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Abstract: Muscle builders frequently consume protein supplements, but little is known about their
effect on the gut microbiota. This study compared the gut microbiome and metabolome of self-
identified muscle builders who did or did not report consuming a protein supplement. Twenty-two
participants (14 males and 8 females) consumed a protein supplement (PS), and seventeen participants
(12 males and 5 females) did not (No PS). Participants provided a fecal sample and completed a
24-h food recall (ASA24). The PS group consumed significantly more protein (118 ± 12 g No PS
vs. 169 ± 18 g PS, p = 0.02). Fecal metabolome and microbiome were analyzed by using untargeted
metabolomics and 16S rRNA gene sequencing, respectively. Metabolomic analysis identified distinct
metabolic profiles driven by allantoin (VIP score = 2.85, PS 2.3-fold higher), a catabolic product of
uric acid. High-protein diets contain large quantities of purines, which gut microbes degrade to uric
acid and then allantoin. The bacteria order Lactobacillales was higher in the PS group (22.6 ± 49 No
PS vs. 136.5 ± 38.1, PS (p = 0.007)), and this bacteria family facilitates purine absorption and uric
acid decomposition. Bacterial genes associated with nucleotide metabolism pathways (p < 0.001)
were more highly expressed in the No PS group. Both fecal metagenomic and metabolomic analyses
revealed that the PS group’s higher protein intake impacted nitrogen metabolism, specifically altering
nucleotide degradation.

Keywords: gut microbiota; gut microbiome; resistance training; strength training; dietary protein;
gut metabolome; nitrogen metabolism

1. Introduction

Individuals striving to build muscle often combine resistance training with increased
protein intake. A recent review article reported that 40–100% of athletes used some type of
supplement, including protein, intending to improve athletic performance [1]. Most of the
protein-supplement products on the market are whey-, casein-, or soy-based, and research
has shown that whey, casein, and/or soy protein promote/s similar amounts of protein
synthesis and strength gains [2].

In the last few decades, the importance of gut microbiota in promoting health has been
recognized. On average, the human gastrointestinal tract harbors from 200 to more than
1000 species of bacteria [3,4]. The largest concentration of microbes, including bacteria,
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archaea, fungus, and viruses, is found in the colon. Food has the biggest impact on shaping
the gut microbiome, although many other daily activities, such as exercise and sleep, can
also affect the relative abundance of microbes. A shift in the relative abundance of even the
microbes that sparsely populate the gut can be beneficial or harmful to one’s health.

Recent studies support the idea that acute and chronic exercise alters the gut microbial
environment, enhancing the growth of beneficial microbes. However, most of the research
has focused on aerobic exercise. For example, Estaki et al. [5] showed that cardiorespiratory
fitness was positively associated with microbial diversity; in other words, the more fit an
individual, the more diverse their gut microbiota. Moreover, the increased diversity favored
an increased relative abundance of microbial species that produce butyrate. Clarke et al.
found greater diversity within the Firmicutes phylum in elite rugby players, and many
species in this phylum produce butyrate [6]. These two studies demonstrate that aerobic
exercise is associated with increased gut microbial diversity, and increased microbial
diversity is associated with improved health [6].

Only a few studies have examined the effect of resistance exercise on the gut micro-
biome. Bycura et al. [7] investigated the impact of an eight-week intervention of cardiores-
piratory or resistance exercise on the gut microbiome. They found few gut microbiota
changes before and after training in either group. Participants in the resistance-training
group with the biggest microbiome changes did not necessarily have the largest perfor-
mance gains [7]. Unfortunately, diet and supplement use were not reported, so their
influence on exercise gains or microbiota diversity cannot be ascertained. In another study,
Jang et al. [8] compared sedentary men, bodybuilders, and distance runners. They found
that each athlete type had a specific diet pattern; for example, bodybuilders consumed a
high-protein, low-carbohydrate diet, while distance runners consumed a high carbohydrate
diet. Alpha and beta microbiome diversity did not differ by athlete type, but there were
differences in gut microbiota taxa at the genus and species level.

In addition to the effect of exercise on the gut microbiome, exercise also increases
mitochondrial biogenesis in different tissues, including muscle [9]. Recently, it was demon-
strated that traditional high-load resistance training could stimulate muscle mitochondrial
biogenesis and mitochondrial respiratory function [10]. The gut microbiota has also been
shown to regulate critical transcriptional co-activators, transcription factors, and enzymes
involved in mitochondrial biogenesis, such as PGC-1alpha, SIRT1, and APMK genes [11].
It appears that this is mediated through signaling from the gut microbiota to mitochondria.
Several studies suggest that the metabolites produced by commensal gut microbiota, such
as short-chain fatty acids, might play a role [11]. Butyrate is one of the short-chain fatty
acids produced. Interestingly, when mice were given a dietary supplement containing
butyrate, it led to enhanced mitochondrial biogenesis [12].

Studies investigating the effect of probiotic ingestion on gut health and exercise
performance offer further support that the gut may play a role in muscle building. For
example, Chen et al. [13] supplemented mice with Lactobacillus plantarum TWK10 and
found that six weeks of supplementation increased muscle mass and muscle-mass grip
strength. This particular bacterium is a lactic acid producer and is commonly found in
many fermented foods and anaerobic plant matter [14].

Finally, a meta-analysis of protein supplementation and resistance training showed that
dietary protein supplementation was significantly associated with increased strength [15].
Lending further support to this relationship, Cronin et al. [16] showed participants who
consumed whey protein for 8 weeks, combined with resistance training, experienced a
marked alteration in the diversity of their gut virome. Interestingly, participants who un-
derwent 8 weeks of combined aerobic and resistance training but were otherwise sedentary
only modestly changed the composition and activity of the gut microbiome.

Therefore, this exploratory cross-sectional study sought to identify the bacteria and
metabolites present in the fecal matter of self-identified muscle builders who did or did not
report taking a protein supplement (PS vs. No PS, respectively). We hypothesized that our
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group reporting protein-supplementation usage would have a different gut microbiota and
metabolic profile than those who reported no protein supplement usage.

2. Materials and Methods

This exploratory cross-sectional study aimed to identify the bacteria present in the
fecal matter of self-identified muscle builders using resistance exercise who reported using
or not using a protein supplement. Participants were recruited from Sports and Health
Science majors at the online university, American Public University System (APUS). This
study was approved by the Institutional Review Board at APUS (protocol # 2018-097) and
the Louisiana State University Health Sciences Center (LSUHSC) (protocol # 10217).

2.1. Experimental Approach

A schematic for recruiting participants is shown in Figure 1. Participants were ex-
cluded if they met at least one of the following criteria: (1) took an antibiotic in the last three
months, (2) consumed an anti-diarrhea medicine in the last week, (3) took a laxative in
the last week, (4) consumed prebiotics in the last week, (5) consumed probiotics in the last
week, (6) were diagnosed with cancer, (7) have Crohn’s disease, (8) were taking prescription
drugs other than oral contraceptives, (9) were cutting for an upcoming competition or
tournament, (10) were under 25 years of age, or (11) lived outside the contiguous United
States. We asked potential participants to share their maximum squat, bench press, or
deadlift and then calculated a weight-lifted-to-body-mass ratio. Those who could not lift
at least half of their body weight were excluded. Each participant was asked if they used
protein supplements so they could be assigned to one of two groups: protein supplement
(PS) and no protein supplement (No PS). The participants that met the criteria were sent
an email welcoming them to the study and requested verification that they were willing
to participate. If their response was positive, they were sent a fecal collection kit. After
collecting their fecal sample, the participant completed a supplement questionnaire; a
workout questionnaire; an online version of the International Physical Activity Questions
(IPAQ); and a 24-h food recall, using the self-administered 24-h dietary assessment tool
(ASA24). Each participant completed the study at his or her physical location anywhere in
the contiguous United States. Participants were recruited in two cohorts one year apart at
the same time of year (October/November/December). For successful participation in the
study, the participant had to (1) complete a signed written informed consent, (2) complete
a signed HIPAA consent, (3) acknowledge that they were training to build muscle, (4) com-
plete the required questionnaires, and (5) return the fecal sample. Thirty-nine participants
provided a fecal sample and completed all the required forms.
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2.2. Sample Collection

A fecal sample was collected by using an at-home, self-collection kit (The Biocollective,
Denver, CO, USA) sent to participants via Fed Ex overnight, along with a freezer brick,
Styrofoam shipping container, and cardboard box to fit over the Styrofoam shipping
container. The kit contained a specially designed biocollector that was placed over the toilet
for fecal collection. Once the fecal sample (without urine) was collected, the biocollector
was inserted into a special zip-locking barrier bag that was inserted into a zip-locked
specimen bag. Then the specimen bag was placed in a Styrofoam shipping container, and
a frozen freezer brick was placed on top. The Styrofoam container was placed into the
cardboard box, sealed, and shipped overnight. To prevent receiving samples on a Saturday
or Sunday, the participant was instructed to ship the sample on the same day of collection
and collect it on Monday–Thursday, no holidays. If the sample was not returned within 24 h
of collection, the sample was discarded, and the participant was excluded from the study.
Upon receipt in the lab at LSUHSC, the sample was mixed in the sample bag in a biosafety
level-2 hood and small portions aliquoted into sterile microcentrifuge tubes designed for
cold storage. The tubes were placed in liquid nitrogen for quick freezing and stored in a
−80 ◦C freezer. At the same time, a sample of approximately 250 mg was processed for
DNA isolation, using the QIAamp PowerFecal DNA Kit (Qiagen, Germantown, MD, USA),
which included bead-beating. The isolated DNA was stored at −80 ◦C until microbial
community analysis.

2.3. Dietary Assessment

Participants were asked to recall the foods they ate 24 h prior to their fecal sample col-
lection. They used the freely available, automated, web-based, self-administered 24-h di-
etary assessment (ASA24) (https://epi.grants.cancer.gov/asa24/, accessed on 6 June 2021) [17],
which is available on the web and mobile devices and is funded and maintained by
the National Cancer Institute. Each participant was sent a unique user ID and pass-
word. Although the ASA24 program collects information on supplement use, we also
asked participants to provide information about their supplements on a separate form.
The 2010–2015 Healthy Eating Index (HEI) was calculated from the food group data
provided by ASA24, using the SAS program code available for free, online, from the
National Cancer Institute (https://epi.grants.cancer.gov/hei/calculating-hei-scores.html,
https://epi.grants.cancer.gov/asa24/, accessed on 6 June 2021).

2.4. Physical Activity Assessment

Physical activity was assessed by using the International Physical Activity Question-
naire (IPAQ) long-form converted to an online format. Moreover, each participant was
asked to provide their muscle-building workout routine on a separate form, since the IPAQ
does not ask specifically about resistance training. In this form, participants reported the
exercise name, workouts per week, sets per workout, reps per set, weight lifted, and 1-RM.
Volume loads (weight lifted in kg x reps x sets x workouts per week) for upper-body or
lower-body exercises were calculated similarly to the methods of Haff [18].

2.5. Microbial Community Analysis

A Thermo Scientific™ NanoDrop™ spectrophotometer (ThermoFisher Scientific, Waltham,
MA, USA) was used to determine the quantity and purity of isolated fecal DNA. Two ampli-
fication steps, using the AccuPrime Taq high fidelity DNA polymerase system (Invitrogen,
Carlsbad, CA, USA), were performed to prepare a sequencing library. Moreover, a negative
control with the control from DNA extraction and a positive control, using the Microbial
Mock Community HM-276D (BEI Resources, Manassas, VA, USA), were included in the
amplicon library preparation. Genomic DNA and gene-specific primers with Illumina
adaptors were used to amplify the 16S ribosomal DNA hypervariable region V4: forward
5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GTGCCAGCMGCCGCGGTAA3′;
reverse 5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GGACTACHVGGGTWT-

https://epi.grants.cancer.gov/asa24/
https://epi.grants.cancer.gov/hei/calculating-hei-scores.html
https://epi.grants.cancer.gov/asa24/
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CTAAT 3′. AMPure XP beads were used to purify the indexed amplicon libraries and
quantified by using Quant-I PCR products. The purified amplicon DNA was amplified by
using primers with different molecular barcodes:

forward 5’ AATGATACGGCGACCACCGAGATCTACAC [i5] TCGTCGGCAGCGTC
3′; reverse 5’ CAAGCAGAAGACGGCATACGAGAT [i7] GTCTCGTGGGCTCGG 3′.

The indexed amplicon libraries were purified by using AMPure XP beads, quantified
by using Quant-iT PicoGreen (Invitrogen), and then normalized and pooled. The KAPA
Library Quantification Kit (Kapa Biosystems, Cape Town, South Africa) was used to
quantify the pooled library, which was diluted and denatured according to Illumina’s
sequencing library preparation guidelines. As an internal control and to increase 16S rRNA
amplicon library diversity, 10% PhiX was added to the sequencing library. The paired-end
sequencing was performed on an Illumina MiSeq (Illumina, San Diego, CA, USA) using a
2 × 250 bp V2 sequencing kit.

QIIME2 (Quantitative Insights Into Microbial Ecology) with the DADA2 plugin [19]
was used to process raw fastq files. Forward and reverse reads were truncated to a uniform
length of 240 bp, and 20 bp were trimmed off the front of each read to remove the primer.
DADA2 identified amplicon sequence variants (ASVs) were merged, and any that ranged
outside of the expected 250–255 bp amplicon length were discarded. Any ASVs that
appeared in only one sample were removed by using contingency-based filtering, and
chimeric ASVs were removed by using the consensus method. ASVs were aligned by using
mafft and fasttree [20], and a phylogenetic tree for diversity analysis was built. Greengenes
v13.8 was used for taxonomic classification [21]. After primary data analysis, the remaining
reads were analyzed by using QIIME2 [3].

The QIIME analysis included 39 samples, with read counts ranging from 6729 to
99,983, with an average read count per sample of 44,812. Alpha rarefaction was performed
at a level of 6729 reads to include all samples.

2.6. Prediction of Metabolic Profile

The 16S sequencing data were used to identify potential microbial functions. The
raw data were formatted and imported into QIIME2. Closed-reference clustering against
the Greengenes 13_5 97% OTUs reference database was used to develop a de-replicated
feature table and representative sequences. The closed-reference OTU table was used
as input into the PICRUSt [22] pipeline, and the resulting PICRUSt metagenome data
were further analyzed by using STAMP (Statistical Analysis of Metagenomic Profiles) [23].
Pathways were labeled at Level 2, since several pathways were not classified at Level 1,
which causes an error in STAMP. From this, KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways were compared between protein-supplemented (PS) and non-protein-
supplemented (No PS) participants.

2.7. Metabolomics

Samples were processed at the Biological and Small Molecule Mass Spectrometry Core
(BSMMSC) at the University of Tennessee, Knoxville, TN (RRID: SCR_021368). The fecal
sample from each participant was divided into aliquots (roughly 50–100 mg) and extracted
in biological triplicate. Polar metabolites were extracted from fecal samples using an acidic
acetonitrile extraction procedure, using 40:40:20 HPLC grade ACN/MeOH/H2O with
0.1 M formic acid. [24] Global metabolic profiling, using ultra high-performance liquid
chromatography-high-resolution mass spectrometry (UHPLC-HRMS), was used to analyze
the fecal microbiome. A 25-min reverse-phase chromatographic separation was performed
by using a Synergi 2.6 µm Hydro RP column (100 mm × 2.1 mm, 100 Å; Phenomenex,
Torrance, CA, USA) and an UltiMate 3000 pump (Dionex). After chromatic separation,
analytes were ionized by using negative-mode electrospray ionization. A Thermo Scientific
Exactive Plus Orbitrap (San Jose, CA, USA) was utilized for mass analysis, operating in
full-scan mode [25,26]. A package from ProteoWizard, msConvert, was used to convert
raw spectral files to mzML format [27]. Metabolomics analysis and visualization engine
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(MAVEN) was used to identify metabolites based on exact mass (±5 ppm) and retention
time, using an in-house library [28,29]. A total of 170 metabolites were identified from the
untargeted metabolomics analysis.

2.8. Statistical Analysis

A power calculation determined that 24 participants were needed per group (PS
and No PS). Thirty-nine participants completed the study prior to the beginning of the
COVID-19 pandemic. We decided to stop participant recruitment at the start of the pan-
demic since its duration was unknown, and we did not want to risk exposure to the virus
from fecal samples.

Data were expressed as mean ± SEM (standard error of the mean), and the tables
presented the actual p-value. A value of p < 0.05 was considered statistically significant
and was determined a priori. SPSS (IBM Corp. Released 2020. IBM SPSS Statistics for
Windows, Version 27.0. IBM Corp: Armonk, NY, USA) was used for statistical comparisons.
Differences in alpha and beta diversity were determined by using QIIME 1.9.0, and figures
were drawn by using GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA). Signif-
icant differences in bacterial species between the No PS and PS groups were determined by
using Mann–Whitney U. Benjamini–Hochberg was applied to decrease the false discovery
rate. Only p-values < 0.01 and significant following the FDR correction are reported for the
bacterial species identified as significantly different.

STAMP was used to determine statistical differences in functional pathways between
the groups and to generate post hoc (Tukey–Kramer) plots for each KEGG pathway that
was significantly different between No PS, and PS. Bonferroni was used to correct for
multiple analyses.

Metabolite peak intensities were normalized by the weight of each fecal sample aliquot.
MetaboAnalyst 5.0 was used to generate partial-least-squares discriminant analysis (PLS-
DA) plots, variable importance in projection (VIP) scores, and pathway analysis using the
normalized metabolomics data. In MetaboAnalyst, the normalized data were filtered by
interquartile range, log-transformed, and Pareto scaled [30]. Heatmaps were generated by
using R (version 1.0.153), which displayed log2 fold changes and p-values calculated by a
Student’s t-test.

3. Results

Participant characteristics are shown in Table 1. There were no significant differences
in age, weight, height, or BMI between the PS and No PS groups. Seventy-one percent of
the No PS group was male, while 64% of the PS group was male.

Table 1. Subject characteristics.

No PS
(No Protein Supplement)

(n = 17)

PS
(Protein Supplement)

(n = 22)
p-Value

Age (years) 33 ± 2 1 32 ± 1 0.84
Weight (lbs) 176 ± 8 173 ± 7 0.79

Height (inches) 67 ± 1 67 ± 1 0.72
BMI (kg/m2) 27 ± 1 27 ± 1 0.99

Males 12 14
Females 5 8

Total Physical Activity (MET-minutes/week) 7040 ± 1282 12,081 ± 1870 0.03
Total Vigorous Activity (MET-minutes/week) 2535 ± 830 6331 ± 1284 0.02

Upper Body Resistance Exercise Volume (kg/week) 15,743 ± 13,103 31,067 ± 49,323 0.15
Lower Body Resistance Exercise Volume (kg/week) 16,694 ± 19,430 56,464 ± 127,594 0.16

Bristol Scale (arbitrary units) 3.8 ± 0.4 3.3 ± 0.2 0.25
Number of Supplements (count) 0.9 ± 1.5 1.4 ± 2.4 0.45

1 Mean ± SEM. MET: Metabolic equivalents.
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The participants self-identified as muscle builders. As part of the selection criteria,
each potential participant provided the maximum weight he or she could lift for the squat,
bench press, or deadlift. On average, both groups could lift 1.9 ± 0.2 lift weight (lbs)/body
weight (lbs); (range of 1.0 to 3.6 lbs/lbs). Seventeen participants reported how long they
had been lifting, which averaged 11± 2 yrs. The data collected from the training worksheet
confirmed that our participants participated in activities designed to maintain or increase
their current muscle mass specifically. Moreover, this information was compiled and
reported as upper and lower body resistance exercise volume (Table 1).

The participant’s physical activity was assessed by using the IPAQ. There was no
significant difference in the amount of time the participants spent sitting daily, although
the PS group tended to sit less (No PS: 324 ± 250; PS: 267 ± 124 min/day). As for physical
activity, total walking (No PS: 1893 ± 432; PS: 2318 ± 544 METS-min/week) and moderate
activity (No PS: 2613 ± 645; PS: 3432 ± 733 METS-min/week) did not differ significantly
between the two groups. Both groups’ total physical activity level was consistent with a
high level of physical activity (vigorous activity > 1500 MET minutes per week). Still, total
physical activity was significantly higher for the PS group, because they spent significantly
more time doing vigorous activity.

Twenty-four participants (65%) reported using a supplement (not protein), and 41
different supplements were reported. The most commonly used supplement was creatine
(13.8%), and the supplements that four or more participants used were AminoX branch
chain amino acids by BSN (7.5%), a multivitamin pill (6.3%), beta-alanine (5%), fish oil (5%),
and glutamine (5%).

Dietary intake is reported in Table 2. There were no significant group differences in
energy intake, but the macronutrient distribution of the calories from protein, and fat was
significantly different. The No PS group consumed significantly more fat than the PS group
(Table 1). Because the percent of calories derived from carbohydrates was similar between
the groups (Table 1), the difference was made up with protein. The PS group derived more
calories from protein (28 ± 2%), while the No PS derived 20 ± 2% of their calories from
protein (p < 0.0027). This marked difference in protein intake reflected a difference of more
than 0.5 g/kg of protein intake for the PS group. This protein was primarily derived from
food sources, as only 4 of the 22 participants consumed a protein supplement (25.3 ± 3.8 g,
13% of their total protein intake) on the day of the recall. Most of the difference in protein
intake between the PS and No PS was derived from beans and peas. The PS group was
asked to report the protein supplement they typically consumed. Twenty-one different
supplements were reported, and 17 (81%) contained whey protein.

Table 2. Self-reported dietary intake from ASA24.

No PS (n = 17) PS (n = 22) p-Value

Number of Foods 19 ± 2 1 21 ± 2 0.26
Energy (kcal) 2551 ± 429 2452 ± 199 0.84

Protein (g) 117.6 ± 11.8 169.3 ± 17.6 0.02
Protein (g/kg body weight) 1.49 ± 0.14 2.15 ± 0.19 0.009
Calories from protein (%) 20.1 ± 1.5 27.5 ± 1.7 0.003

Carbohydrate (g) 228.3 ± 37.9 239.3 ± 25.9 0.81
Calories from carbohydrates (%) 36.5 ± 2.9 39.3 ± 2.6 0.48

Fiber (g) 18.9 ± 2.1 27.3 ± 3.1 0.03
Total Sugar (g) 93.3 ± 20.7 88.1 ± 13.4 0.84

Kcal from sugar (%) 13.7 ± 1.7 14.1 ± 1.50 0.84
Ratio of protein to carbohydrate (g:g) 0.67 ± 0.11 0.89 ± 0.16 0.26

Fat (g) 109.0 ± 13.7 92.9 ± 9.0 0.33
Total saturated fatty acids (g) 34.1 ± 6.0 29.3 ± 3.2 0.49

Total polyunsaturated fatty acids (g) 24.8 ± 2.7 19.6 ± 2.1 0.14
Total monounsaturated fatty acids (g) 40.6 ± 5.1 35.6 ± 4.2 0.46
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Table 2. Cont.

No PS (n = 17) PS (n = 22) p-Value

Calories from fat (%) 40.8 ± 2.7 33.9 ± 1.9 0.05
Iron (mg) 14.7 ± 1.5 19.5 ± 1.8 0.05

Magnesium (mg) 369 ± 30 533 ± 77 0.03
Potassium (mg) 3064 ± 303 3996 ± 395 0.07
Vitamin C (mg) 120 ± 22 217 ± 49 0.08

Folate, food (mcg) 263 ± 30 375 ± 56 0.09
Intact fruits (whole or cut) of citrus,

melons, and berries (cup eq.) 0.065 ± 0.04 0.443 ± 0.15 0.02

Beans and Peas (legumes) computed
as protein foods (oz.eq.) 0.132 ± 0.12 0.97 ± 0.4 0.045

Beans and Peas (legumes) computed
as vegetables (cup eq.) 0.032 ± 0.03 0.24 ± 0.10 0.045

Healthy Eating Index (HEI) 54.0 ± 13.3 61.8 ± 15.1 0.088
Water (g) 3914 ± 304 4266 ± 441 0.51

Alcohol (g) (14 g = 1 standard drink) 31.4 ± 25.8 1.92 ± 1.1 0.27
Caffeine (mg) 180.3 ± 42.3 156.1 ± 28.5 0.64

1 Mean ± SEM.

Despite a similar carbohydrate intake, the PS group consumed about 1.5 times more
fiber than the No PS group. Total sugar consumption was not significantly different
between the groups, but the No PS group tended to consume more sugar. Finally, alcohol
and caffeine intake tended to be higher in the No PS group, although not significant.
Thirty-five percent of the No PS group consumed alcohol, while 14% of the PS group did.
As for caffeine, 70% of the No PS and 77% of the PS group consumed a beverage that
contained caffeine.

The 2010–2015 HEI index, a value that determines how closely one’s diet adheres to
the US Dietary Guidelines, is 59 for the American diet (https://www.fns.usda.gov/healthy-
eating-index-hei, 16 November 2021). A score of 100 indicates that one is adhering to the
guidelines. The average score for both the No PS and PS groups was close to 59 (Table 2);
the No PS group had a lower HEI score than the PS group, although not significant.

Bacterial diversity was measured within a sample (alpha) and between samples (beta).
We used Chao, Shannon, Faith PD, and Simpson to measure alpha diversity. These indexes
consider the number of unique operational taxonomic units (OTUs), richness, the relative
abundance of OTUs, and evenness. All four measures found that the No PS and PS groups
had similar alpha diversity. Bray–Curtis, Jaccard, and UniFrac were used to measure beta
diversity. Only Jaccard similarity (ANOSIM) was significantly different (p = 0.035). As
shown in Figure 2, the two groups overlapped with a modest difference in community
separation between the two groups.

Table 3 shows the bacterial species that were significantly different between the No
PS and PS groups. In all cases, a greater relative abundance of the taxa was observed
in the PS group. As expected, the changes occurred in the more predominant bacteria
phyla, Bacteroidetes, Firmicutes, and Actinobacteria, which made up 46%, 43%, and
2.5% of the bacteria present in the gut, respectively. The most changes in taxa were
observed in the Firmicutes phylum (74%). The significantly different changes observed
in Actinobacteria derived from the Coriobacterilia class with Adlercreutzia at the genus
level. For the Bacteroidetes phyla, the changes were seen in the Baceroidales order at the
family or genus level. Five different families within the Firmicutes were affected. The most
striking difference was with the bacteria Ruminococcaceae family, 34 times greater in the PS
group than the No PS group.

https://www.fns.usda.gov/healthy-eating-index-hei
https://www.fns.usda.gov/healthy-eating-index-hei
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Figure 2. Jaccard plot of beta diversity. Each orange dot corresponds to a participant (No PS) who
reported not using protein supplements. The orange circle highlights the range of values. Each green
dot represents one participant who reported using protein supplements (PS). The green circle shows
the variation. Although the groups overlap, the differences were significant (p = 0.035), demonstrating
community separation by this method.

The bacteria identified as significantly different were correlated with dietary pro-
tein, fiber, and fat. These associations are shown in Table 3, and the bacteria species
belonged to the Actinobacteria, Bacteroidetes, and Firmicutes phyla. All correlations were
positive, with more bacteria being associated with dietary fat than protein or fiber. Al-
though dietary fat was not significantly different between the groups, 41% of the No PS
dietary calorie intake came from fat, while 34% of the PS dietary calories were derived
from fat. Only two bacterial species were correlated with dietary fiber (not shown in
table): p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus
(p < 0.032) and p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Osci-
llospira (p < 0.032).

The predicted functional pathways that were significantly different are shown in
Figure 3. Ten pathways emerged as significantly different between the No PS and PS
groups. Eight of the ten pathways (arginine and proline metabolism, biosynthesis of unsat-
urated fatty acids, caffeine metabolism, circadian rhythm-plant, fatty acid elongation in
mitochondria, non-homologous end-joining, steroid biosynthesis, and systemic lupus ery-
thematosus) were more highly expressed in the PS group. The nucleotide metabolism and
RIG-1-like receptor signaling pathway were more highly expressed in the No PS samples.
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Table 3. Relative abundance of bacterial species that were significantly different between groups and their association with dietary protein and fat.

Bacteria

No PS PS Association with
Dietary Protein

Association with
Dietary Fat

Relative Abundance p-Value Correlation
Coefficient p-value Correlation

Coefficient p-Value

p__Actinobacteria
c__Coriobacteriia 94.9 ± 33.6 1 565.5 ± 158.0 0.008 0.332 0.039 0.513 0.0008
c__Coriobacteriia;o__Coriobacteriales 94.9 ± 33.6 565.5 ± 158.0 0.008 0.332 0.039 0.513 0.0008
c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae 94.9 ± 33.6 565.5 ± 158.0 0.008 0.332 0.039 0.513 0.0008
c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;g__Adlercreutzia 4.3 ± 2.1 54.3 ± 14.1 0.002

p__Bacteroidetes
c__Bacteroidia 8923.1 ± 1941.1 16,425.5 ± 1362.1 0.004 0.333 0.038 0.393 0.013
c__Bacteroidia;o__Bacteroidales 8923.1 ± 1941.1 16,425.5 ± 1362.1 0.004 0.333 0.038 0.393 0.013
c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;__ 181.6 ± 45.4 438.4 ± 81.4 0.0096
c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae 857.8 ± 269.3 2083.7 ± 265.7 0.003
c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae;g__ 850.2 ± 267.7 2068.4 ± 263.4 0.0026

p__Firmicutes
c__Bacilli 30.5 ± 6.8 195.3 ± 42.3 0.0009
c__Bacilli;o__Lactobacillales 22.6 ± 4.9 136.5 ± 38.1 0.007
c__Bacilli;o__Turicibacterales 7.1 ± 4.5 58.5 ± 17.6 0.009
c__Bacilli;o__Turicibacterales;f__Turicibacteraceae 7.1 ± 4.5 58.5 ± 17.6 0.009
c__Bacilli;o__Turicibacterales;f__Turicibacteraceae;g__Turicibacter 7.1 ± 4.5 58.5 ± 17.6 0.0094
c__Clostridia 6433.2 ± 1303.2 16,415.6 ± 1526.5 0.00002 0.413 0.009
c__Clostridia;o__Clostridiales 6431.3 ± 1303.0 16,403.7 ± 1522.5 0.00002 0.414 0.009
c__Clostridia;o__Clostridiales;f__ 242.7 ± 74.3 739.8 ± 153.0 0.007 0.322 0.046 0.462 0.003
c__Clostridia;o__Clostridiales;f__;g__ 242.7 ± 74.3 739.8 ± 153.0 0.0066 0.322 0.046 0.462 0.003
c__Clostridia;o__Clostridiales;f__Clostridiaceae 97.8 ± 23.3 250.4 ± 47.2 0.007
c__Clostridia;o__Clostridiales;f__Lachnospiraceae 2960.9 ± 639.1 7179.0 ± 686.7 0.0001 0.382 0.016
c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__ 665.6 ± 147.1 1401.9 ± 118.5 0.0004 0.344 0.032
c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__[Ruminococcus] 190.7 ± 42.5 539.7 ± 80.0 0.0005 0.380 0.017
c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__[Ruminococcus];s__torques 13.7 ± 6.4 110 ± 32.7 0.008
c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes 17.2 ± 4.9 56.4 ± 12.4 0.0066
c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus 371 ± 123 1238.5 ± 191.7 0.0006
c__Clostridia;o__Clostridiales;f__Ruminococcaceae 2328.5 ± 565.8 6663.8 ± 732.5 0.00004 0.373 0.019
c__Clostridia;o__Clostridiales;f__Ruminococcaceae;__ 55.9 ± 10.8 373.2 ± 75.4 0.0004
c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__ 259.7 ± 74.4 798.3 ± 178.9 0.0097 0.443 0.005
c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Faecalibacterium 1372.5 ± 450.4 3488.4 ± 257.8 0.0004
c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira 318.6 ± 73.6 822.5 ± 111.8 0.0006 0.445 0.005
c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Ruminococcus 314 ± 84 1167.9 ± 275.1 0.0065
c__Clostridia;o__Clostridiales;f__Veillonellaceae 569.2 ± 122.6 1127.6 ± 147.1 0.00600 0.345 0.031 0.362 0.024
c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Phascolarctobacterium 171.1 ± 78.3 746.2 ± 151.8 0.0021 0.518 0.0007
c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Phascolarctobacterium;s__ 205.5 ± 79.7 719.7 ± 155.8 0.0062 0.518 0.0007

1 Mean ± SEM.
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Alterations in the fecal metabolome are shown in Figure 4. Heatmaps serve as a
visualization tool for changes in the relative abundance of metabolites (Figure A1). A few
metabolites were significantly different in relative abundance between the two groups
(Figure 4A): allantoin (p < 0.01), dipicolinate (p < 0.05), tricarballylic acid (p < 0.01), octulose
8/1 phosphate (p < 0.05), xanthosine (p < 0.01), dATP (p < 0.01), abscisate (p < 0.01), pimelic
acid (p < 0.01), methyl glutaric acid (p < 0.05), lactate (p < 0.01), sucralose (p < 0.01), S-ribosyl-
L-homocysteine (p < 0.05), homocysteine (p < 0.01), quinolinate (p < 0.05), sulfolactate
(p < 0.01), and homocarnosine (p < 0.01). Despite few significant changes, the 3D PLS-DA
showed separation of the PS group and the No PS group, indicating different metabolic
profiles between the groups (Figure 4A). Metabolites with a VIP score > 1 drove the
separation in the PLS-DA plot, contributing most to the differences observed between
groups (Figure 4B). Using metabolites with a VIP score > 1 for pathway analysis, it was
evident that the purine and pyrimidine metabolism were altered in response to protein
supplementation. Additionally, glycolysis, cysteine and methionine metabolism, and the
TCA cycle were also perturbed (Figure 4C). All of the altered pathways are interconnected
with nitrogen metabolism (Figure 5).
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Figure 4. Metabolomics analysis showing PS induces metabolic alterations. (A) 3D PLS-DA plot
showing separation of the PS and NPS groups, indicating unique metabolic profiles. (B) This plot
shows the top 15 metabolites with the highest VIP scores contributing most to the observed separation
of groups. Allantoin contributes most to the separation of the PS and NPS groups in the PLS-DA
plot. (C) Metabolites with a VIP score > 1 were used for pathway analysis. The pathways impacted
most by PS include pyrimidine metabolism, glycolysis and gluconeogenesis, cysteine and methionine
metabolism, purine metabolism, and the TCA cycle.
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Figure 5. Nitrogen metabolism pathways. Assembling the metabolome and microbiome data
suggested nitrogen metabolism was altered in the gut environment of participants who reported
consuming a protein supplement compared to those who did not. Blue boxes represent information
derived from the participant’s dietary recall. The orange and green arrows in each box show
which group had higher or lower intake. Evidence derived from predicted functional pathways is
highlighted in pink, while the purple boxes are metabolites or pathways identified by metabolomics.
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4. Discussion

To our knowledge, this is the first study to investigate the gut microbiome of self-
identified muscle builders who reported using protein supplementations. Often, a high-
protein, low-dietary-fiber diet is associated with bodybuilding. Scientific studies have
shown that fiber and protein can influence the abundance of microbial communities present
in the gut; however, protein’s effects are less understood than fiber. The recommended
fiber intake for men and women under 50 years of age is 38 and 25 g/day, respectively [31].
However, dietary studies have shown that many individuals fall short of these guide-
lines. For example, in a study comparing the gut microbiota of 15 distance runners and
15 bodybuilders, Jang et al. [8] reported that dietary fiber intake was similar between the
two groups: 17 g/day (distance runners) and 19 g/day (bodybuilders). However, the
average protein intake was 103 g for the distance runners and 236 g for the bodybuilders.
Interestingly, there were differences in the gut microbiome between these groups. At the
genus and species levels, Faecalibacterium, Clostridium, Haemophilus, and Eisenbergiella were
the highest (p < 0.05) in bodybuilders, while Bifidobacterium and Parasutterella were the
lowest (p < 0.05) in bodybuilders. In our study, fiber intake for our groups was similar
to Jang et al.’s [8] study, but, unexpectedly, the PS group consumed 8 gms more fiber
than the No PS group. However, neither group met the dietary recommended amount of
fiber. Our participants’ average protein intake was less than Jang et al. [8] bodybuilders’
protein intake. Faecalibacterium was the only bacteria for which we observed changes that
Jang et al. [8] also reported.

The Recommended Dietary Intake for protein is 0.8 g/kg body weight [31] based
on net nitrogen balance, translating to a mean dietary need of 63 g/day for our athletes.
However, protein is needed to build and repair muscle, so 1.2 to 2.0 g protein/kg body
weight/day is recommended for strength-training athletes [32]. Our participants consumed
1.5 to 2.2 g protein/kg body weight, with the No PS group being at the lower end and
the PS group at the upper end of the recommendation. On a moderately high protein
diet in which protein makes up 15% of total energy intake, 17 g dietary protein/day goes
undigested in the small intestine and enters the colon for putrification [33]. In our study,
protein intake was 20–27% of calories. Based on Gibson et al.’s [33] findings, we deduct
more than 17 g of protein reached the colon for putrification.

A high-protein, low-carbohydrate diet favors a pathogenic pro-inflammatory colonic
microbiota. Jang et al. [8] concluded from their study of sedentary individuals, body-
builders, and distance runners that a high-protein diet might negatively impact gut micro-
diversity and decrease short-chain fatty acid–producing commensal bacteria. Increased
protein fermentation can be attenuated by adding dietary fiber [34]. While our PS group
had a higher protein intake, their fiber intake was less than the dietary recommended
amount and therefore may not have been sufficient to provide this benefit. We did note
an increase in several butyrate-producing species in the gut microbiota of the PS group.
We did not measure fecal short-chain fatty acid content to know the amount of butyrate
present in the feces.

In addition to protein intake, diet quality affects gut microbiome diversity [35]. HEI is
a measure of dietary quality, and both groups’ score demonstrated that they did not meet
the US Dietary Guidelines. Thus, only one diversity measure was significantly different
between the two groups, so despite the significant difference in protein and fiber intake,
these differences were not enough to alter gut microbiota diversity. Other studies have
reported no change in gut microbial diversity following resistance exercise [9,36,37].

In healthy individuals, the phyla Firmicutes, Bacteroidetes, Actinobacteria, and Pro-
teobacteria make up 98% of the bacteria present in the human GI tract [36,38]. Our study
observed changes in the relative abundance of species within three of these phyla, namely
Firmicutes, Bacteroidetes, and Actinobacteria. More changes were seen in the Firmicutes
phyla, and many species in this phylum are butyrate-producing [37]. The Lactobacillales
abundance was significantly greater in the PS group, and this family of bacteria functions
in purine absorption [39] and uric acid decomposition [40].
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Host health is affected by the structure and diversity of the gut microbiota. At
the genus level, we observed higher levels of Adlercreutzia, Bacteroides, Turicibacter,
Anaerostipes, Coprococcus, Faecalibacterium, Oscillospira, Ruminococcus, and Phascolarc-
tobacterium in the protein-supplemented group. Oscillospira is a common gut bacterial
genus, and several recent gut microbiota investigations have demonstrated its underlying
significance for host health in several chronic diseases, such as obesity [41]. Chen et al. [41]
found it inversely correlated with Bristol stool type and that it may play a role in de-
creased bowel movements and aggravate constipation. Constipation can be a problem with
bodybuilders who consume large amounts of protein. However, none of our participants
reported constipation, we excluded participants taking laxatives, and the Bristol score was
similar between both groups (~3). This score characterizes stool as sausage-like with cracks
on the surface. In addition, Oscillospira has also been positively associated with lean-
ness [42]. Phascolarctobacterium is a substantial acetate/propionate producer (short-chain
fatty acids) and is associated with the metabolic state and positive mood [43]. Jang et al. [8]
found Faecalibacterium significantly higher in bodybuilders compared to distance runners
and sedentary individuals.

Only a few studies have looked at the effect of protein supplementation, usually
whey, on the gut microbiomes of athletes. For example, Moreno-Perez et al. supplemented
cross-country runners with 10 g whey isolate and 10 g beef hydrolysate in 200 mL orange
drink for 10 weeks. They found an increased abundance of the Bacteriodetes phylum and
decreased Bifidobacterium longum.

Finally, nitrogen metabolism can be altered by protein consumption. A high-protein
diet contains a large quantity of purine, a nucleotide. Uric acid is produced when purines
are enzymatically degraded [44]. Uric acid is then further degraded to allantoin, the
metabolite with the highest VIP score. The PS group had a significantly higher allantoin
relative abundance in their feces compared to the No PS group. Since allantoin and
uric acid, along with other metabolites involved in purine metabolism, are driving the
separation between the PS and No PS groups, it can be concluded that higher levels
of dietary protein favor purine degradation. This evidence is further supported by a
greater relative abundance of f. Lactobacillales in the PS group (p = 0.007), a bacteria
family that functions in purine absorption and uric acid decomposition [45]. Additionally,
genes encoding for nucleotide metabolism were significantly more abundant in the No
PS group. This observation could be expected, because the No PS group had a lower
protein intake, which leads to fewer purines, creating a greater need for genes involved in
purine metabolism.

Limitations

This study is not without its limitations. First, the participants were recruited online,
and although we emailed many potential candidates, we demonstrated that participants
could be recruited in this manner. Second, once lockdowns from the COVID pandemic
started, we could no longer recruit participants, and this reduced our sample size. Third,
we had to rely on the participants self-reporting their resistance training, because they were
recruited and participated in the study online. Self-reporting has inherent errors, but we
used several measures, self-reported workout form and IPAQ, to verify their training claims.
These were used to determine if the participants were physically active and had consistent
resistance training. Fourth, the two groups were divided based on the participant’s reported
protein supplement use. All PS group participants reported using a protein supplement,
while the No PS group reported not using a protein supplement to promote muscle gains.
We also verified this with the ASA24 24-h recall. The ASA24 reports supplement usage,
and only the participants in the protein-supplemented group reported using a protein
supplement 24 h before they collected their fecal sample.
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5. Conclusions

Differences in diet and the gut microbiome and metabolome suggested that protein
influenced the gut microbiota. The group reporting protein-supplement usage had more
fecal metabolites and bacteria associated with nitrogen breakdown, leading to increased uric
acid. In contrast, those participants who did not use a protein supplement had more genes
associated with nucleotide metabolism, suggesting a greater need for the gut microbiota to
synthesize nucleic acids due to the lack of a sufficient exogenous nitrogen source. While
the health consequences to the host are unknown, it is possible that protein consumption
leads to alterations in metabolites involved in the inflammatory response, such as uric acid,
the precursor of allantoin. These observations warrant future investigation.
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Appendix A

Figure A1. Heatmap showing the log2 fold change and p-values for all identified metabolites in fecal
samples. Metabolite relative abundances were altered by PS.
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