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INTRODUCTION 

Nonalcoholic fatty liver disease (NAFLD) is a major degenerative 

liver disorder caused by accumulation of excessive fat in hepato-

cytes, and has detrimental effect on hepatic fatty acid metabo-

lism.1 NAFLD covers a spectrum of clinical conditions beginning 

with simple steatosis to steatohepatitis, degenerative fibrosis and 

irreversible cirrhosis.2 It is estimated that 6.3-33% of the world’s 

population, including children, is affected with NAFLD.3 Hence it 

is imperative to prevent development of NAFLD at an early stage 
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or regress it, such that an aggressive inflammatory condition like 

steatoheaptitis is avoided. 

Despite its wide prevalence, there is limited understanding on 

the precise molecular mechanisms responsible for the develop-

ment and progression of hepatic steatosis.4 In a healthy individual, 

free fatty acids (FFAs) derived from either chylomicrons and/or ad-

ipose tissue (lipolysis) are taken up by hepatocytes. These FFAs 

are metabolized via β-oxidation or are esterified to triglycerides 

(TG) which are either stored as lipid droplets or secreted as very 

low density lipoprotein (VLDL).5 Hepatic steatosis ensues when 

there is an increase in FFAs uptake, lipogenesis, and storage of 

lipids with a concomitant decrease in VLDL-TG secretion.4

Apart from life style modifications, current pharmacological ther-

apies used for NAFLD have not proved to be very effective.6 

Ayurveda, the oldest system of traditional medicine in India, has a 

rich heritage of several medicinal plants and their formulations 

which are used for the treatment of liver disorders. Picrorhiza kur-
roa (P. kurroa) is a distinguished medicinal plant whose roots and 

rhizomes have shown beneficial effect in ameliorating obesity, 

jaundice, malaria, and asthma.7 The hydrocholeretic activity of P. 
kurroa was first investigated in dogs with biliary fistula.8 Later, its 

therapeutic activity was studied by our group in a double-blind, 

placebo-controlled trial in patients with viral hepatitis using Arog-

yawardhini.9 Arogyawardhini, a formulation containing 50% P. kur-
roa,  when administered for 14 days (750 mg thrice a day), 

significantly reduced all symptoms; hepatomegaly, serum bilirubin 

and glutamic-pyruvic transaminase levels.9 The plant extract also 

provided protection against carbon tetrachloride, paracetamol, 

thioacetamide and galactosamine-induced fat deposition and liver 

damage in rats.10-13

Since P. kurroa extract was found to be an effective hepatoprotec-

tive herb, it would be valuable to determine its active constituents 

for their novel therapeutic application. The active elements present 

in P. kurroa are the iridoid glycosides; picroside I, II and III. With the 

emerging challenge of NAFLD, the current study was aimed at ex-

ploring the effect of phytoactives, present in P. kurroa, picroside I 

and II  on hepatic fatty acid accumulation vis-à-vis silibinin, a known 

hepatoprotective phytoactive from Silybum marianum.14

MATERIALS AND METHODS

Cell culture

HepG2 cells (AddrexBio, San Diego, CA, USA) were cultured as 

monolayers in DMEM (Gibco, Life Technologies, Waltham, MA, 

USA) with 10% fetal bovine serum (Invitrogen, Waltham, MA, 

USA) and 1% of antibiotic-antimycotic solution (Gibco, Life Tech-

nologies, Waltham, MA, USA). Cells were maintained in a humidi-

fied incubator in 5% CO2 at 37 °C (Thermo Scientific, Waltham, 

MA, USA). All the experiments were performed when the cells 

reached ~75-80% confluence in 5% DMEM. The experiments 

were repeated individually for four to six times to confirm the re-

producibility. 

Bovine serum albumin-FFAs conjugate

Prior to overloading the cells with long chain FFAs, palmitic acid 

(Sigma-Aldrich, St. Louis, MO, USA) and oleic acid (Sigma-Aldrich, 

St. Louis, MO, USA) were conjugated individually with BSA (Sisco 

Research Laboratories Pvt Ltd, Mumbai, India). BSA favors trans-

portation of FFAs inside the cells. FFAs-BSA conjugate was pre-

pared as previously described with minor modifications in the 

protocol.15 Briefly, 100 mM of FFAs stock was prepared in 0.1 M 

NaOH by heating at 70°C in a thermo mixer (Eppendorf, 

Hauppauge, NY, USA) for an hour. Simultaneously, 5% (wt/vol) 

BSA was dissolved in double distilled water. On complete dilution 

of FFAs stock in NaOH, the conjugate was prepared in an adja-

cent water bath at 55°C. FFAs-BSA conjugate stock of 10 mM 

was prepared and filtered using 0.45 μm pore size polyvinylidene 

fluoride hydrophilic membrane filter. The conjugate was later 

cooled to room temperature and stored at -20 °C. At this temper-

ature the conjugate was found to be stable for 3-4 weeks. Since 

the FFAs were conjugated with 5% BSA, the control cells were 

also treated with 5% BSA. 

Cell cytotoxicity detection

HepG2 cells (7×103 cells/well) seeded in 96-well plates were 

treated with different concentrations of FFAs mixture of oleic and 

palmitic acid in the ratio of 2:1 (250 to 1,000 μM), picroside I and II 

(3 to 300 μM) (Natural Remedies Pvt Ltd, Bengaluru, Karnataka, 

India) and silibinin (3 to 300 μM) (Sigma-Aldrich, St. Louis, MO, 

USA) for 24 hours. Post treatment, the cells were incubated with 5 

mg/mL of methyl thiazolyl tetrazolium (Sigma-Aldrich, St. Louis, 

MO, USA) for 4 hours. The blue colored formazan crystals formed 

were dissolved in dimethyl sulfoxide and absorbance was measured 

at 570 nm (Bio rad 680 Elisa Reader). 
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Colorimetric determination of lipid content with Oil 
Red O staining

HepG2 cells (7×103 cells/well) were incubated with FFAs mixture 

in 96-well plates for 20 hours. After treatment, the cells were 

fixed (4% formaldehyde) and stained with Oil Red O (ORO) solu-

tion (3 mg/mL in 60% isopropanol) for 5 minutes. ORO stain (Sig-

ma-Aldrich, St. Louis, MO, USA) is primarily used to detect and 

quantify intracellular lipids. The lipid accumulated within the cells 

was quantified by disrupting the cells with 100% isopropanol. 

The absorbance of the extracted solution was measured at 490 

nm (Enspire - Multimode Plate Reader - PerkinElmer, Waltham, 

MA, USA). Once the FFAs model was standardized, inhibitory ac-

tivity of the phytoactives was also examined with ORO colorimet-

ric assay. HepG2 cells were pre-incubated with the bioactives pri-

or to FFAs treatment at an optimum time of 2 hours as derived 

after three repeated experiments (data not shown).

Fluorimetric imaging with Nile red and Hoechst-3342 
staining

Fluorescent dye, Nile red (Sigma-Aldrich, St. Louis, MO, USA) 

and Hoechst-33342 (Sigma-Aldrich, St. Louis, MO, USA) were 

used for detection of intracellular lipids and nuclei respectively. 

HepG2 cells (5×104 cells/well) treated on 8 mm sterile cover slip in 

a 12 well plates were fixed (4% paraformaldehyde) and stained 

for 10 minutes in dark. The plates were then washed and mount-

ed on a glass slide with a drop of polyvinyl alcohol and phenyl-

enediamine mixture. The cover slips were later mounted on the 

glass slide with the cell surface facing the mowiol solution. The 

slides were allowed to dry and the images of the in vitro fatty liver 

model with pretreated phytoactives were captured using confocal 

microscope at 40×. The corrected total cell fluorescence of Nile 

red was measured using Image J software. 

Quantitative Real time-Polymerase chain reaction 
(PCR)

Post treatment, HepG2 cells (1×105 cells/well) were lysed using 

1 mL Trizol reagent (Ambion, Life technologies, Waltham, MA, 

USA). Total RNA was isolated and complementary DNAs (cDNAs) 

were synthesized using cDNA reverse transcription kit as per 

manufacturer instructions using PCR thermal cycler (Applied Bio-

systems Inc-ABI, Waltham, MA, USA).16 Quantitative detection of 

fatty acid transport protein 5 (FATP5), stearoyl CoA desaturase 

(SCD), peroxisome proliferator activated receptor α (PPARα), car-

nitine palmitoyltransferase 1 (CPT1), forkhead box protein O1 

(FOXO1), phosphoenolpyruvate carboxykinase (PEPCK) and 

β-actin were performed as shown in Table 1. Primer sequence of 

each gene synthesized by Sigma-Aldrich, India was used. RT-PCR 

amplification was performed in the total volume of 20 μL com-

prising of 10 μL SYBR Green (2×), 1 μL each of forward and re-

verse primer (10 μM), 4 μL nuclease-free water and 4 μL cDNA 

solution. PCR was run for 35 cycles using ABI-7500 Fast RT-PCR 

Table 1. Gene-special primers used for real-time polymerase chain reaction 

Gene Pathway Sequence (5' → 3') Gene Bank no./ref

Human FATP5 Fatty acid uptake Forward: TGATGGGACTTGTCGTTGG
Reverse: CCAGAAGCAGGAAGTAGAGAAC

NM_012254

Human SCD Lipid synthesis Forward: AGTTCTACACCTGGCTTGG
Reverse: GTTGGCAATGATCAGAAAGAGC

NM_005063

Human PPARα Fatty acid oxidation Forward: CAATGCACTGGAACTGGATGA
Reverse: GTTGCTCTGCAGGTGGAGTCT

NM_001001928

Human CPT1 Fatty acid oxidation Forward: TCCAACTCACATTCAGGCAG
Reverse: TTAAACATCCGCTCCCACTG

NM_001031847.2

Human FOXO1 Gluconeogenesis Forward: CTACGAGTGGATGGTCAAGAG
Reverse: ATGAACTTGCTGTGTAGGGAC

NM_002015

Human PEPCK Gluconeogenesis Forward: GAGAATACTGCCACACTGACC
Reverse: CCGCTGAGAAGGAGTTACAATC

NM_001018073

Human β-actin Housekeeping gene Forward: GTCTTCCCCTCCATCGT
Reverse: CGTCCCCACATGGAAT

NM_007393.5

FATP5, fatty acid transport protein 5; SCD, stearoyl CoA desaturase; PPARα, peroxisome proliferator activated receptor α; CPT1, carnitine 
palmitoyltransferase 1; FOXO1, forkhead box protein O1; PEPCK, phosphoenolpyruvate carboxykinase.
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system. The conditions used were; denaturation at 95°C for 5 

minutes, 35-40 cycles of 95°C for 15 seconds and annealing at 

60°C for 1 minute, extension at 72°C for 1 minute and a final ex-

tension at 72°C for 5 minutes. The quantitative cycle (CQ) value 

of each gene was normalized with that of β-actin.

Western blot

The treated HepG2 (5×105 cells/well) cells were harvested in 

RIPA buffer supplemented with anti-protease and anti-phosphate 

inhibitor cocktails (Sigma-Aldrich, St. Louis, MO, USA). Protein 

was quantified using BCA protein assay Kit (Thermo Fisher Scien-

tific, Waltham, MA, USA). SDS-PAGE was performed using 40 μg 

of protein sample on a 10% denaturing SDS gel and transferred 

on polyvinylidene fluoride membrane (Bio-Rad Laboratories, Inc., 

Hercules, CA,USA).17 The blots were incubated with specific pri-

mary antibodies; anti-sterol regulatory element binding protein 1 

(anti-SREBP-1) (Santacruz Biotechnology, Dallas, TX, USA, sc-366) 

(dilution 1:1,000), anti-PEPCK (Cell Signaling technology,  Dan-

vers, MA, USA, 6924) (dilution 1:1,000) and anti β-actin (Santa-

cruz Biotechnology, Dallas, TX, USA, sc-81178) (dilution 1:1,000) 

followed by respective secondary antibody. The blot images were 

later captured using ChemiDoc™ XRS (Bio-Rad, Hercules, CA, 

USA). The blot intensity was quantified using Image J software. 

Statistical analysis

The results are shown as the means±standard errors of mean 

(SEM). Differences were evaluated by one and two way analysis of 

variance (ANOVA) using Graph Pad Prism, Version 5 (GraphPad 

Software, Inc., La Jolla, CA, USA). A P-value <0.05(*), <0.01(**) 

and <0.001(***) was considered to be statistically significant.

Results 

Cytotoxic effect of FFAs, picroside I and II
 
The molecular structure of FFAs (oleic and palmitic acid), and 

phytoactives (picroside I, II and silibinin) are shown in Fig. 1A–D. 

HepG2 cells were treated with different concentrations of FFAs, 

250 to 1,000 μM for 24 hours, to test for cytotoxicity. The FFAs 

mixture (oleic acid:palmitic acid/2:1) did not show any cellular 

damage at a concentration of 250 and 500 μM. At 1,000 μM, 

21.2% cell death was observed. Since our aim was to study fatty 

liver model with minimal cytotoxicity, FFAs concentration of 250 

and 500 μM was used for further work (Fig. 1E). The phytoac-

tives, picroside I, II and silibinin (positive control), were also test-

ed for their cytotoxic effects in HepG2 cells in the concentration 

range of 3 to 300 μM. Picroside I did not show any cell damage 

in HepG2 cells at a concentration range of 3 to 300 μM (Fig. 1F). 

On the other hand, picroside II inhibited cell growth by 24% at 
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Figure 1. Cytotoxic effect of FFAs and picroside I and II in HepG2 cells: The chemical structure of FFAs (A), picroside I (B), picroside II (C) and silibinin (D). 
HepG2 cells were loaded with different concentrations of FFAs (E), picroside I (F), picroside II (G), and silibinin (H) for 24 hours. Cytotoxicity was mea-
sured via MTT assay. Values are expressed as mean±SEM from four independent replicates. FFAs, free fatty acids; SEM, standard errors of mean. *P<0.05; 
***P<0.001. 
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higher concentration of 300 μM (Fig. 1G). For both the phytoac-

tives, optimal cell viability was observed up to 10 μM beyond 

which, some amount of cell death was observed. As reported ear-

lier, silibinin was also found to inhibit cell growth by 23% at 300 

μM (Fig. 1H).14 Therefore, a concentration of 10 uM was selected 

for phytoactive pretreatment. 

Lipid accumulation in HepG2 cells using FFAs

After treating HepG2 cells with 250 and 500 μM of FFAs for 20 

hours, lipid accumulation was observed using ORO and Nile red 

stain. The morphological observations showed an increase in lipid 

accumulation with an increase in FFAs concentration (Fig. 2A). 

The quantitative analysis confirmed that the lipid accumulation 

was significantly higher at 500 μM (Fig. 2B, C). There was 14% 

and 50% increase in intracellular fat accumulation at 250 μM 

(ORO stain) and 500 μM respectively compared to control cells. 

The FFAs concentration of 500 μM, which resulted in highest lipid 

accumulation, was chosen for further analysis.

 

Picroside II attenuates intracellular lipid 
accumulation

 
Two hours prior to FFAs challenge, the HepG2 cells were pretreat-

ed with picroside I, II and silibinin. Picroside I did not show any inhibi-

tory activity on lipid accumulation and was thus not studied further. 

It was observed that picroside II reduced cellular lipids by 30% com-

pared to FFAs treated group. Silibinin, a known hepatoprotective 

molecule, caused 22% reduction in lipid accumulation (Fig. 3). 

Picroside II decreases transcription of genes involved 
in fatty acid uptake and synthesis

In order to examine the impact of FFAs loading on HepG2 cells, 
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we investigated the expression of the genes involved in fatty acid 

metabolism. There was a 2-fold rise in the mRNA expression of 

FATP5 in FFAs treated cells as compared to control cells (Fig. 4A). 

On pretreatment with picroside II and silibinin, there was a signifi-

cant downregulation in the expression of FATP5 compared to 

FFAs treated HepG2 cells. 

Apart from an increase in FATP5 levels in FFAs treated group, a 

2-fold rise in the mRNA expression of SCD was also observed (Fig. 

4B). Concomitantly, there was an increase in SREBP-1 protein ex-

pression (Fig. 4C). Both picroside II and silibinin were found to 

significantly downregulate these lipogenic genes. There were no 

changes in the β-oxidation pathways as seen in the mRNA ex-

pression of CPT1 and PPARα in the FFAs treated group (Supple-

mentary Fig. 1A, B). Picroside II and silibinin did not show any sig-

nificant effect on the β-oxidation pathway. 
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Picroside II decreased activity of gluconeogenic 
genes

The mRNA expression of FOXO1 and PEPCK were significantly 

increased in the FFAs treated cells as compared to control cells 

(Fig. 5A, B). The upregulation in the protein expression of PEPCK 

was also observed (Fig. 5C). Pretreatment with picroside II and 

silibinin significantly downregulated the mRNA expression of 

FOXO1 and PEPCK compared to the FFAs treated HepG2 cells. 

Discussion 

Considering the complexity of NAFLD and its rising prevalence 

globally, it is vital to find effective therapeutic modalities for its 

treatment. The current pharmacotherapies available for patients 

with NAFLD include thiazolidinediones, ursodeoxycholic acid, clo-

fibrate, gemfibrozil, vitamin E, metformin, and betaine.6 However, 

none of them have been proven to be efficient in clinical practice.   

Their limited efficacy in treating NAFLD, which involves deregula-

tion of multiple pathways, could be because of their very specific 

target protein.18 Additionally, life style management is also an al-

ternative therapy used for treating NAFLD. Since the changes with 

diet and exercise are found to be short lived, long-term sustain-

ability is a major challenge due to poor patient compliance.19,20 

In NAFLD, an increase in hepatic FFAs uptake, lipid synthesis, 

impaired β-oxidation, and decrease in lipid export facilitates ac-

cumulation of fat in the liver.21 Hence, modulating the molecular 

mechanisms involved in hepatic lipid accumulation would provide 

competent therapeutic targets suitable for mitigating the scourge 

of NAFLD. 

Over the past few years, phytochemicals from plants have re-

ceived increasing attention for determining their activity and safe-

ty in basic model and clinical conditions.22 With the use of Reverse 

pharmacology (RP) as a novel path to drug discovery from natural 

products, bedside observational hits can lead for bench side-ex-

ploratory studies (in vitro and in vivo) and for subsequent use in 

clinical research.23 Our group has been studying P. kurroa exten-

sively for its hepatoprotective activity using RP.10-13 In the present 

study too, we found that picroside II, an active constituent of P. 
kurroa, has the potential for halting lipid accumulation in NAFLD. 

Earlier, our group has demonstrated P. kurroa’s  hepatoprotective 

activity in an in vivo Wistar rat model of NAFLD.24 In this model, P. 
kurroa reversed hepatic fatty acid infiltration by decreasing liver 

lipid content and serum TG and cholesterol levels. P. kurroa also 

lowered alanine amino transferase and alkaline phosphatase lev-

els, thereby signifying its anti-inflammatory activity in preventing 

NAFLD’s progression to NASH. However, in the above studies, the 

mechanism(s) by which P. kurroa’s  constituents exerted their ef-

fect was not fully addressed. In support of our earlier work, the 

present study demonstrates that picroside II, decreased fatty acid 

accumulation by inhibiting FFAs uptake and synthesis. 

Primary hepatocytes, derived from human liver samples, are an 
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ideal in vitro  model for studying hepatosteatosis. However, the 

paucity of obtaining normal clinical liver samples limits their use. 

As a consequence, the use of HepG2 cells as an alternative cellu-

lar model is considered acceptable.25 Since oleic and palmitic acids 

are found in abnormally high concentration in liver TGs of steatot-

ic patients, steatosis was simulated in HepG2 cells using these 

fatty acids.26 We investigated the expression of genes involved in 

fatty acid uptake, lipogenesis, and utilization via β-oxidation. Sev-

eral investigations have shown that FFAs enter the hepatocytes 

via facilitated transport via FATP5.27 FATP5 is a membrane-bound 

transport protein causing uptake of long chain FFAs across the 

plasma membrane. An increase in the expression of FATP5 has 

been reported in subjects with simple steatosis.28 In our study too, 

we found a significant increase in the expression of FATP5 in re-

sponse to FFAs treatment alone, suggesting an increase in hepatic 

FFAs uptake. Studies have shown that decreasing the expression 

of FATP5 could reduce lipid deposition in hepatocytes, in turn re-

versing steatosis. Also, knockdown of FATP5 in mice fed with a 

high fat diet reduced hepatic FFAs uptake, lipid accumulation, and 

decreased blood glucose levels.29 We observed a remarkable re-

duction in the expression of FATP5 in picroside II intervention 

group, compared to FFAs treated group. This shows that picroside 
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II attenuates the uptake of hepatic FFAs by decreasing the expres-

sion of FATP5 gene. Interestingly, as compared to silibinin, picro-

side II showed a greater trend in decreasing FFAs uptake and it 

needs to be studied further. Besides hepatic FFAs uptake, in-

creased lipogenesis is known to contribute towards TG accumula-

tion in the hepatocytes via activation of transcription factor 

SREBP-1.30 This in turn stimulates the expression of fatty acid syn-

thase, acetyl CoA carboxylase and SCD causing an increase in li-

pogenesis.31 In our FFAs treated HepG2 cells, we found a signifi-

cant rise in the expression of SREBP-1 and SCD indicating an 

increase in formation and storage of TG in hepatic cytoplasm. Pic-

roside II altered SREBP-1 and SCD dependent lipogenesis similar 

to silibinin. The decrease in the expression of SRBEP-1 and SCD 

highlights picroside II’s anti-lipogenic activity.

There is growing evidence that impaired mitochondrial 

β-oxidation contributes to increased liver lipid accumulation.32 

PPARα, a nuclear receptor expressed in liver, exerts its transcrip-

tional effects on fatty acid oxidation genes. PPARα augments the 

transcription of CPT1, which is a rate limiting enzyme involved in 

fatty acid oxidation.33 A decrease in PPARα and CPT1 limits the 

ability of the hepatocytes to oxidize FFAs leading to steatosis. 

Therefore, by modulating the expression of PPARα and CPT1 

genes, hepatic steatosis can be alleviated. In our study, picroside 

II as well as silibinin did not cause any significant change in the 

β-oxidation pathway. 

Hyperglycemia and/or insulin resistance are observed in patients 

with NAFLD increasing their probability to develop type 2 diabe-

tes (T2D).34 In these cases, an increase in hepatic gluconeogenesis 

is observed due to increased expression of FOXO1 and PEPCK.35 

We observed that picroside II reduced the expression of FOXO1 

and PEPCK significantly, like silibinin. These results underscore the 

potential of picroside II in mitigating the development of T2D in 

patients with NAFLD by decreasing gluconeogenic genes. 

In the present study, picroside II attenuates hepatic lipid accu-

mulation in HepG2 cells by decreasing FFAs uptake through 

FATP5, lipid synthesis via SREBP-1, and SCD. Further hepatic glu-

coneogenesis was downregulated with decrease in the expression 

of FOXO1 and PEPCK (Fig. 6). The activity of picroside II was 

found to be comparable to silibinin. The current findings suggest 

the need to study the activity of picroside II in other in vitro (pri-
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Figure 6. Proposed model for the protective action of picroside II in FFA-loaded HepG2 cells: Picroside II attenuated FFA accumulation in HepG2 cells 
via downregulation of FATP5, SREBP-1 and SCD, decreasing fatty acid uptake and lipid synthesis. Picroside II was also found to decrease the expression 
of FOXO1 and PEPCK resulting in decreased gluconeogenesis. Black dotted arrows indicates decrease in the expression of genes upon picroside II pre-
treatment. Red arrows indicates inhibitory activity of picroside II on the genes examined. FFAs, free fatty acids; FATP5, fatty acid transport protein 5; 
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mary hepatocytes, hepatic spherules or dual cell cultures with 

Kupffer cells) and in vivo models of NAFLD. Silibinin is a widely 

used hepatoprotective compound shown to prevent progressive 

liver injury by inhibiting lipotoxicity via modulation of oxidative 

stress and NFκB.36 Since, overloading the hepatocytes with fatty 

acids increases oxidative stress, inflammation and mitochondrial 

dysfunction; it raises the need for further exploration of the effi-

cacy of P. kurroa’s  phytoactive in the NAFLD model system. These 

factors would be relevant to the progressive pathophysiology of 

NASH leading to chronic sequelae. 

Thus, our study shows that picroside II and silibinin remarkably 

decreases intracellular lipid content in FFAs treated HepG2 cells via 

modulation of free fatty acid uptake, lipogenesis and gluconeogen-

esis. Picroside II’s protective effect on inhibiting lipid accumulation 

highlights it as a potential molecular entity in reversing fatty liver. 
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