and recognized to make contact

predictions.

N Template-based methods leverage the information contained in

structure databases, such as the PDB [8]. They search these

databases for appropriate structural templates, using sequence

matching or threading and then extract contact information

from the retrieved templates.

N Ab initio protein structure prediction methods use conforma-

tional space search and the physicochemical information
captured in the energy function to make predictions about

contacting residues. These methods generate many low-energy

candidate structures and use simple occurrence statistics to

identify native contacts.

N Methods that integrate sequence and structural restraints use

sequence-based predictions and additionally take structural

restraints into account. Structural restraints are derived from

prior knowledge about protein structures or from templates.

Most of the aforementioned categories of contact prediction

methods rely on a single source of information. When no valuable

information is available from that source, prediction accuracy

deteriorates. This effect is drastic if the number of sequences in the

alignment is insufficient or if the correct template cannot be

retrieved [9–11]. In contact prediction from ab initio predicted

structures, the quality of information depends on the ability of a
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search procedure to identify low-energy regions in the energy

landscape. If no appropriate regions can be discovered, contact

prediction performs poorly.

Methods that use evolutionary information and methods that

use physicochemical information are on opposite sides of the

spectrum of approaches to contact prediction. Evolutionary

information methods are accurate if many sequences are available,

but not effective if this information is absent. On the other hand,

physicochemical information methods perform well even when

only few sequences are available, but do not benefit as much from

sequence data as evolutionary methods. Evolutionary and

physicochemical information are largely orthogonal information

sources. Thus, the combination of those information sources

should unlock the synergistic potential of both approaches to

perform highly accurate contact prediction.

In this article, we introduce a novel contact prediction method,

EPC-map, that predicts contacts using two sources of information:

evolutionary information from multiple sequence alignments and

information from physicochemical energy potentials (EPC-map

stands for using Evolutionary and Physicochemical information to

predict Contact maps). EPC-map relies on GREMLIN [10], an

established method for sequence-based contact prediction, to

leverage evolutionary information. To identify and leverage

physicochemical information, we present a novel, machine-

learning based classifier that uses a graph-based encoding of the

structural context of contacts. This classifier distinguishes native

from non-native contacts in ab initio decoys with unprecedented

accuracy. A graphical outline of our method is shown in Figure 1.

In our experiments with 528 proteins, EPC-map reaches 53.2%

accuracy on the top scoring L=5 predicted long-range contacts

(where L is the length of the protein), increasing the accuracy by

7.8% relative to the state of the art. In our analysis, EPC-map is

also the best performing method on proteins from CASP10.

Furthermore, we show that EPC-map performs better than

contemporary methods, regardless how many sequences are

available. We further show that physicochemical information

improves prediction in cases where deep alignments are not

available, effectively alleviating the main weakness of evolution-

based contact prediction. To achieve this, EPC-map does not use

any structural information from homologous sequences and is

therefore effective when templates are not available. Finally, we

show that EPC-map predicted contacts improve ab initio tertiary

structure prediction.

Related Work

We review the different approaches to contact prediction

following the categorization established above. Of particular

interest in our review is the source of information that is leveraged

and under which circumstances the methods are applicable.

Contact prediction from evolutionary information
The earliest methods for contact prediction were based on

evolutionary information from multiple sequence-alignments

(MSAs). They exploit knowledge of correlated mutations and

phylogeny to predict contacts. Over the course of evolution,

destabilizing mutations of a specific residue are frequently

accompanied by matching mutations of spatially close residues.

This is appealing from a theoretical perspective, but initially

yielded only poor prediction accuracy [12]. This low accuracy was

caused by the presence of transitive correlations obfuscating the

information about direct correlations. More recent approaches

therefore separate direct and transitive correlations by estimating

the inverse covariance matrix of the MSA [13,14]. This achieves

high accuracy but requires on the order of 5L sequences for

alignment, where L is the length of the protein measured in amino

acids [9,10]. Thus, evolutionary methods are of limited use when

only few related sequences are available. For many of these

proteins with few sequences, the PDB does not contain any

structural homologs [10]; these proteins would therefore benefit

most from accurate contact predictions.

Contact prediction from sequence-based machine
learning

Methods in this category employ machine learning to identify

sequence patterns indicative of contacts in the protein structure.

They vary in the machine learning algorithm they employ and in

their training procedure. Researchers have used neural networks

[15–17], support vector machines [11,18], hidden-Markov models

[19], or random forests [20] to devise prediction algorithms. More

recent approaches employ deep learning architectures [21] and

deep learning combined with boosting [7]. Improvements in

prediction accuracy stem from the application of novel machine

learning algorithms, larger training sets, data preprocessing, and/

or better training procedures.

Methods in this category are robust when only few sequences

are available; they consistently perform well for ab initio
predictions in the CASP experiments [22,23]. Nevertheless, these

predictors are not routinely used in structure prediction.

Contact prediction from template structures
A decisively different approach to contact prediction uses

information from template structures, making explicit use of

structural information available in databases. Methods from this

category identify template structures by sequence matching or

threading and derive contact predictions from the obtained

template [11,24]. If a good template is found, predictions are

highly accurate. This accuracy is further improved through the use

of multiple templates [11]. Even though template structures are

used to predict contacts, the template retrieval step is essentially

based on sequence information, rendering these methods unsuit-

able for novel folds. The failure to identify a good template then

leads to significant loss in prediction accuracy [11].

Contact prediction from ab initio protein structure
prediction

Methods based on ab initio protein structure prediction sample

an energy function to generate many candidate protein structures,

called decoys. As native contacts are energetically favorable, they

should occur more frequently in these decoys than non-native

contacts. It is possible to obtain accurate contact predictions by

analyzing the distribution of contacts in those decoys [25]. This

approach effectively leverages another source of information than

all sequence-dependent methods: The physicochemistry captured

in energy functions and encoded in the decoy structures. This

approach has been applied successfully to derive consensus

distances [26] and energy-weighted occurrences of residue-residue

contacts [27]. Related work uses sampling statistics and machine

learning to predict native b-strand contacts [28]. Recently, highly

accurate predictions were obtained based on simple occurrence

frequencies [25]. Strikingly, this simple heuristic achieved the

highest prediction accuracy in an ab initio setting at the CASP9

experiment [22] and was among the best in CASP10 [23].

Contact Prediction with Physicochemical and Evolutionary Information

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e108438



Contact prediction by integrating sequence and
structural restraints

Recent sequence-based methods improve contact prediction by

integrating structural restraints into the prediction procedure.

Structural restraints have been used as prior probabilities in a

pseudo-likelihood approach [10] and by enforcing structural

restraints with integer linear programming [29]. These approaches

show that the use of structural restraints allows for more accurate

contact prediction. Karakas et al. integrate sequence and structure

information by coupling sequence-based neural networks with

structural templates from fold-recognition [24].

The combination of structure and sequence information is an

emerging route towards improved contact prediction. However,

combining explicit structure and physicochemical information

from structure prediction decoys with evolutionary information

has not been attempted yet. As we will show, this approach results

in significant performance improvement.

Methods

Contact definition and evaluation
Two residues are defined to be in contact if their Cb atoms (Ca

for glycine) are within 8 Å in the native structure of a protein. We

investigate medium-range and long-range contact predictions. In

medium-range (long-range) contacts, the contacting residues are

separated by 12{23 (w23) residues in the sequence. For

evaluation, we consider the top scoring fraction of L=10, L=5 and

L=2 predicted contacts, where L is the length of the protein. Our

performance metrics are accuracy (Acc = TP/(TP+FP)) and cover-

age (Cov = TPfrac/TP total). Here, TP are true positives: contacts that

are predicted and also in contact in the native structure. FP are false

positives: contacts that are predicted but not in contact in the native

structure. TPfrac are the true positives in the top scoring fraction of

the predicted contacts, while TPtotal are the total true positives for a

protein. Our main analysis focuses on the top scoring long-range

contacts as they are most valuable in structure modeling.

Figure 1. Flowchart overview of EPC-map, combining evolutionary information (upper box) and physicochemical information
(lower box). For evolutionary contact prediction, multiple-sequence alignments are constructed by searching the Uniprot20 database with HHblits.
GREMLIN is then used to predict contacts from the alignments. For physicochemical contact prediction, decoys are generated with Rosetta. From
each decoy, contact graphs are constructed and feature input vectors computed. An SVM ensemble predicts the contact probability from each
feature vector. The SVM probability and occurrence statistics predict physicochemical contacts. Lastly, evolutionary and physicochemical contact
prediction are combined to form the output of EPC-map.
doi:10.1371/journal.pone.0108438.g001
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Generation of multiple-sequence alignments
Our method relies on multiple-sequence alignments in two

ways. First, the contact graph (defined below) contains information

from these alignments, e.g. local sequence conservation of a

particular residue. Second, our method incorporates information

from sequence-based contact prediction obtained from GREM-

LIN [10]. These multiple-sequence alignments are generated by

searching the query sequence with HHblits [30] (version 2.0.11)

against a clustered Uniprot [31] database with maximum pairwise

sequence similarity of 20% (dated March 2013).

Evolutionary contact information
We use GREMLIN [10] to obtain evolutionary information

contact scores. We obtained a version of GREMLIN from the

authors and run it with default parameters.

Decoy generation
The generation of protein decoys is the first step towards

leveraging physicochemical information for contact prediction.

We use the standard ab initio protocol in Rosetta version 3.2 to

generate decoys [32]. Rosetta performs fragment assembly with a

reduced representation of the protein chain, using a knowledge-

based force field. Decoys are refined in an all-atom phase, adding

side chains and minimizing the decoys’ energy in a hybrid

physical/knowledge-based all-atom potential.

Decoys for training. To generate decoys for training

purposes, we use three independent Rosetta runs, each with a

different strength of native bias [33]. The goal is to obtain decoys

that are far away, relatively close, and very close to the native

structure. This will provide us with a good decoy training set,

containing a diverse set of positive and negative examples.

The native bias is introduced by three different fragment

libraries. We quantify the impact of these biases by using the

GDT_TS as a measure of quality of the five lowest-energy decoys

for each protein. The GDT_TS measure ranges from 0 if two

structures are completely dissimilar to 100 for a perfect structural

match. In the first fragment library, we exclude proteins

homologous to the target sequence. Decoys obtained using this

fragment library are usually far away from the native structure

(min/max/mean/median GDT_TS of 10.7/73.5/26.5/24.3). To

obtain the second fragment library, we allow fragments from

homologous proteins to be included, leading to decoys closer to the

native structure (min/max/mean/median GDT_TS of 11.2/

99.3/28.1/25.4). We enrich the third fragment library with

fragments from the native structure itself, enabling decoys that

are even closer to the native structure of the target (min/max/

mean/median GDT_TS of 10.4/99.8/37.0/31.2). Note that this

use of the native bias is acceptable, as we are only generating

decoys for training purposes. For each type of fragment library, we

generate 200 decoys, resulting in 600 decoys per protein. From

each of these sets of 200 decoys, we retain the 3% with lowest

energy.

Decoys for prediction. To perform contact prediction, we

generate 1000 decoys without homologous fragments, i.e. using

the first fragment library, and retain the top 2% based on energy.

Thus, our approach does not use any structural information from

homologous sequences such as templates. Therefore, we set EPC-

map apart from methods that use threading to find templates and

extract contacts from them.

Contact graphs for feature generation
Past research has demonstrated the effectiveness of decoy-based

contact predictions using simple occurrence statistics [25].

However, these statistics were gathered on entire decoys, selected

by their energy. The energy criterion favors all occurring contacts

equally, even the non-native ones, making it difficult to

differentiate between native and non-native contacts.

Our approach is based on the insight that the discrimination of

native and non-native contacts in decoys must improve signifi-

cantly if information from the decoy’s energy is complemented

with information specific to the individual contacts. Our main

assumption is that this information is captured by the immediate

structural environment of a contact. Thus, we would like to

characterize this local environment and learn how to differentiate

native from non-native environments.

To characterize the properties of a contact’s neighborhood, we

use undirected graphs (refer to Figure 2 for the remainder of this

section). In these graphs, nodes correspond to residues and edges

connect contacting residues. Nodes and edges are labeled with

physicochemical, structural and evolutionary characteristics; these

labels are described in the supporting information (Text S1 and

Tables S1–S2 in File S1). First, we consider the neighborhood of

individual residues. The neighborhood of residue i is defined as all

residues up to two positions away in sequence, i.e. residues

i{2,i{1,i,iz1,iz2, as well as all residues in contact with those,

according to the definition of a contact given in Methods. For a-

helices, the i{4, i, iz4 residues are used instead to include the

residues with the same facing towards the contact on subsequent

helix turns. We capture this notion of neighborhood of residue i in

a neighborhood graph Ni (Figures 2A and B).

To capture the local context of a contact Cij between residue i

and j, we use two different kind of graphs. The shared

neighborhood graph (SNij ) captures the shared neighborhood of

the residues i and j in the context of their sequential neighbors

fi{2,i{1,iz1,iz2g and fj{2,j{1,jz1,jz2g, thus being the

intersection of Ni and Nj : SNij~Ni\Nj (Figure 2C). Addition-

ally, we capture the local context that directly influences the

residues i and j by the immediate neighborhood graph (INij ) that is

formed by all residues in immediate contact to residues i and j
(Figure 2D).

These graphs are the fundamental data structure of our method.

We then apply machine learning to learn to discriminate native

from non-native graphs (i.e. contacts). The success of learning

critically depends on the expressiveness of the employed features,

which we will describe next.

Overview of used features
To capture contact characteristics in decoys, we define n~48

features, each representing a measurable property of residues in

contact. Each feature consists of one or several binary or real-

valued inputs. All of these inputs are joined into a single vector,

which serves as input to a support vector machine (SVM) during

training and testing. Note that features defined on graphs are

evaluated for the shared neighborhood graphs and immediate

neighborhood graphs separately. Thus, each graph feature is

present two times in the final input vector which has a length of

m~228.

Features are categorized into seven groups: pairwise, graph

topology, graph spectrum, single node, node label statistics, edge

label statistics, and whole protein features. We will briefly motivate

each of these groups (see also Table 1).

Pairwise features capture properties of the amino acids i and j,
such as the chemical type, secondary structure, and solvent

accessibility.

We use topological and spectral graph features to characterize

the underlying contact network. For example, nodes in well-

packed regions of a decoy will tend to have a higher degree than

Contact Prediction with Physicochemical and Evolutionary Information
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those in poorly-packed regions. Consequently, contacts in well-

packed regions have a higher likelihood of being native. This can

be measured by the average degree centrality of the graph.

Node and edge label statistics extract additional information

from contact networks to complement topological considerations.

For example, native contacts in the protein core should be

embedded in a network of hydrophobic residues. This property is

captured by the distribution of the chemical nature of neighboring

nodes.

Whole protein features specify information about the protein at

hand, such as amino acid composition, secondary structure

composition and protein chain length.

The individual features from each group are listed in Tables S3-

S9 in File S1. A detailed description of each feature and its

implementation is also provided in the supporting information

(Text S2 in File S1).

Software used for feature generation. Several of our

features are based on external software. Solvent accessibility and

free solvation energies are computed with POPS [34]. We use

STRIDE [35] to obtain secondary structure and hydrogen

bonding assignments from decoys. Sequence conservation features

are computed as described by Fischer et al. [36]. Some of our

pairwise features are inspired by Cheng et al. [18] and we use a

contact potential introduced in [20]. We construct graphs by using

the NetworkX Python package [37] and use the SVM library of

scikit-learn [38]. Finally, many of our topological and spectrum

features have been shown to be effective for graph classification

[39].

Next, we describe how we use these features to train a support

vector machine with physicochemical contact information.

SVM training with physicochemical contact information
A challenging aspect in using support vector machines for

contact prediction is that the contact prediction learning problem

is inherently imbalanced i.e. there are many more non-native than

native contacts in the decoys of our training set (see respective

section for details on training set construction). Random under-

sampling is a common technique to cope with the unbalanced

learning problem [40]. However, performing random under-

sampling leads to information loss because many training instances

are not used for learning. Furthermore, the resulting learner might

be biased towards the specific training sample, leading to high

Figure 2. Definition of graphs used to model the neighborhood
of the contacting residues i and j : Nodes represent residues
(circles), edges represent contacts (solid black lines). A: The
neighborhood graph Ni for residue i contains all residues in contact
with residues i{2,i{1,i,iz1, and iz2 (dark grey). B: The neighbor-
hood graph Nj . C: The shared neighborhood graph SNij for the contact
between residues i and j is defined by the intersection of Ni and Nj .
Residues that belong to SNij are shown in blue. Shared neighborhood
graphs capture the local context of the shared neighborhood of the
contacting residues. D: The immediate neighborhood graph INij is
defined by all residues that are in contact to i or j. Residues that belong
to INij are shown in blue. Immediate neighborhood graphs capture the
direct neighborhood of the contacting residues.
doi:10.1371/journal.pone.0108438.g002

Table 1. Overview of the features used for contact prediction. A detailed description of the features is given in the supporting
information.

Group Feature examples Number of inputs

Pairwise Chemical type, secondary structure, solvent accessibility, sequence separation, hydrogen bonding, sequence
separation from N/C-terminus, contact potential, distance, average distance in ensemble, mutual information

49

Graph topologya Number of nodes, number of edges, average degree centrality, average closeness centrality, average betweenness
centrality, graph radius, graph diameter, average eccentricity, number of end points, average clustering coefficient

10

Graph spectruma Largest two eigenvalues, number of different eigenvalues, sum of eigenvalues, energy of adjacency matrix 5

Single nodea Degree, closeness centrality, betweenness centrality, sequence conservation and sequence neighborhood
conservation for i and j

10

Node label statisticsa Chemical type of residues, secondary structure descriptors, solvent accessibility, hydrogen bonding, average free
solvation energy, 4-bin solvation energy distribution, entropy of labels, neighborhood impurity degree, average
distance from centroid, sequence conservation, sequence neighborhood conservation

43

Edge label statisticsa Link impurity, 5-bin mutual information distribution, cumulative mutual information, 3-bin contact potential distribution 12

Whole protein Amino acid composition, secondary structure composition, length class 29

aGraph-based features.
doi:10.1371/journal.pone.0108438.t001
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variance. We reduced this effect by training an SVM ensemble,

with each SVM performing its own random undersampling. First,

proteins in the training set are randomly split into five non-

overlapping subsets. Second, a SVM classifier is trained for each

subset with random undersampling by selecting 50 native and 150

non-native contacts. This procedure handles the imbalanced

training problem by random undersampling and reduces the effect

from information loss and variance by using multiple SVM

instances. This yields an SVM ensemble of five different SVM

classifiers, one for each subset. Each subset uses approximately

30.000 training instances. Each input in the input vector is

normalized by subtracting the mean and dividing by standard

deviation.

We use a binning procedure [41] to obtain calibrated

probability estimates. The raw SVM output values between the

5 and 95 percentile are grouped into ten bins. Then, the

probability of a native contact is computed separately for each

bin. We find that this procedure improves prediction accuracy

compared to Platt’s method [42].

We use the Gaussian kernel for training and determine the cost

and the kernel parameter c by 10-fold cross-validation on the

EPC-map_train data set, optimizing the long-range L=5 accuracy.

Furthermore, probability estimates by binning are obtained by 5-

fold cross-validation on the training set. We find that c~10 for the

soft margin parameter and the Gaussian kernel parameter

c~0:001 yield the best performance.

SVM prediction of contacts from physicochemical
information

To perform contact prediction for a protein, we consider the

2% lowest-energy decoys generated by Rosetta, using a homology-

free fragment library. Each contact present in each decoy is scored

by the SVM ensemble. The probability p(Cij) for an individual

contact Cij in one decoy is given by:

p(Cij)~
1

l

Xl

k~1

pk
SVM (Cij),

where pk
SVM (Cij) is the probability output value of the k-th SVM.

Note that the same contact may appear in multiple decoys. The

final score of a contact is the average score over all decoys in the

decoy ensemble containing that contact:

SENS ,ij~
1

m

Xm

n~1

p(Cn
ij),

where SENS ,ij is the score of the contact between residues i and j,

Cn
ij is the contact in the n-th decoy, p(Cn

ij) is the output of the SVM

ensemble for the contact Cij in the n-th decoy, and m is the

number of decoys containing the contact.

Combination of evolutionary and physicochemical
information for contact prediction

Finally, we combine evolutionary and physicochemical infor-

mation to predict contacts. The output of the SVM system is

combined with the frequency fij of contact Cij occurring in the

ensemble and the score output value of GREMLIN SGREMLIN ,ij :

SEPC{map (Cij)~b(afijz(1{a)SENS ,ij)z(1{b)SGREMLIN ,ij :

The a and b parameters are found by optimizing the L=5
accuracy of long-range contacts by five-fold cross-validation on the

training set. Output values from GREMLIN scale differently,

depending on how many sequences are available. Furthermore,

the performance of GREMLIN is highly dependent on the

number of available sequences. Predicted contacts from GREM-

LIN perform well in template discrimination tasks if 5L or more

sequences are available [10]. This indicates that GREMLIN is

accurate for proteins with more than 5L sequences, but does not

consistently perform well if less sequences are found. Thus,

separate b parameters are tuned for proteins with v5L sequences

and for proteins with §5L sequences. With this procedure, we

supplement GREMLIN’s predictions that are already accurate

(when many sequences are available) and compensate for

GREMLIN’s loss in accuracy when only few sequences are

available. Final parameters are: a~0:425 and b~0:275 for

proteins with v5L and b~0:35 for proteins with §5L sequences,

respectively. The output of our algorithm is the list of contacts in

rank order based on their score.

Data sets
We compiled a non-redundant training set, EPC-map_train, to

provide patterns of native and non-native contacts for learning. In

addition, we used six test sets (EPC-map_test, D329, SVMCON_-

test, CASP9-10_hard, CASP10 and CASP10_hard) to evaluate

the performance of our method.

EPC-map_train. The training set consists of protein chains

culled from the PDB using PISCES [43]. The resulting set

contains chains of 50–150 amino acids with at most 25% sequence

identity and 0–2 Å resolution for X-ray structures. We limited

ourselves to smaller chains for training to facilitate rapid method

development and testing. From this set we removed: a) chains

containing chain breaks (a chain break is defined as a distance

larger than 4.2 Å between Ca atoms of two residues adjacent in

sequence [20]) and b) chains with extended structures and chains

whose structure is significantly determined through packing to

other chains in their PDB structure or interior bound ligands. To

avoid structural redundancy, we performed pairwise structural

alignment with Deepalign [44] and removed chains that had a

GDT_TS of 60 or more to any other chain in the training set (if

the aligned region comprised more than 60% of the smaller

protein).

Finally, we removed all chains from the training set that had

more than 25% sequence identity or a GDT_TS of 60 or more to

any of the chains in the EPC-map_test, D329, SVMCON_test and

CASP9-10_hard test sets. From the remaining chains, we removed

15% randomly to form the test set EPC-map_test. The final

training set consists of 742 chains. All of our predictions on the

CASP10/CASP10_hard data set are performed with a version of

EPC-map that uses the 727 training proteins dated before

CASP10 (May 2012).

EPC-map_test. This test set contains 132 chains randomly

selected from the training set as described above. The proteins in

this set were not used for training.

D329. The D329 data set [20] consists of 329 chains of

varying sizes (55–458 amino acids).

SVMCON_test. The SVMCON_test data set is comprised of

48 medium-sized protein chains (46–198 amino acids) [18]. We

excluded one protein (1aaoA), because it is listed as a theoretical

model in the PDB.

CASP9-10_hard. We used 16 protein chains from the CASP9

experiment and four protein chains from the CASP10 experiment

(20 total). Chains in this set contain only free modeling domains

(FM category in CASP) or difficult template-based modeling

Contact Prediction with Physicochemical and Evolutionary Information
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(TBM/FM category) domains. Note that proteins containing at

least one FM or TBM/FM domain are also excluded from this set.

These proteins are among the most difficult modeling targets,

because they do not have many sequence homologs, templates or

have unusual folds. Since there is no template information

available for these proteins, they represent cases for which contact

prediction might be most useful.

CASP10. We used 104 proteins for which crystal structures

are available from the CASP website at the time of this study.

CASP10_hard. We also evaluated our approach on a subset

of the CASP10 data set by taking difficult proteins from CASP10.

Unfortunately, only four proteins are available from CASP10 that

are exclusively comprised by FM or TBM/FM domains. Thus, we

selected all CASP10 proteins that contain at least one FM or

TBM/FM domain for this evaluation. This results in 14 protein

chains.

Importantly, the CASP10 and CASP10_hard data sets allow us

to compare our results to all groups that participated in CASP10.

The results from the CASP10 methods are available from the

CASP website. All of our predictions on the CASP10/CAS-

P10_hard data set are performed with a version of EPC-map that

only uses databases and proteins that are dated before CASP10

(May 2012). This allows us to make a fair comparison of EPC-map

with all other methods that only had information available that is

dated May 2012 or earlier.

Modeling of contact restraints in Rosetta
In addition to the accuracy of contact prediction, we also

quantify the benefits gained from the predicted contacts in ab
initio protein structure prediction. We use contacts as distance

restraints in ab initio Rosetta calculations. In other words, we

include in Rosetta’s energy function the degree to which predicted

contacts are present in a decoy. However, contact predictions are

likely to contain false positives. Therefore, we do not penalize the

violation of a particular predicted contact. Instead, we devise an

energy term to maximize the number of satisfied contacts for a

given conformation. This is accomplished by incorporating a

modified Lorentz function L into the energy function of Rosetta:

L(dij)~

{
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where dij is the distance between residues i and j in the decoy.

Further parameters of the function are the lower bound l, the upper

bound u and the half width w. We use l = 1.5 Å, u = 8 Å and

w = 1.0. The w parameter regulates how quickly the energy bonus

decreases when dij is not within the lower/upper bounds, with w

being the half-width i.e., the violation in where the Emax=2 is still

rewarded with Emax being the maximum energy bonus. If the

restraint is satisfied, the full energy bonus is rewarded. Restraints

that are only mildly violated (dij{lƒ2w or u{dijƒ2w) result in a

decreased energy bonus. The contribution of the restraint falls back

to zero in case of significant violation (l{dijw2w or dij{uw2w).

Note that the former case (l{dijw2w) actually does not apply when

modeling contact restraints with l = 1.5 Å and w = 1.0. However,

the potential is designed for general use and for other parameters

(for example l = 10 and u = 20) the l{dijw2w case is meaningful.

Source files that implement our scoring function are available

on request.

Results and Discussion

We evaluate the performance of EPC-map on the six test data

sets described in Methods. We first evaluate our method on

proteins of CASP10 and compare our results with the top methods

from the CASP10 experiment. We then analyze the prediction

performance of EPC-map on the remaining data sets. Then, we

discuss how the performance of EPC-map varies with sequence

alignment depth and protein chain length. Furthermore, we

discuss the limitations of EPC-map and show that predicted

contacts from EPC-map improve ab initio structure prediction.

We measure performance by evaluating the accuracy and

coverage of the top scoring L=10, L=5 and L=2 contacts from

each prediction method, where L is the length of the protein.

Because long-range contacts are of most value in structure

modeling [45], our main discussion focuses on long-range

contacts.

Performance on test data sets
We first evaluate the contact prediction performance on

proteins from the CASP10 experiment. This allows us to compare

our approach with several methods that participated in CASP10.

We downloaded the results of the CASP10 methods from the

CASP10 website. EPC-map does not use any information from

structural homologs. Therefore, it is appropriate to compare the

performance of EPC-map with that of several other sequence-

based methods.

We have selected the six methods that showed top performance

in the CASP10 experiment [23], submitted predictions for all

targets, and –to the best of our knowledge– did not use templates

and/or server models for contact prediction.

We have chosen the following six methods: Group 305 (server

name: IGB-Team, program name: CMAPpro) [21], Group 222

(server name: MULTICOM-construct, program name: DNCON)

[7], Group 358 (server name RaptorX-Roll), Group 113 (server

name: SAM-T08 Server, program name: SAM-T08) [47], Group

314 (server name: Proc S4), Group 424 (MULTICOM-Novel,

program name: NNcon) [16]. IGB-Team and MULTICOM-

construct use deep networks to predict contacts. RaptorX-Roll

uses a context-specific distance-based statistical potential [46],

Proc_S4 uses random forests to predict contacts and is based on

the original method that also participated in CASP9 [20]. SAM-

T08 and MULTICOM-Novel are based on neural networks.

Additionally, we include PhyCMAP, a recent method based on

random forests and physical constraints that has been shown to

outperform current methods on the CASP10 dataset [44].

Furthermore, we include PSICOV [14] and GREMLIN [10]

which predict contacts from evolutionary information. We run

locally installed versions of PSICOV and GREMLIN; we use

PhyCMAP by its web service. Finally, we evaluate contact

prediction by occurrence frequencies on the decoys we generate,

which we will refer to as Counting. This is similar to some of the

most accurate contact predictors from the recent CASP experi-

ments [22,23]. The main difference is that decoy-based methods in

the CASP setup use a consensus approach with decoys from

several tertiary prediction servers that might use different energy

functions, sampling methods and/or templates. The decoys from

our Counting approach all stem from Rosetta ab initio generated

decoys.

Unless stated otherwise in this section, we refer to the accuracy

of the top scoring L=5 long-range contacts.

Contact Prediction with Physicochemical and Evolutionary Information
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Figure 3 summarizes the long-range L=5 contact prediction

performance on the CASP10 data set. Detailed information about

the medium- and long-range performance on different L=n cutoffs

is given in Tables S10 and S11 in File S1. EPC-map reaches a

mean accuracy of 0.492, the second-best method (GREMLIN)

reaches a mean accuracy of 0.448, followed by PhyCMAP with

0.325 mean accuracy. MULTICOM-construct(DNCON), the best

performing method of the CASP10 experiment [23], has a mean

accuracy of 0.285 on the CASP10 dataset. Thus, EPC-map is

4.4% more accurate than GREMLIN and 20.7% more accurate

than MULTICOM-construct(DNCON) on the entire CASP10

dataset.

Of the 104 proteins in CASP10, 14 proteins contain domains

that are classified by having free modeling or difficult free-

modeling/template-based domains. For this kind of proteins,

contact prediction is most useful because the structure cannot

modeled by only using templates. For these difficult proteins

(CASP10 hard) the top performing methods of the CASP10

experiment predict contacts with 0.165–0.192 accuracy. GREM-

LIN and PhyCMAP are competitive on this dataset with 0.203

and 0.200 mean accuracy, respectively. EPC-map reaches 0.246

accuracy, improving on GREMLIN by 4.3% and being 5.4%

more accurate than the best CASP10 method on this difficult data

set.

Ideally, we would compare our method with the best methods of

the CASP10 experiment on all test sets. Unfortunately, standalone

versions of many of the best-performing CASP10 methods were

not available to us at the time of this study and their server

implementations are not designed for the evaluation of hundreds

of proteins. Thus, for the remainder of this study, we only evaluate

methods that are available as a standalone version or server that

allows for high-throughput contact prediction. This includes

NNcon, PhyCMAP, Counting, PSICOV and GREMLIN.

PhyCMAP and GREMLIN perform on par or better than the

top methods of the CASP10 experiment and can therefore be

considered to be state of the art (see Figure 3). Therefore,

comparing EPC-map with these methods provides a fair estimate

of state-of-the-art performance. Note that for the remaining data

sets, we use sequences and training proteins dated after CASP10 in

EPC-map to evaluate the current capabilities of our method.

Figure 4 summarizes the long-range L=5 contact prediction

accuracies, grouped by the remaining data sets (CASP9-10_hard,

EPC-map_test, D329, SVMCON_test). For detailed analysis, refer

to Tables S12–S15 in File S1.

We structure our further discussion of prediction performance

based on data set difficulty, as judged by the distribution of

available sequences in the MSA, i.e. alignment depths (Figure 5).

For the most difficult data set, CASP9-10_hard, EPC-map (mean

accuracy 0.322) improves the mean prediction accuracy by 9.7%

over the next best method (see Figure 4). Interestingly, neither the

best structure-based method (Counting) nor the best method that

uses evolutionary information (GREMLIN) delivers good results

Figure 3. Prediction performance overview for the CASP10 and CASP10 hard data sets. The figure shows the long-range contact
prediction performance of the top scoring L/5 contacts. Different methods are shown as color coded violin plots. The lower and upper end of the
black vertical bars in each violin denote the accuracy at the 25 and 75 percentile, respectively. White horizontal bars indicate the median, red
horizontal bars the mean accuracy. The distribution of the prediction accuracies for individual proteins is indicated by the shape of the violin.
doi:10.1371/journal.pone.0108438.g003
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for this data set (mean accuracies of 0.173 and 0.193, respectively).

However, the combination approach taken by EPC-map unlocks

the potential of both, evolutionary and physicochemical informa-

tion methods.

On the EPC-map_test data set, EPC-map (mean: 0.496,

median: 0.5) performs on average 13.3% better than GREMLIN

(mean: 0.363, median: 0.333), the second-best performing method.

In this data set, 45% of the proteins have alignments with fewer

than 3:2L sequences. These proteins are difficult to predict with

evolutionary methods [9,10], showing that the approach taken by

EPC-map is well suited for proteins with a low number of

sequences.

For the easier data sets, D329 and SVMCON_test, the

improvements are less pronounced but EPC-map still outperforms

the second-best method by 5.9% and 4.8%, respectively. These

two data sets contain many proteins with deep alignments, leading

to the robust performance of methods relying on evolutionary

sequence information. However, the additional physicochemical

information leveraged by EPC-map leads to further performance

improvements.

Averaged over 528 proteins from the CASP9-10_hard, EPC-

map_test, D329 and SVMCON_test data sets, EPC-map reaches

53.2% mean accuracy and 57.1% accuracy at the median for top

L=5 predicted long-range contacts. The second best is GREMLIN

with 45.4% mean accuracy and 46% median accuracy. Thus,

EPC-map improves the mean accuracy by 7.8% and the median

accuracy by 11.1%. Additionally, predictions with L=5 accuracy

higher than 0.3 are more frequent for EPC-map (394 cases, 74%)

then for GREMLIN (338 cases, 64%). We also find that EPC-map

significantly improves the medium-range contact prediction

accuracy (see Tables S10–S15 in File S1) in most cases.

EPC-map achieves superior performance by integrating the

physicochemical information of the energy function of structure

prediction with the evolutionary sequence information from

multiple sequence alignments.

Dependence of contact prediction accuracy on
alignment depth and sequence length

In addition to the performance analysis on various data sets, we

further analyzed the prediction performance as a function of other

factors, such as alignment depth and sequence length. For this

analysis, we used the proteins from the CASP9-10_hard, EPC-

map_test, D329 and SVMCON_test data sets.

Figure 6 shows the prediction performance with increasing

alignment depth. The performance of all methods increases with

the amount of available sequences. Evolutionary methods

(PSICOV, GREMLIN), perform poorly in cases with less than

1L sequences, while being clearly superior to decoy-based

Figure 4. Prediction performance overview for the CASP9-10_hard, EPC-map_test, D329 and SVMCON_test data sets. The figure
shows the long-range contact prediction performance of the top scoring L/5 contacts. Different methods are shown as color coded violin plots. The
lower and upper end of the black vertical bars in each violin denote the accuracy at the 25 and 75 percentile, respectively. White horizontal bars
indicate the median, red horizontal bars the mean accuracy. The distribution of the prediction accuracies for individual proteins is indicated by the
shape of the violin. Data sets are sorted from difficult (CASP9-10_hard) to easy (SVMCON_test). The last panel shows the pooled results for all proteins
from these data sets.
doi:10.1371/journal.pone.0108438.g004
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(Counting) and machine-learning based methods (NNcon, PhyC-

MAP) in cases with more than 5L sequences. On the other hand,

decoy-based and machine-learning based methods perform

robustly in the (1{1L] and (1L{5L] intervals, but do not

benefit as much from more than 5L sequences as evolutionary

methods. EPC-map improves prediction accuracy over the second

best method, regardless how many sequences are available. This

makes EPC-map a versatile approach to contact prediction that

performs robustly for proteins with low and high numbers of

homologous sequences.

Furthermore, we analyzed the performance of the SVM

component and its contribution to the overall performance of

the system. First, we analyze the performance of the single SVMs

that are part of the SVM ensemble. The individual SVM classifiers

reach accuracies between 0.267-0.287. Using an SVM ensemble

improves the accuracy to 0.332 (see Table S16 in File S1). Thus

the SVM ensemble improves prediction accuracy over the single

SVMs. Furthermore, training five SVMs with small data

subsamples facilitates faster training compared to a single SVM

that uses all training data.

Second, we omit the SVM component and only combine

Counting and GREMLIN scores. The b value is re-tuned in the

same fashion as described in Methods. We find that the

improvement by the SVM component is most pronounced when

few sequences are available (see Table 2). In case of fewer than 1L

alignments, the SVM component improves the mean long-range

L=5 prediction accuracy by 3.4%. Our experiments show that

physicochemical information is most helpful if insufficient

sequences are available for sequence-based methods, effectively

compensating their major shortcoming. We believe that combi-

nation of physicochemical and evolutionary information is an

attractive route to advance the currently rapid evolving field of

contact prediction.

Naturally, any decoy based-method (such as EPC-map) depends

on the quality of the generated decoys. Generating decoys for

larger proteins is more difficult and they are likely poorer in

quality. This might affect the prediction quality of decoy-

dependent methods more than sequence-based methods. Figure 7

shows the prediction performance of EPC-map, GREMLIN,

Counting and Counting +SVM (which is the SVM component

from EPC-map) versus the sequence length of the proteins. The

improvement in prediction accuracy by EPC-map is most

pronounced for proteins smaller than 250 amino acids. For

smaller proteins, Counting is performing better due to higher

quality decoys. In part, this accounts for the good performance of

EPC-map on shorter targets. However, the SVM component of

EPC-map consistently improves pure decoy-based prediction over

Counting by leveraging physicochemical information (see Fig-

ure 7). EPC-map is still more accurate than GREMLIN for longer

proteins, but the performance improvement over GREMLIN is

less pronounced, probably due to lower-quality decoys. Neverthe-

less, EPC-map is still ahead or on par with GREMLIN for larger

proteins.

Limitations of EPC-map
The computational most intense step of EPC-map is the

generation of decoys for contact prediction. In the construction of

our training and test sets, we limited the maximum length of the

proteins to 150 amino acids to allow for faster training and testing.

For proteins with 250 residues, Rosetta needs approximately ten

minutes per decoy which results in 7 CPU days for 1000 decoys.

We run Rosetta on a compute cluster with 100 nodes, thus we

need about 100 minutes for decoy generation for a protein of this

size. In contrast, feature generation and prediction with by the

SVM ensemble is quite fast and takes only a couple of minutes on

a single CPU. However, EPC-map is computationally much more

intense than sequence-based methods.

On the one hand, this might render EPC-map unsuitable for

some applications, such as proteome-wide analysis of protein

contacts. On the other hand, decoy generation can be easily

parallelized and run on low-cost commodity clusters with sufficient

speed for many practical applications.

However, the main purpose of contact prediction is to aid ab
initio tertiary structure prediction, which naturally requires

substantial computational resources. Thus, the required compu-

tation power might already be available to many laboratories that

work on ab initio structure prediction. For this application, EPC-

map contacts might even save computational time needed in ab
initio structure prediction by guiding conformational space search

towards the native state. In any case, if the computational

requirements exceed available resources, EPC-map predicted

contacts can be obtained from our web service at http://

compbio.robotics.tu-berlin.de/epc-map/.

Improvement of ab initio structure prediction by using
predicted contacts

The main purpose of contact prediction is to aid tertiary

structure prediction. We tested the impact of including informa-

tion from EPC-map predictions into ab initio Rosetta calculations

for the 132 proteins from EPC-map test. We model contacts as

distance restraints using a bounded Lorentz function (see Methods

for details). This function assigns an energy bonus to satisfied

restraints. If a restraint is not satisfied, the energy bonus falls back

to zero. This implies that restraints violated by a large margin are

simply neglected, compensating the detrimental effect of false

positive contact predictions. Example configuration files and

commands of our contact-guided structure prediction setup are

provided in the supporting information.

For each target, we generate 1000 decoys with contact restraints

and 2000 without restraints. We use 2000 decoys in the second

Figure 5. Alignment depth composition of the CASP9-10_hard,
EPC-map_test, D329 and SVMCON_test data sets. Proteins are
grouped into bins based on their number of sequences in the
alignment. Colors correspond to a particular bin, from dark blue (few
sequences) to red (many sequences). Data sets are sorted from difficult
(CASP9-10_hard) to easy (SVMCON_test). The last panel shows the
pooled results.
doi:10.1371/journal.pone.0108438.g005
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case to make a fair comparison in terms of sampling, since 1000

decoys were already used to predict contacts with EPC-map. We

varied the number of predicted contacts to study the influence of

the accuracy/coverage trade-off on structure prediction accuracy.

We found that using 1:5L contacts gives the best performance.

The prediction improvements are depicted in Figure 8. We

used the GDT TS measure to quantify the quality of the predicted

structures. The GDT TS measure ranges from 0 if two structures

are completely dissimilar to 100 for a perfect structural match. At

a GDT_TS of 50 or more, a prediction is considered to capture

the native topology. The average GDT_TS of contact-guided

Figure 6. Prediction performance for proteins with increasing sequence alignment depth. Results are shown for all proteins pooled from
the CASP9-10_hard, EPC-map_test, D329 and SVMCON_test data sets. Different methods are shown as color coded violin plots. The lower and upper
end of the black vertical bars in each violin denote the accuracy at the 25 and 75 percentile, respectively. White horizontal bars indicate the median,
red horizontal bars the mean accuracy. The distribution of the prediction accuracies for individual proteins is indicated by the shape of the violin. EPC-
map is consistently more accurate than the other tested methods, regardless how many sequences are available.
doi:10.1371/journal.pone.0108438.g006

Table 2. Contribution of the SVM component to contact prediction.

Method Range Acc(SE)/Cov[L/10] Acc(SE)/Cov[L/5] Acc(SE)/Cov[L/2]

120 proteins with (1, 1L] sequences

with SVM Long 0.335(0.023)/0.038 0.278(0.019)/0.062 0.205(0.014)/0.110

w/o SVM Long 0.305(0.024)/0.035 0.244(0.019)/0.055 0.188(0.015)/0.102

102 proteins with (1L, 5L]
sequences

with SVM Long 0.471(0.025)/0.045 0.395(0.022)/0.076 0.279(0.015)/0.134

w/o SVM Long 0.475(0.026)/0.045 0.388(0.022)/0.073 0.280(0.016)/0.133

306 proteins with .5L sequences

with SVM Long 0.741(0.012)/0.071 0.678(0.012)/0.131 0.530(0.011)/0.253

w/o SVM Long 0.739(0.012)/0.070 0.679(0.012)/0.131 0.528(0.011)/0.250

doi:10.1371/journal.pone.0108438.t002
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Rosetta increases to 40.9 compared to 33.1 using standard Rosetta

(paired Student t-test p-valuev10{10), an absolute improvement

of 7.8%. The GDT_TS increases by more than 10 for 41 of the

132 proteins. In 24 cases, the GDT_TS increase is higher than 20.

In addition, for 21 proteins the GDT_TS transitions from well

below 50 to 50 or higher. In these cases, the combination of EPC-

map predicted contacts and Rosetta allows for the folding of

proteins that could not be modeled with Rosetta alone. Thus, our

results show that contact information from EPC-map readily

enhances structure prediction performance.

We also notice that the prediction of one structure deteriorates

by 10 GDT_TS when predicted contacts are used. In this case,

most of the predicted contacts are wrong and mislead tertiary

structure prediction.

Figure 9 shows three example proteins for which the combina-

tion of EPC-map and Rosetta yielded significant improvements in

prediction accuracy. For these examples, only few homologous

sequences are available (less then 1:5L). For each protein, we show

the contact map obtained by EPC-map with true and false

positives, the prediction of Rosetta without the inclusion of contact

information, and the prediction based on contact information.

Without contacts, Rosetta fails to find the correct topology for

the dissimilatory sulfite reductase D (PDBD1ucrA, Figure 9A). The

structure modeled with contacts from EPC-map resembles the

native topology and has minor deviations in loop regions.

However, the most C-terminal helix is still incorrectly modeled.

Rosetta predictions without contacts capture the general

topology for the E. coli SSB-DNA polymerase III (PDBD3sxuB,

Figure 9B), but fail to arrange the b-sheet topology. In contrast,

with the help of the predicted contacts from EPC-map, more

native-like b-sheet topologies can be sampled. The most C-

terminal part of the structure is wrongly oriented by an incorrectly

formed anti-parallel b-sheet. Nevertheless, the GDT_TS of the

modeled structure increases from 33.0 to 53.9.

The most prominent feature of the GIT1 paxillin-binding

domain(PDBD2jx0A, Figure 9C) is the four-helix bundle. In this

case, Rosetta cannot model the topology correctly, especially of the

second helix and fails to find the fine-tuned packing (GDT_TS

36.5). Predicted contacts from EPC-map guide Rosetta to the

native topology (GDT_TS 58.0). However, the EPC-map guided

prediction shows deviations from the native structure in the loop

regions and N-terminus.

These experiments with contact-guided structure prediction

demonstrate the potential of coupling EPC-map’s contact predic-

tion with structure prediction. The strategy of interleaving

structure and contact prediction might be a promising future

route to improve ab initio structure modeling.

Conclusion

We presented EPC-map, a contact prediction method that

achieves unprecedented prediction accuracy by combining evolu-

tionary information from multiple-sequence alignments with

physicochemical information from structure prediction methods.

By combining two sources of information, our method improves

prediction accuracy when compared to state-of-the-art algorithms.

At the same time, we show that one source of information is able

to compensate for the performance degradation induced by poor

quality of the other source. This alleviates the main short-coming

of popular evolution-based contact predictors, whose performance

depends on the availability of many homologous sequences. We

therefore believe that combining evolutionary and physicochem-

ical information is an attractive route to improve contact

prediction and reducing the need for deep alignments.

Key to the performance improvements achieved by our method

is a graph-based representation of the characteristics of the local

contact neighborhood to leverage physicochemical information.

We use the graph-based representation to distill information about

graph topology and label statistics into vector-based features. An

SVM model is trained with these features to distinguish native

from non-native contacts in ab initio decoys with unprecedented

accuracy. We then combine this physicochemistry-based system

with an evolutionary-based method to an approach that leads to

substantial performance improvements over methods that only use

a single source of information.

Figure 7. Dependence of prediction accuracy on sequence
length. EPC-map is more accurate or on par with GREMLIN, irrespective
of sequence length. The performance increase over GREMLIN is most
pronounced for proteins smaller than 250 residues. Counting performs
better on smaller proteins. The SVM component of EPC-map
consistently improves the contact prediction from decoys over
Counting by leveraging physicochemical information.
doi:10.1371/journal.pone.0108438.g007

Figure 8. Comparison of ab initio structure prediction of 132
proteins from EPC-map_test with and without predicted
contacts: each data point corresponds to the GDT_TS of the
lowest-energy structure generated with and without the use of
EPC-map predicted contacts. EPC-map increases the average
prediction accuracy by 7.8% from 33.1 to 40.9 GDT_TS (paired Student’s
t-test p-valuev10{10).
doi:10.1371/journal.pone.0108438.g008
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Using this strategy, EPC-map achieves 53.2% mean accuracy

for top L=5 predicted long-range contacts over 528 proteins, 7.8%

higher than the second-best method. Furthermore, EPC-map

outperforms other top methods on proteins from CASP10. We

showed that EPC-map displays improved performance regardless

of the available alignment size, but is particulary effective if less

than 5L or even 1L sequences are available. The predicted

contacts improve ab initio structure prediction by guiding search

in the conformational space towards the native state.

Our method is build to extract physicochemical contact

information from structure decoys. One can expect that the

quality of contact prediction increases as the quality of the

generated decoys increases. Thus, we suggest that alternating

between tertiary structure and contact prediction might be a

promising route to incrementally increase the quality of contact

information and of the resulting structural models.
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Figure 9. Tertiary structure prediction improvement of the dissimilatory sulfite reductase D (PDBD1ucrA), of the E. coli SSB-DNA
polymerase III (PDBD3sxuB) and of the GIT1 paxillin-binding domain (PDBD2jx0A). Contact maps show false positive predictions in the
upper triangle (red), true positive predictions in the lower triangle (blue) and native contacts in grey. For the shown predictions, native structures are
shown in grey and predicted structures are colored from N-terminus (blue) to C-terminus (red). The predictions correspond to the lowest-energy
structure generated without use of contacts (middle column) and with EPC-map predicted contacts (right column).
doi:10.1371/journal.pone.0108438.g009
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several methods on the CASP10 data set (104 proteins). Table
S11, Contact prediction performance of several methods on the

CASP10_hard data set (14 proteins). Table S12, Contact

prediction performance of EPC-map, Counting, GREMLIN,

PSICOV, PhyCMAP and NNcon on the CASP9-10_hard data

set (20 proteins). Table S13, Contact prediction performance of

EPC-map, Counting, GREMLIN, PSICOV, PhyCMAP and

NNcon on the EPC-map_test data set (132 proteins). Table
S14, Contact prediction performance of EPC-map, Counting,

GREMLIN, PSICOV, PhyCMAP and NNcon on the D329 data

set (329 proteins). Table S15, Contact prediction performance of

EPC-map, Counting, GREMLIN, PSICOV, PhyCMAP and

NNcon on the SVMCON_test data set (47 proteins). Table
S16, Accuracies of the single SVM classifiers and the Ensemble

SVM on 528 proteins from the CASP9-10_hard, EPC-map_test,

D329 and SVMCON_test data sets.

(PDF)

File S2 Dataset S1, Proteins used for training of EPC-map.

Dataset S2, Proteins used for validation of EPC-map. Dataset
S3, Proteins from CASP10 used for validation of EPC-map.

Dataset S4, Proteins from CASP10 containing at least one FM

or FM/TBM domain. Dataset S5, Proteins from CASP9 and

CASP10 containing only FM or FM/TBM domains. Dataset
S6, The D329 data set contains proteins from literature that are

used to access contact prediction performance. Dataset S7, The

SVMCON_test data set contains proteins from literature that are

used to access contact prediction performance.
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