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Simple Summary

Combining drugs is crucial for enhancing anti-cancer responses. However, the potential of
pre-clinical data in identifying suitable combinations and dosage is often underutilized. In this
study, we leverage preclinical in vitro cell line drug response data and computational modeling of
signal transduction and of pharmacokinetics to elucidate distinct dose requirements for the
combination of pan-RAF and MEK inhibitors in melanoma. Our findings reveal a more
synergistic, but narrower dosing landscape in NRAS vs BRAF mutant melanoma, which we linked
to a mechanism of adaptive resistance through negative feedback. Further, our analysis suggests
the importance of drug dosing strategies to optimize synergy based on mutational context, yet
highlights the real-world challenges of maintaining a narrow dose range. This approach
establishes a framework for translational investigation of drug responses in the refinement of
combination therapy, balancing the potential for synergy and practical feasibility in cancer
treatment planning.

Abstract

Purpose: This study explores the potential of preclinical in vitro cell line response data and
computational modeling in identifying optimal dosage requirements of pan-RAF (Belvarafenib)
and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the
critical role of drug combinations in enhancing anti-cancer responses and the need to close the
knowledge gap around selecting effective dosing strategies to maximize their potential. Results: In
a drug combination screen of 43 melanoma cell lines, we identified unique dosage landscapes of
panRAF and MEK inhibitors for NRAS vs BRAF mutant melanomas. Both experienced benefits,
but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma.
Computational modeling and molecular experiments attributed the difference to a mechanism of
adaptive resistance by negative feedback. We validated in vivo translatability of in wvitro
dose-response maps by accurately predicting tumor growth in xenografts. Then, we analyzed
pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with
Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in
NRAS mutant melanoma patients. Conclusion: Leveraging pre-clinical data and computational
modeling, our approach proposes dosage strategies that can optimize synergy in drug
combinations, while also bringing forth the real-world challenges of staying within a precise dose
range.

Keywords: signal transduction; targeted therapy; drug combination; mechanistic model; systems
pharmacology; adaptive resistance; precision medicine
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1. Introduction

Cancer is a disease marked by abnormal cell growth and the potential to spread and
cause death. Despite its complexities, cancers often carry vulnerabilities that make them
susceptible to targeted treatments [1-3]. Precision medicine provides a promising
approach to exploit these vulnerabilities and effectively kill cancer cells. However,
designing effective targeted therapies is not straightforward. The dynamic nature of
cancer cells enables them to adapt and develop resistance mechanisms, often rendering
single-drug treatments less effective [4,5]. As a response, the medical field has turned
towards combined drug regimens, simultaneously targeting multiple vulnerabilities in
cancer cells. Identifying effective drug combinations, however, is only one part of the
puzzle. The dosing regimes of these combinations that yield maximal benefit while
maintaining tolerability must also be determined. Current approaches to delineate these
aspects often fall short.

In vitro drug screens using cancer cell lines represent a primary tool for identifying
drug combinations that act beneficially on lines exhibiting traits of interest [6,7].
Typically, changes in cell viability are measured in response to the serial dilution of two
drugs, also called a drug dose-response matrix, and the benefits of combining drugs is
quantified based on principles such as Highest Single Agent (HSA), Bliss independence,
Loewe additivity, and others [8,9]. These enable the computation of combination scores,
which are used to rank the effectiveness of drug combinations with respect to single
agents. A significant limitation in the use of combination scores is the inadequate
consideration of the specific point in the dose-response landscape where benefits are
observed, leading to the omission of drug dose from the benefit assessment. This can
lead to an inaccurate assessment of clinical potentials and a mischaracterization of
biomarkers, particularly in situations where cancer populations exhibit responses at
distinct effective dose ranges.

The reasons for these limitations are both practical and conceptual. A practical
limitation is the lack of computational frameworks for easily manipulating large-scale
dose-response data and extracting dose-specific information. While tools that adhere to
FAIR software principles have been recently developed [10,11], they still lack mature
capabilities for extracting and analyzing response data at the (free) drug concentrations
determined by pharmacokinetics in the clinic [12]. A more profound conceptual
limitation is the unclear translatability of in vitro drug responses to in vivo settings. The
primary strategies used are either qualitative, such as benchmarking exposures to
single-point in vitro metrics like the half-maximal inhibitory concentration (IC50) values,
or require extensive datasets and efforts, as in mechanistic modeling [13] or machine
learning [14]. Recently, success has been reported in using in vitro growth rate inhibition
values with pharmacokinetic parameters to estimate in vivo drug response [15,16], but
these results were limited to single-agent response. Improving the frameworks for drug
dose-response analysis and testing the translatability of in vitro drug combinations to in
vivo is required to exploit the full potential of pre-clinical data.

While dose-response experiments with cell lines provide insightful data on drug
impact, their phenomenological nature limits mechanistic understanding. Thus,
methods able to link dose-response data to molecular measurements and information on
protein structures and networks are needed. Increasingly, computational dynamic
models — mathematical representations of molecular networks — are being deployed to
elucidate these mechanisms [4,17]. Due to its role in cancer and advanced molecular
understanding, the MAPK signaling pathway has been the focus of current
developments of computational models of drug response [18-22]. These models are
perpetually updated to incorporate new conditions and advancements in the
understanding of oncogenic signaling. A necessary development is the use of these
models to explain variations seen in drug responses based on traits of interest, such as
mutational status, and link phenotypes to mechanistic insights at the clinically relevant
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101 dose. The promise is that these models can generalize correlative trends based on
102 theoretical reasonings and provide molecular insights that can be experimentally
103 verified.
104 In this study, we deploy a framework that combines preclinical in vitro cell line drug
105 response data and computational modeling of signal transduction and pharmacokinetics
106 to unravel the dose requirements of pan-RAF and MEK inhibition for melanoma
107 treatment. The development of RAF inhibitors has seen many advancements with initial,
108 first-generation inhibitors showing effectiveness against active RAF monomers such as
109 BRAF V600E [23]. The primary limitation of these inhibitors is their inability to block,
110 and sometimes even paradoxically enhance, RAF dimer signaling. As a result, the
111 inhibitors are ineffective against prevalent mutations like NRAS Q61, which signal
112 through RAF dimers, and are liable to escape mechanisms through RAF dimer signaling
113 [24]. This has spurred the development of several small-molecule ATP-competitive
114 panRAF inhibitors, such as Belvarafenib [25], which are capable of targeting RAF dimers
115 and are currently in clinical trials. Bolstered by robust preclinical evidence [26-28], in the
116 clinic panRAF inhibitors are being combined with MEK inhibitors to achieve stronger
117 pathway suppression and avoid mechanisms of resistance [trials: NCT03284502,
118 NCT04417621, NCT03905148, NCT04249843 and NCT03429803]. However, the ways in
119 which these drugs inhibit activity under the two major activating mutations in
120 melanoma, BRAF V600E and NRAS Q61 hotspot mutations, and the corresponding drug
121 dose landscape are still being explored. To this end, we apply our approach in the hopes
122 of unraveling how this drug combination impacts different mutational contexts and
123 identifying effective drug regimens for clinical use.
124 2. Materials and Methods
125
126 2.1 Drug combination screen
127 Screening Drugs Management and Quality Control. Drugs were obtained from
128 in-house synthesis or purchased from commercial vendors. A fully automated transfer
129 system by Nova Technology (Innovate Engineering) was used to transfer material from a
130 dry library, solubilize with DMSO, and log the solutions into our compound
131 management system. A  high throughput liquid chromatography mass
132 spectrometry/ultraviolet — absorbance/charged aerosol detector/chemiluminescent
133 nitrogen detector (LCMS/UV/CAD/CLND) system was used to verify the identity,
134 purity, and concentration of drugs used in the gCSI screens. The LCMS/UV/CAD/CLND
135 system consisted of an LCMS/UV system (Shimadzu) with LC-30AD solvent pump, 2020
136 MS, Sil-30AC autosampler, SP-M30A UV detector, and CTO-20A column oven; a Corona
137 Veo RS CAD (Thermo Scientific); and a model 8060 CLND. Drugs with lower than 80%
138 purity and 20% below expected concentration were excluded. An Echo 555 acoustic drop
139 ejection (ADE) liquid handler (Labcyte) was fully integrated in the
140 ultra-high-throughput screening uHTS system to dispense DMSO solubilized
141 compounds (Dawes et al.,, 2016). Nine-point dose-response curves at 1:3 dilution were
142 generated using ADE as a means of transferring library compounds at ultra-low volume
143 (in nanolitre scale) to achieve direct dilution of compounds. Starting doses for
144 Vemurafenib, Belvarafenib and Cobimetinib were 10, 10 and 5 uM, respectively. The
145 uHTS system delivered assay-ready daughter plates at 31,000 concentration. A DMSO
146 backfill step was performed to achieve an equal volume of DMSO in each well.
147 Assay-ready drug plates were stored at -80 C until the day of compound addition and
148 subjected to a single freeze-thaw cycle. The use of ADE technology limited the final
149 DMSO concentration in assay plates to 0.1%, which was shown to have a negligible
150 effect on cell growth. Seeding densities were optimized for each cell line to obtain
151 70-80% confluence after 6 days. The cells were plated into 384 well plates (Greiner,

152 781091) and then treated with compound the following day in a final DMSO
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153 concentration of 0.1%. The relative numbers of viable cells were measured by
154 luminescence using CellTiter-Glo (Promega, G7573).
155
156 2.2 Higher drug-dose resolution combination responses
157 We generate higher drug-dose resolved 10x10 drug combination responses centered
158 around clinically relevant doses for 5 cell lines: A375, IPC-298, MEL-JUSO, SK-MEL-2
159 and SK-MEL-30. Seeding densities were optimized to obtain 70-80% confluence after 6
160 days. Cells were seeded into 384-well plates 24 hours prior to compound addition, and
161 treated with compound the following day (final DMSQO concentration 0.1%). Compound
162 stocks, 10 mM in DMSQO, supplied by Genentech Compound Management. Belvarafenib
163 and Cobimetinib were dosed using an HP 300 automatic dose dispenser as a 10 x 10
164 combinatorial drug matrix with serial dose dilutions starting from 1 to 0.002 pM for
165 Belvarafenib and 0.5 to 0.002 uM for Cobimetinib. After 120 hours, relative numbers of
166 viable cells were measured using Cell Titer-Glo (Promega, G7573).
167
168 2.3 Western Blots
169 Anti-MEK1 (12671, WB 1:1,000), anti-pMEK (5217/5221) rabbit mAb (41G9) (9154,
170 WB 1:1,000), anti-ERK (9107, WB 1:1,000), anti-pERK (T202/Y204) (9101, WB 1:1,000),
171 purchased from Cell Signaling Technology. IR-conjugated secondary antibodies, Goat
172 anti-Mouse 680LT (926-68020, WB: 1:10,000) and Goat anti-Rabbit 800CW (926-32211,
173 WB: 1:10,000) purchased from Li-Cor. All westerns were scanned on Li-Cor Odyssey
174 CLX using duplexed IR-conjugated secondary antibodies.
175 SK-MEL-28, A-375, and SK-MEL-2 were obtained from ATCC. IPC-298 and
176 MEL-JUSO were obtained from DSMZ. Cell lines were maintained in the recommended
177 media and supplemented with 10% heat-inactivated FBS (HyClone, SH3007003HI), 1X
178 GlutaMAX (Gibco, 35050-061), and 1X Pen Strep (Gibco, 15140-122).
179 Immunoblotting was performed using standard methods. Cells were briefly washed
180 in ice-cold PBS and lysed in the following lysis buffer (1% NP40, 50 mM Tris, pH 7.8, 150
181 mM NaCl, 5mM EDTA) plus protease inhibitor mixture (Complete mini tablets; Roche
182 Applied Science, 11836170001) and phosphatase inhibitor mix (ThermoFisher Scientific,
183 78420). Lysates were centrifuged at 15,000 rpm for 10 minutes at 4 °C and the protein
184 concentration was determined by BCA (ThermoFisher Scientific, 23227). Equal amounts
185 of protein were resolved by SDS-PAGE on NuPAGE, 4-12% Bis-Tris Gels (ThermoFisher
186 Scientific, WG-1403) and transferred to nitrocellulose membrane (Bio-Rad, 170-4159).
187 After blocking in blocking buffer (Li-Cor, 927-40000), membranes were incubated with
188 the indicated primary antibodies and analyzed by the addition of secondary antibodies
189 IRDye 680LT Goat anti-Mouse IgG (Li-Cor, 926-68050) or IRDye 800CW Goat anti-Rabbit
190 IgG (Li-Cor, 926-32211). The membranes were visualized on a Li-Cor Odyssey CLx
191 Scanner.
192
193 2.4 Immunofluorescence and high-content imaging
194 Cells were washed twice with 1x PBS and fixed with 4% paraformaldehyde (PFA)
195 for 15 min at 25 °C. To remove PFA, cells were washed with 1x PBS three times, and PFA
196 was quenched by incubating cells with 50 mM NH,CI for 10 min at 25 °C. Cells were
197 then rinsed twice with PBS and permeabilized with ice-cold methanol for 10 min at -20
198 °C. Following permeabilization, cells were first incubated with a blocking buffer for 1
199 hour at room temperature (1x PBS/ 5% normal serum/0.3% TritonX-100) followed by
200 overnight incubation with the primary antibody against phospho-ERK (Cell Signaling
201 Technology, catalog no. 4370S) at 1:800 dilution at 4 °C. The next day, cells were washed
202 three times with 1x PBS and incubated for one hour at room temperature with the
203 secondary antibody (Jackson ImmunoResearch Laboratories, catalog no. 711-606-152).
204 To stain the nucleus and cell body, cells were incubated with NucBlue™ Fixed Cell
205 ReadyProbes™ Reagent (Catalog number: R37606) and HCS CellMask™ Blue Stain

206 (Catalog number: H32720) for 20 min at room temperature. Finally, cells were washed
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207 three times with 1X PBS, and imaged on the Opera Phenix HCS machine (PerkinElmer)
208 using the 40X water immersion objective using confocal modality. Analysis and
209 quantification were conducted on Harmony (PerkinElmer) software.
210
211 2.5 Tumor volume experiments in xenografts
212 G03083045.23-6 (free base of GDC-5573, Lot 23-6; hereafter referred to as
213 Belvarafenib) was provided to Genentech as a solution at concentrations of 3.3 mg/mL
214 and 6.6 mg/mL (expressed as free-base equivalents) in 5% dimethyl sulfide/5%
215 Cremophor EL. Cobimetinib (GDC-0973, Lot 150-10) was provided by Genentech as a
216 solution at concentrations of 1.1 mg/mL (expressed as free-base equivalents) in 0.5%
217 (w/v) methylcellulose/0.2% Tween 80™. All concentrations were calculated based on a
218 mean body weight of 22 g for the NCR.nude mouse strain used in this study. The vehicle
219 controls were 5% dimethyl sulfide/5% Cremophor EL and 0.5% (w/v)
220 methylcellulose/0.2% Tween 80™. Test articles were stored in a refrigerator set to
221 maintain a temperature range of 4-7 °C. All treatments and vehicle control dosing
222 solutions were prepared once a week for three weeks.
223 Female NCR.nude mice that were 6-7 weeks old were obtained from Taconic
224 Biosciences (New York) weighing an average of 22 g. The mice were housed at
225 Genentech in standard rodent micro-isolator cages and were acclimated to study
226 conditions at least 3 days before tumor cell implantation. Only animals that appeared to
227 be healthy and that were free of obvious abnormalities were used for the study.
228 Human melanoma IPC-298 cells were obtained from the ATTC (Rockville, MD)
229 harbor NRAS Q61L mutation. Cells were cultured in vitro, harvested in log-phase
230 growth, and resuspended in Hank’s Balanced Salt Solution (HBSS) containing Matrigel
231 (BD Biosciences; San Jose, CA) at a 1:1 ratio. The cells were then implanted
232 subcutaneously in the right lateral thorax of 140 NCR.nude mice. Each mouse was
233 injected with 20 * 10”6 cells in a volume of 100 mL. Tumors were monitored until they
234 reached a mean tumor volume of 250-300 mm°’. Mice were distributed into six groups
235 based on tumor volumes with n=10 mice per group. The mean tumor volume across all
236 six groups was 240 mm?’ at the initiation of dosing.
237 Mice were given vehicles (100 pL 5% DMSO/5% CremEL and 100 uL 0.5% MCT), 15
238 mg/kg or 30 mg/kg Belvarafenib (expressed as free-base equivalents) and 5 mg/kg
239 Cobimetinib (expressed as free-base equivalents). All treatments were administered on
240 a daily basis (QD) orally (PO) by gavage for 21 days in a volume of 100 mL for
241 Belvarafenib or Cobimetinib. Tumor sizes and mouse body weights were recorded twice
242 weekly over the course of the study. Mice were promptly euthanized when tumor
243 volume exceeded 2000 mm” or if body weight loss was > 20% of their starting weight.
244 All drug concentrations were calculated based on a mean body weight of 22 g for
245 the NCR.nude mouse strain used in this study. The study design is summarized in
246 Table S1. Tumor volumes were measured in two dimensions (length and width) using
247 Ultra Cal-IV calipers (model 54 — 10 — 111; Fred V. Fowler Co.; Newton, MA) and
248 analyzed using Excel, version 14.2.5 (Microsoft Corporation; Redmond, WA). The tumor
249 volume was calculated with the following formula: Tumor size (mm® = (longer
250 measurement x shorter measurement"2) x 0.5. Animal body weights were measured
251 using an Adventura Pro AV812 scale (Ohaus Corporation; Pine Brook, NJ). Percent
252 weight change was calculated using the following formula: Body weight change (%) =
253 [(current body weight/initial body weight) — 1) x 100]
254 Percent animal weight was tracked for each individual animal while on study and
255 the percent change in body weight for each group was calculated and plotted (Figure
256 S1). A generalized additive mixed model (GAMM) was employed to analyze
257 transformed tumor volumes over time. As tumors generally exhibit exponential growth,
258 tumor volumes were subjected to natural log transformation before analysis. Changes in
259 tumor volumes over time in each group are described by fits (i.e., regression splines with

260 auto-generated spline bases) generated using customized functions in R version 3.4.2
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261 (2017-09-28) (R Development Core Team 2008; R Foundation for Statistical Computing;
262 Vienna, Austria).
263 For assessment of gene expression in harvested tumors, total RNA was extracted
264 from xenograft tumor tissue using RNeasy Plus Mini kits (Qiagen) following the
265 manufacturer’s instructions. RNA quantity was determined using a NanoDrop
266 spectrophotometer (Thermo Fisher Scientific). Transcriptional readouts were assessed
267 using a Fluidigm BioMark HD System (Standard BioTools) according to the
268 manufacturer’s recommendations. RNA (100 ng) was subjected to cDNA synthesis and
269 pre-amplification using the High-Capacity cDNA RT Kit and TagMan PreAmp Master
270 Mix (Thermo Fisher Scientific) per the manufacturer’s protocol. Following amplification,
271 samples were diluted 1:4 with Tris EDTA pH 8.0 and qPCR was conducted using a
272 Fluidigm 96.96 Dynamic Array and the Fluidigm BioMark HD System (Standard
273 BioTools) according to the manufacturer’s recommendations. Cycle threshold (Ct) values
274 were converted to fold changes or percentages in relative expression values (2°-(ddCt))
275 by subtracting the mean of the housekeeping reference genes from the mean of each
276 target gene followed by subtraction of the mean vehicle dCt from the mean sample dCt.
277 Blood was harvested from mice treated for 4 days and 3h after the last dosing to
278 quantify the free concentrations of drugs in plasma. Briefly, the concentration of
279 Belvarafenib and Cobimetinib in each sample was determined using a non-validated
280 LC-MS/MS method using labeled internal standards (Cobimetinib: 13C6, Belvarafenib:
281 d5) with qualified curve ranges (Cobimetinib: 1.00 to 100 ng/mL with 2000 ng/mL
282 dilution QC, Belvarafenib: 5.00 to 5000 ng/mL with 75,000 ng/mL dilution QC) using
283 specific columns (Cobimetinib: Waters Xbridge C18, 50 x 2.1 mm, 3.5 um, Belvarafenib:
284 Phenomenex, Onyx Monolithic C18, 50 x 2.0 mm) and MS/MS transition ranges
285 (Cobimetinib: 532.2-249.1, Belvarafenib: 479.1-328.0, 13C6 Cobimetinib: 538.2-255.1,
286 Belvarafenib-d5: 484.1-333.1). The lower limit of quantitation (LLOQ) was 1.00 ng/mL for
287 Cobimetinib and 5.00 ng/mL for Belvarafenib. Free plasma concentrations were
288 calculated by multiplying the plasma concentration in each sample with the fraction
289 unbound in plasma.
290
291 2.6 Computational dynamic modeling of MAPK signaling
292 The MARM2 model is written in the PySB framework (https://pysb.org) and
293 describes interactions of the EGFR/MAPK signaling pathway. The model, along with
294 relevant parameters, trained on a range of conditions with MEK and RAF inhibitors, was
295 obtained from Frohlich, F. and Gerosa, L. et al. [19]. A curation step was performed
296 wherein unnecessary species and their associated model components were removed.
297 The  pan-RAF  inhibitor = Belvarafenib =~ was  implemented by  setting
298 ep_RAF_RAF_mod_RAFi_double_ddG = 0, removing the reduction in binding affinity
299 of a type 1.5 RAF inhibitor (Vemurafenib) to a partially inhibited RAF dimer [29]. For
300 NRAS Q61 mutants, the hydrolysis rate of NRAS GTP, catalyze_NF1_RAS_gdp_kcatr,
301 was reduced by a factor of 10, and the stability of CRAF dimers,
302 ep_RAF_RAF_mod_RASgtp_double_ddG, was reduced by a factor of 5. Furthermore,
303 since CRAF is the dominant RAF species in NRAS Q61, we removed BRAF in order to
304 greatly reduce model size and computation times. The reduced tendency for
305 phosphorylated CRAF to bind to RAS and form dimers is an important negative
306 feedback mechanism [30,31], which we will refer to as pRAF feedback. To better
307 understand the impacts of this feedback we generate an extra NRAS Q61 model with the
308 feedback removed. Through this process, three models are obtained: BRAF V600E,
309 NRAS Q61 with pRAF feedback, and NRAS Q61 without pRAF feedback.
310 Each model is converted to a set of ODEs using BNG [32] and then simulated until a
311 steady state is reached. The steady state is achieved when the relative change of all
312 species is less than 0.1% over a period of at least 4 hours. For the steady state
313 dose-responses, 100 inhibitor dose conditions are generated from 10 Cobimetinib doses

314 (0 uM and 9 doses from 10%”° uM to 10° uM) and 10 Belvarafenib doses (0 uM and 9
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315 doses from 10%* uM to 10°° uM). The initial steady state system is subjected to one of
316 these dose conditions then simulated until the steady state is reached. The full
317 simulation times for all conditions were as follows: BRAF V600E - 475 s, NRAS Q61
318 without pRAF feedback - 474 s, and NRAS Q61 with pRAF feedback - 330 s (ran on
319 MacBook Pro with M2 Max chip). Bliss values are then generated from the steady state
320 values using the synergy Python library (https://github.com/djwooten/synergy). For the
321 time course responses, the initial steady state system is simulated for 24 hours, then
322 dosed with Cobimetinib (0.5 pM) and either 0 or 133 nM of Belvarafenib. The system is
323 then simulated for 8 additional hours. The full simulation times were as follows: NRAS
324 Q61 without pRAF feedback - 32 s, NRAS Q61 with pRAF feedback - 32 s, and BRAF
325 V600E - 27 s (ran on MacBook Pro with M2 Max chip).
326
327 2.7 Analysis of drug dose-responses
328 Cell viability data were processed to relative viability to obtain single-agent fits and
329 metrics (e.g. IC50, Emax and AUC), as well as drug combination fits and metrics such as
330 HSA (Highest Single Agent) and Bliss scores. Briefly, single-agent fits for each drug and
331 cell line were obtained using the drm fitting function from the drc R package [33] using a
332 three-parameter (LL.3u) or a four-parameter (LL.4) log-logistic function that relates drug
333 dose to relative viability. For drug combination data, HSA and Bliss scores were
334 calculated as the average of the 10% highest HSA and Bliss excess values observed
335 across the full dose ranges tested, respectively. HSA and Bliss excess values for each
336 dose combination tested were calculated by subtracting the observed response against
337 the expected response under the HSA and Bliss models. As an observed response, we
338 used a smoothened version of the experimental drug combination matrix of relative
339 viability obtained by fitting dose-response curves along every fixed dose of each drug
340 and averaging the fitted values. The HSA expectation matrix was calculated by selecting
341 for each dose combination the maximum response of each individual agent in the
342 observed response. The Bliss expectation was calculated using the Bliss independence
343 formula given as the sum of the responses of the individual drugs minus their product
344 [8]. Data import, processing and calculations were performed using the R package gDR
345 [10].
346
347 2.8 Projection of in vivo free drug concentrations on in vitro growth responses
348 Nominal drug concentrations associated with growth viability responses were
349 converted to free drug concentrations in order to project the free drug concentrations
350 measured in vivo in mice or patients. Briefly, nominal drug concentrations were
351 multiplied by the fraction unbound (fu) of Belvarafenib and Cobimetinib, which was
352 measured to be 0.034 in 10% FBS media and estimated to be 0.068 in 5% FBS media for
353 Belvarafenib and measured to be 0.196 in 10% FBS media and 0.3 in 5% FBS media for
354 Cobimetinib. To estimate the viability of responses or Bliss excess values at
355 corresponding in vivo free drug doses, the matrix with corresponding dose-matrix
356 responses with units converted in free drug concentrations was interpolated using the
357 function interp2 from the pracma R package.
358
359 2.9 Prediction of tumor growth inhibition in xenografts
360 GR metric was calculated from the relative viability of IPC-298 cells treated with a
361 combination of Belvarafenib and Cobimetinib by setting an experimentally measured
362 untreated doubling time of 60 hours as described in Hafner et al. [16] using the gDR
363 package. The resulting GR metric was converted to control-normalized growth rates, i.e.
364 the growth rate of treated cells divided by the growth rate of control cells. The growth
365 rate of control-treated IPC-298 xenograft tumors was calculated using the doubling time
366 of 18 days estimated from measured tumor volumes to be 0.0385 day™. Using free drug
367 concentrations measured in mice for Belvarafenib and Cobimetinib, corresponding

368 control-normalized growth rates were estimated from the in vitro matrix dose-response.
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369 Control-normalized growth rates were multiplied by the baseline tumor growth to
370 predict the growth rate achieved by tumors at any given dosing regime. The obtained
371 growth rates were used in an exponential growth model to simulate tumor volumes in
372 time and compared to experimental data.
373
374 2.10 Pharmacokinetic (PK) modeling of drug concentrations in patient
375 Synthetic PK profiles were generated for Belvarafenib and Cobimetinib which
376 recapitulate the population level PK variability expected for each respective compound.
377 For each compound, 500 synthetic PK profiles were generated at each of the following
378 dosing regimens (Belva: 50 mg QD, 100 mg BID, 200 mg BID, and 400 mg BID, Cobi: 20
379 mg QOD, 20 mg QD, 40 mg QD, and 60 mg QD). These simulations were performed in
380 R 4.1.1 using mrgsolve based on the published population PK (popPK) model for
381 Cobimetinib and a popPK model developed on the available individual
382 time-concentration profiles from n=243 patients treated with Belvarafenib in
383 NCT03118817, NCT02405065 and NCT03284502. Both models were developed using the
384 non-linear mixed effects approach as implemented in NONMEM [34]. Simulations were
385 conducted until steady state after which drug levels were recorded for use. In particular,
386 of the 30 days of simulation, days 22-26 were saved for analysis, providing at least two
387 complete cycles of drug concentrations for each condition. Simulated plasma total drug
388 concentrations in ng/mL were divided by the corresponding molecular weight
389 (Belvarafenib = 478.93 g/mol , Cobimetinib= 531.3 g/mol) to obtain total drug
390 concentrations in pM. These were multiplied by the fraction unbound in plasma
391 measured at 0.00258 for Belvarafenib and 0.052 for Cobimetinib.
392
393 2.11 Clinical tumor growth simulations
394 A clinical tumor growth inhibition (TGI) model (Claret et al. [35]) was used to
395 describe the tumor dynamics of patients treated in NCT03118817 and NCT03284502.
396 This model was developed using the population approach as implemented in
397 NONMEM version 7.5.0. The model that best described the observed tumor dynamics
398 was a biexponential growth model as described by Stein et al.[36]. In this model, tumor
399 dynamics evolve from an estimated initial tumor size TS, with key treatment-related
400 parameters describing the tumor growth rate constant (KG) (1/week) and tumor
401 shrinkage rate constants (KS) (1/week). Individual empirical Bayesian estimates (EBE)
402 [37] for KG and KS were summarized in melanoma patients and stratified by mutational
403 status. Model-based tumor dynamics were simulated for 1 year for each of these groups
404 based on the mean KG and KS for the group given the same TS; = 50.
405
406
407 3. Results
408 3.1. PanRAF and MEK inhibition is additive in BRAF-mutant, but synergistic in NRAS-mutant
409 cell lines
410 We performed an in vitro drug screen to assess the dose-response of 43 melanoma cell
411 lines treated with the type 1.5 “first-generation” RAF inhibitor Vemurafenib [38] and the
412 type 2 “panRAF" inhibitor Belvarafenib combined with the allosteric MEK inhibitor
413 Cobimetinib. We measured drug responses using the CellTiter-Glo cell viability assay in
414 a 9-by-9 drug combination matrix design with half-log dilution series starting at the top
415 concentrations of 10 uM for Vemurafenib and Belvarafenib and 5 uM for Cobimetinib.
416 Cell viability readouts were processed using the gDR R package [10] to obtain relative
417 viability and calculate the half-maximal inhibitory concentrations (IC50) (Figure 1a) and
418 Bliss scores (Figure 1b) as metrics of single-agent potency and combination benefit,
419 respectively. As expected and serving as a control, Vemurafenib as a single agent was

420 found to only inhibit melanoma lines carrying BRAF V600E/K mutations, which signal
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421 as BRAF monomers and are thus sensitive to type 1.5 RAF inhibitors that specifically
422 inhibit RAF monomers (Figure 1a). In addition to the BRAF V600E/K mutant lines,
423 Belvarafenib also inhibited most melanoma lines with a NRAS hotspot mutation
424 (specifically Q61R, Q61K, Q61V and Q61L) or wild-type for RAS/RAF proteins. This was
425 in line with previous reports [27], as these mutational contexts canonically signal
426 through RAF dimers and are thus sensitive to type 2 RAF inhibitors that block dimeric
427 signaling (Figure 1a). The MEK inhibitor Cobimetinib inhibited the growth of most cell
428 lines, validating their broad dependency on MAPK signaling, but interestingly had a
429 much higher potency on cell lines carrying the BRAF V600E/K mutation (log10 mean=
430 -1.66 uM, std= 0.6) than the NRAS mutation (logl0 mean= -1.08 uM, std=0.39) or
431 RAS/RAF wild-type (logl0 mean=-0.68 uM, std=0.82) (Figure 1a).
432 This difference in Cobimetinib’s single-agent potency appeared to extend to the way it
433 combined with Belvarafenib, as quantified by Bliss scores (Figure 1b). The combination
434 of Belvarafenib and Cobimetinib presented Bliss scores around zero for most BRAF
435 V600E/K cell lines but positive Bliss scores in most NRAS mutant or RAS/RAF wild-type
436 lines (Figure 1b). Bliss scores are calculated as the highest difference between
437 experimentally observed and theoretical expected relative viability based on Bliss
438 independence. With values closer to zero, Bliss scores for BRAF V600E/K melanoma
439 lines (mean=0.10 std=0.06) show that Belvarafenib and Cobimetinib inhibition is mostly
440 additive. High Bliss scores for NRAS mutant (mean=0.27, std=0.12) and RAS/RAF
441 wild-type lines (mean=0.25, std=0.12) highlight a synergistic reduction in relative
442 viability compared to single-agent responses at the same doses. We note that there is a
443 small number of BRAF mutant lines (5/32) that show synergistic pharmacological
444 responses similar to NRAS mutant lines. The dose range at which the maximal benefit is
445 achieved can be visualized by showing relative viability and Bliss excess calculated at
446 each drug dose combination, as shown for representative BRAF and NRAS mutant cell
447 lines (Figure 1c). While Bliss excess showed drug additivity across the entire
448 dose-response landscape in BRAF V600E/K lines, NRAS mutant melanoma lines
449 presented a narrow concentration range in which the combination of panRAF and MEK
450 inhibitor highly synergized in inhibiting cancer growth (Figure 1c).
451 3.2. Upregulation of MEK phosphorylation in NRAS Q61, but not in BRAF V600 contexts is
452 linked with synergy to panRAF and MEK inhibitors
453 We reasoned that the different ways in which panRAF and MEK inhibitors combine in
454 NRAS vs BRAF mutant melanomas likely originate from the distinct pathway rewiring
455 caused by these oncogenic mutations. As previously reported, NRAS Q61 signals
456 through RAS-dependent RAF dimers that are sensitive to negative feedback operating
457 on RAFs [31,39] (Figure 2a). Instead, BRAF V600E/K signal as RAS-independent RAF
458 monomers that are insensitive to upstream negative feedback (Figure 2b).
459 To confirm the engagement of negative feedback in NRAS Q61, but not BRAF V600
460 contexts, we performed western blot experiments with MEL-JUSO (Figure 2c) and A-375
461 cell lines (Figure 2d) to measure the phosphorylation status of the MEK and ERK kinases
462 upon inhibition with Cobimetinib, with or without a single dose of Belvarafenib. ERK
463 phosphorylation, the functional output of the MAPK signaling cascade, revealed a trend
464 similar to relative viability readouts: as a single agent, Cobimetinib had lower potency
465 and a shallower dose-response on the NRAS Q61 line MEL-JUSO than the BRAF V600
466 line A-375 (Figure 2¢-d). Moreover, combining a fixed dose of Belvarafenib synergized in
467 reducing ERK phosphorylation in the MEL-JUSO lines, but was additive in the A375
468 line.
469 MEK phosphorylation measurements were used as a proxy to assess the relief of
470 upstream negative feedback on MAPK signaling. It has previously been shown that

471 upon MEK inhibition, negative feedback release can be observed as a paradoxical
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472 increase in pMEK due to higher upstream signaling [40]. Indeed, we found that at doses
473 as low as 10 nM, Cobimetinib induced an increase in MEK phosphorylation in the
474 MEL-JUSO cell line while causing a decrease in the A-375 cell line. Interestingly, the
475 synergy observed between Belvarafenib and Cobimetinib appeared to saturate at the
476 dose of 50 nM Cobimetinib, which corresponds to full engagement of negative feedback
aT7 as shown by higher MEK phosphorylation in the Cobimetinib single-agent treatment
478 (Figure 2c-d). Paradoxical activation of MEK phosphorylation caused by Cobimetinib
479 was abolished by adding Belvarafenib, likely due to a counteracting of the negative
480 feedback relief on RAF dimers (Figure 2c-d). These results support the hypothesis that
481 the negative feedback relief observed through pMEK upregulation is linked to the
482 differential response of NRAS Q61 and BRAF V600E lines to Cobimetinib and in
483 combination with Belvarafenib.
484
485 3.3. Computational model of MAPK signaling implicates negative feedback in the response of
486 NRAS and BRAF mutant melanoma lines to panRAF and MEK inhibitors
487 To ground this hypothesis on a quantitative framework and disentangle mechanisms of
488 drug synergy, we modified an existing computational model of MAPK signaling that
489 can be instantiated with a BRAF V600 or a NRAS Q61 oncogenic driver [19,20]. Briefly,
490 we implemented and calibrated a previously missing negative feedback that links ERK
491 phosphorylation with an inhibitory phosphorylation of RAF. This phosphorylation
492 reduces the ability for RAF to bind to RAS, dimerize, and facilitate signaling [30,31]. In
493 order to quantitatively assess whether pRAF feedback is capable of explaining the above
494 observations and to better understand the consequences, we made use of the BRAF
495 V600E and NRAS Q61 with pRAF feedback models described in method section 2.6.
496 These models indeed capture the observations made for western blotting data (Figure
497 2e). The NRAS Q61 model exhibits a strong increase in pMEK under single agent
498 Cobimetinib which is significantly diminished with the addition of Belvarafenib while
499 single agent Cobimetinib is effective on the BRAF V600E model. For an NRAS Q61
500 model with the pRAF feedback removed, there is little to no increase in pMEK in
501 response to Cobimetinib (Figure S2) offering support to the hypothesis that negative
502 feedback is key for differential drug responses between NRAS and BRAF mutant
503 tumors.
504 Next, we used the model to simulate a full drug combination matrix response for
505 Belvarafenib and Cobimetinib. We sampled a dose range focused on the area of synergy
506 and predicted MEK and ERK phosphorylation responses in BRAF V600 and NRAS Q61
507 contexts (Figure 3a-b). The model predicted that in those dose ranges ERK
508 phosphorylation would be strongly inhibited in the BRAF V600 context by both single
509 agents and in combination. Conversely, it would only strongly inhibit pERK by synergy
510 in the NRAS Q61 context, with a paradoxical activation of pMEK by Cobimetinib. To
511 validate model predictions, we used immunofluorescence-based microscopy to quantify
512 ERK phosphorylation in A-375 and MEL-JUSO cell lines across a 6-by-6 dose dilution
513 matrix of Cobimetinib and Belvarafenib, finding that it accurately and quantitatively
514 matched model predictions (Figure 3c). This suggests that the synergistic rather than
515 additive response to panRAF and MEK inhibition observed in NRAS mutant vs BRAF
516 mutant melanoma is driven by the sensitivity to negative feedback of the former
517 compared to the latter. Moreover, drug responses are determined by the degree of
518 inhibition of ERK phosphorylation that is directly translated into cell viability.
519 3.4. In vitro drug dose-responses assessed at clinically relevant concentrations can accurately
520 predict inhibition of tumor growth in vivo
521 Next, we wondered if insights obtained from in vitro viability responses are relevant to

522 understanding in vivo drug dosage and tumor responses. A direct translatability is not
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523 obvious as several parameters are different between in vitro and in vivo settings, such as
524 microenvironment, growth dynamics, cellular states, pharmacokinetic profiles, drug
525 distribution, etc. To directly test translatability, we devised a computational
526 methodology to predict in vivo tumor volume responses using as inputs in vitro
527 dose-responses and in vivo drug concentrations. We applied this methodology to predict
528 tumor responses of IPC-298 melanoma cells grafted in flanks of mice treated for 21 days
529 with clinically relevant doses of Belvarafenib and Cobimetinib (Figure 4a-b).
530 First, we re-assessed the in vitro relative viability of IPC-298 cells using a 10-by-10 dose
531 matrix of Belvarafenib and Cobimetinib with concentration ranges that better match in
532 vivo relevant doses (Figure 4a). This provides a more refined map on which to score
533 growth inhibition at in-vivo drug concentrations compared to the large drug screen.
534 Subsequently, we converted relative viability into growth rate inhibition using the GR
535 metric [15]. Briefly, the baseline doubling rate of IPC-298 cells (60h) was used to back
536 calculate initial seeding cell numbers and calculate the growth rate inhibition at every
537 Belvarafenib and Cobimetinib dose (Figure 4a). GR values between one and zero
538 quantify a degree of growth arrest, zero indicates complete stasis and negative values
539 indicate net cell loss (Figure 4a). Then, we converted nominal drug concentrations to
540 free drug concentrations by multiplying the fraction unbound (fu) in the serum of each
541 drug (Belvarafenib fu = 0.034, Cobimetinib fu = 0.196).
542 Second, we projected onto the dose-response matrix the free drug concentrations
543 measured in the plasma of mice treated with 15 mg/kg (free drug = 8 nM) or 30 mg/kg
544 (free drug = 20 nM) of Belvarafenib or 5 mg/kg (free drug = 3 nM) of Cobimetinib QD for
545 3 days and measured 3 h post last dose. This allowed us to estimate the growth rate
546 inhibition expected from in vitro data at the corresponding free drug concentrations for
547 single-agent and combination treatments (Figure 4a). Finally, we calculated the baseline
548 growth rate of IPC-298 xenografts in mice treated with vehicle QD for 21 days and
549 scaled the growth rate according to the corresponding in vitro growth rate inhibition at
550 each dose regime. This allows us to predict the steady state tumor volume progressions
551 that should be achieved in vivo (Figure 4b). Comparison with tumor volume growth
552 experimentally measured in mice treated for 21 days showed an accurate prediction of
553 tumor growth dynamics (Figure 4b). As single agents, Belvarafenib achieved partial and
554 complete cytostasis at 15 mg/kg and 30 mg/kg, respectively, while Cobimetinib achieved
555 little to no tumor growth inhibition at 5 mg/kg (Figure 4b). The addition of 5 mg/kg of
556 Cobimetinib to 15 mg/kg and 30 mg/kg Belvarafenib shifted tumor control from
557 cytostatic to cytotoxic (Figure 4b), proving that synergy scored in the in vitro setting
558 quantitatively translates into in vivo responses. Expression of genes measured at the end
559 of treatment confirmed that improved tumor control is linked to stronger inhibition of
560 genes that report on the activity of MAPK signaling (e.g. FOSL1, DUSP6, SPRY4). Please
561 note that data for three of the five conditions used as comparators for tumor volumes
562 and gene expression analysis here were previously reported in [25]. This confirms the
563 mechanistic basis for synergy previously identified using in vitro experiments and
564 computational modeling (Figure S2b).
565 3.5. Drug levels required for additive and synergistic responses in NRAS- and BRAF- mutant
566 melanoma can be achieved clinically
567 We next wondered whether the additive and synergistic behaviors of BRAF and NRAS
568 mutant melanomas observed in vitro occur at clinically relevant drug concentrations in
569 patients. In order to evaluate clinically relevant concentrations of Belvarafenib and
570 Cobimetinib, we calculated the average and standard deviation of free drug
571 concentrations from the respective clinical PK models under 16 dose regimens (4 unique
572 dose schemes for each drug) using the simulated responses from day 22 to 26, as

573 described in section 2.10. The average predicted in vitro drug combinations were
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574 converted to free drug concentrations and projected onto the in vitro responses as
575 described in section 2.8 (Figure 5a). This approach was used on both the A-375 (BRAF
576 V600E) and IPC-298 (NRAS Q61) cell lines to obtain the GR metric and Bliss excess
577 values for these two mutational contexts at clinically relevant concentrations.
578 In the BRAF mutant context, all but the weakest clinically realized combinations of
579 Belvarafenib and Cobimetinib perform similarly, inhibiting tumor growth, as shown by
580 the corresponding GR metric values, without significant synergistic effects, as shown by
581 low Bliss excess values (Figure 5b left). As a result, we conclude that in BRAF V600E
582 lines there is little motivation to achieve precise drug combination levels in the patient.
583 For these lines, a drug regimen of intermediate intensity should be sufficient to inhibit
584 tumor growth. Conversely, the choice of drug regimen had a greater impact on the
585 extent of growth inhibition in the NRAS mutant context (Figure 5b right). Strong tumor
586 inhibition is either achieved with potent Belvarafenib (at 400 mg QD) or Cobimetinib (at
587 60 mg DQ) single-agent activity or by synergy achieved at intermediate doses, with the
588 highest synergy with good tumor control observed for 100 mg BID Belvarafenib and 20
589 or 40 mg QD Cobimetinib. This shows that the mutational context creates a different
590 need for dosing of the two combination agents, where leveraging synergy in NRAS
591 mutant melanoma is better achieved at intermediate doses of Cobimetinib that lower the
592 requirement of Belvarafenib to synergize.
593 As shown by standard deviation errors, we note that the variability in the predicted
594 drug levels is quite large, especially for the higher doses (Figure 5a bottom left). This
595 suggests there might be significant issues in achieving a highly synergistic drug
596 combination with precision in individual patients. The NRAS Q61 context thus requires
597 a more thorough analysis of the impacts of this variability to gain insight into which, if
598 any, drug regimens achieve adequate levels of growth inhibition through synergy.
599 3.6.  Pharmacokinetic variability in patients highlights precision requirement for synergistic
600 responses in NRAS mutant melanoma tumors
601 We decided to assess the role that the patient-to-patient variability in pharmacokinetic
602 profiles has in leveraging synergistic vs additive responses. The PK models in this study
603 provide drug levels for individual, virtual patients, which enables us to develop a
604 mapping from each single patient’s PK profile to a distribution of drug effects the
605 patient experiences, i.e. GR metric and Bliss Excess values. To accomplish this, we obtain
606 the patient’s free drug concentrations once per hour over the course of 48 hours (Figure
607 S3), then project these concentrations onto the GR metric and Bliss scores of each
608 mutational context in the same way we projected the average free drug levels in section
609 3.5. Doing this for multiple patients reveals the impacts of patient-to-patient variation as
610 well as the effects resulting from the temporal variation of drug levels (Figure 6a). From
611 this we see a single drug regimen can generate different responses within a population.
612 This indicates a significant challenge for treatments; a given regimen might, for example,
613 work well for one patient, but have less effect for another. In order to gain a better
614 understanding of which regimens consistently result in high benefit/low tumor growth
615 across all patients and times, we examine the full distribution of predicted effects that
616 result from a given drug regimen (Figure 6b). We find that because BRAF V600E tumors
617 lack significant synergy (low Bliss excess) and still achieve consistently strong tumor
618 suppression (high GR values) from drug regimens with as low dosing as Belvarafenib
619 100 mg QD and Cobimetinib 20 mg QD. Therefore, we conclude that drug additivity
620 imposes no strict requirements on the precision of dosing in this mutational context.
621 Conversely, NRAS Q61 tumors are seen to achieve tumor control by significant synergy
622 (high Bliss excess) for drug combinations that leverage partial single-agent MEK
623 inhibition at 20 and, even better, 40 mg QD regimen, which combine well with doses as
624 low as 50 mg QD and 100 mg BID of Belvarafenib. Distribution of growth inhibition

625 measured by GR and synergy by Bliss excess visualized via violin plots show, however,
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626 that combinations with 50 mg QD Belvarafenib suffer from incomplete responses due to
627 the large variability in free drug concentrations in individual patients. This happens
628 because combinations with 50 mg QD Belvarafenib lie very close to the synergy
629 boundary in the dose landscape and fluctuations bring the response outside of the
630 synergistic regimes (Figure 6a-b). Of all the synergistic combinations, Cobimetinib at 40
631 mg QD with Belvarafenib at 100 mg BID seem to achieve consistent tumor control with
632 lower patient-to-patient variability and moderate single agent-activities, thus
633 representing an ideal drug-sparing synergistic point in the dose landscape. This
634 underscores the importance of using dose regimes with high synergy when treating
635 NRAS Q61 tumors to achieve strong effects while minimizing the effect of
636 pharmacokinetic fluctuations.
637 3.7. Clinical trials support distinct combinability of panRAF and MEK inhibitors in BRAF and
638 NRAS mutant patients
639 To ascertain the validity of insights from modeling and experiments, we analyzed
640 limited data available from Phase 1 clinical trials combining Belvarafenib and
641 Cobimetinib in the treatment of melanoma patients. We fit a clinical tumor growth
642 inhibition (TGI) model [35] to describe the tumor dynamics of patients treated in clinical
643 trials NCT03118817 and NCT03284502, as described in section 2.11. The model describes
644 the observed tumor dynamics with a biexponential growth model with tumor dynamics
645 evolving for one year from the estimated initial tumor size, with tumor growth rate and
646 tumor shrinkage rate constants summarized in melanoma patients and stratified by
647 mutational status [36]. The simulations provide support for the differential contribution
648 of increasing the Cobimetinib dose in the BRAF-mutant vs NRAS-mutant setting. As we
649 predicted, the supralinear impact on growth from increasing Cobimetinib doses on the
650 NRAS mutant tumors subjected to a constant Belvarafenib dose (Figure 7b bottom)
651 indicates the presence of synergistic effects. While the more linear impact on growth
652 from increasing Cobimetinib doses on the BRAF mutant tumor subjected to a constant
653 Belvarafenib dose (Figure 7b top) indicates the drugs are acting in a more additive
654 fashion. This synergy does appear important for reaching desired effects in NRAS
655 mutant tumors, with a combination of Cobimetinib and Belvarafenib outperforming
656 single agent Belvarafenib at suppressing tumor growth.
657 Clinical data allow us to assess another key information for the design of drug
658 combinations not included in our analysis, namely if tolerability is a relevant issue that
659 constrains drug regimens. In the clinical trial NCT03284502, the regimen of Belvarafenib
660 200 mg BID continuously and Cobimetinib 40 mg QD 21/7 led to 3 dose-limiting
661 toxicities (DLTs) (G3 colitis, G3 diarrhea, G3 nausea) in 2 patients [41]. These and other
662 reported treatment-emergent toxicities (“dermatitis acneiform, diarrhea, constipation,
663 and increase in blood creatine phosphokinase”) suggest on-target toxicity on wild-type
664 MAPK signaling. Consequently, Cobimetinib was reduced to 20 mg QD while
665 Belvarafenib was dose escalated to 300 mg BID, which did not result in DLTs [41]. Our
666 analysis described in Figure 6b shows that at 200 mg BID Belvarafenib and 40 mg QD
667 Cobimetinib, Belvarafenib and Cobimetinib are already both substantially active as
668 single agents in NRAS mutant cells, suggesting that the combination is not leveraging
669 synergy as effectively and is likely impinging on wild-type MAPK signaling. Increasing
670 Belvarafenib to 300 mg BID while reducing Cobimetinib to 20 mg QD shifts the
671 contribution to mostly Belvarafenib as single-agent, likely reducing toxicity but also
672 losing synergistic effects on NRAS-mutant tumors. Our analysis suggests maintaining
673 Cobimetinib at 40 mg QD or QOD while reducing Belvarafenib to as low as 50-100 mg
674 QD/BID is an alternative approach to de-escalate dose intensity which might better
675 leverage synergy of tumor inhibition without invoking strong single-agent effects, the
676 possible culprits of toxicity. To the best of our knowledge, this regime of intermediate

677 Cobimetinib dose and low Belvarafenib dose remains untested in the clinic.
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678
679
680 4. Discussion
681 This study integrates drug responses, signaling modeling and pharmacokinetic
682 simulations to identify mutational scenarios sensitive to specific co-dosing regimens in
683 precision therapy for melanoma. Our main finding is that panRAF and MEK inhibition
684 exhibit additive effects in BRAF-mutant tumors and synergistic effects in NRAS-mutant
685 tumors and that this difference translates into distinct requirements in terms of dosing
686 regimens and dosing precision in the clinic. Our approach addresses a number of
687 shortcomings typically encountered in translating in vitro to in vivo drug responses. In
688 the following, we will elaborate on these findings as well as discuss the constraints and
689 limitations of our own methodology.
690 We identified differences in the benefit of panRAF and MEK co-inhibition through a
691 drug screen of 43 melanoma cell lines. While the screen was strongly biased for BRAF
692 V600 mutations, high synergy was evident in four NRAS mutant lines as quantified by
693 Bliss excess analysis. Our analysis extended beyond these traditional combination
694 metrics by projecting in vivo drug doses onto drug combination responses. Key to this
695 projection was gathering information on free drug concentrations coming from in vivo
696 xenograft experiments and pharmacokinetic models trained using clinical data. Our
697 approach confirmed that the additivity and synergy detected in vitro apply at clinically
698 achievable doses of Belvarafenib and Cobimetinib. The computational tool we developed
699 for this analysis aids in the definition of dose-response matrices reflective of clinical
700 conditions and is publicly available to encourage use in the scientific community.
701 An issue with projecting clinical concentrations on drug dose-response data is the
702 translatability from in vitro to in vivo. We found that converting relative viability to
703 growth rate inhibition via GR metric allowed for precise prediction of tumor inhibition
704 in a xenograft model. This methodology was previously shown to be effective for single
705 agent drugs, but with the necessity of an inferred conversion factor to relate in vitro and
706 in vivo drug concentrations [16]. We found that in our system this factor is unnecessary,
707 i.e. it is unity. It is possible that other drug combinations or cell lines will not enjoy this
708 direct correspondence. Using the approach we develop here to systematically assess
709 conversion factors across drug combinations and cancer models should help extract the
710 principles by which in vitro responses translate to in vivo settings, guiding translatability
711 of pre-clinical studies. While our findings suggest this is possible, a notable limitation is
712 the reliance on cell lines and xenografts, which might not accurately represent clinical
713 response as they may not fully encapsulate the intricate biology of patient tumors and
714 lack critical elements such as the immune system.
715 Mechanistically, we identified a negative feedback on RAF dimers in NRAS mutant
716 melanoma as the likely culprit behind their lower sensitivity to single-agent MEK
717 inhibition and synergistic response to panRAF co-inhibition. These findings largely
718 confirm prior research [26-28], but were extended using computational modeling of
719 signal transduction to provide a quantitative framework for understanding and
720 predicting mechanisms of drug adaptation. We have shown that a previously developed
721 model of MAPK signaling [19,20] could be extended to explore synergy mechanisms
722 specific to these mutational contexts. Moreover, we used the model to design
723 experiments that validated the key link between the degree of ERK inhibition achieved
724 in BRAF and NRAS mutant cell lines and drug responses. As noted in the results section,
725 there was a small fraction of BRAF-mutant lines that exhibited synergistic responses
726 similar to NRAS-mutant lines. Mechanistic insights from modeling indicate that these
727 BRAF-mutant lines might activate dimeric RAF signaling either at baseline or in
728 response to treatment, therefore suggesting that drug synergy might also be required to

729 curb resistance mechanisms in BRAF-mutant tumors.
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730 With a mechanistic understanding in hand, next we assessed drug responses at
731 clinical-relevant concentrations to retrospectively evaluate dosing regimes tested in the
732 clinic and foresight alternative strategies. As scored through the lenses of pre-clinical
733 data, we realized that the initial combination tested in the clinic of 200 mg BID
734 Belvarafenib and 40 mg QD Cobimetinib does not fully leverage synergy since both
735 drugs, but especially Belvarafenib, are quite effective as single-agents. Interestingly, this
736 dose regime was also not well tolerated in the clinic, most likely due to on-target
737 toxicity. Our analysis suggests that to fully leverage synergy and reduce single-agent
738 activity, Cobimetinib could be kept at 40 mg QD or QOD dosing while Belvarafenib
739 could be reduced substantially to 50 or 100 mg QD/BID. This strategy agrees with the
740 preclinical evidence that synergy is best leveraged when the negative feedback elicited
741 by MEK inhibition is partially active to dramatically potentiate panRAF inhibition. We
742 hypothesize that the alternative strategy of lowering Cobimetinib to 20 mg QD and
743 escalating Belvarafenib to 300 mg BID might come at the cost of losing single-agent
744 potency of MEK inhibition and, therefore, drug synergy.
745 Although supported by preclinical data for efficacy, utilizing drug synergy in a regimen
746 of intermediate MEK inhibition and low panRAF inhibition to minimize on-target
747 toxicities in the clinic remains to be validated. In principle, on-target toxicities could be
748 reduced if the mechanisms behind drug synergy are not strongly operating in healthy
749 tissues. While evidence seems to suggest the tendency of synergy in therapeutic effects
750 to be significantly stronger than the synergy in toxic effects [43], the picture is far from
751 clear. On the downside, the negative feedback mechanisms behind drug synergy
752 operating on Ras signaling and RAF dimerization are presumably active in healthy cells.
753 In contrast, NRAS Q61 hotspot mutations disrupt the Ras loading cycle in a manner that
754 likely amplifies dependency on negative feedback—and thus drug synergy —relative to
755 healthy cells. A lack of cell line models that accurately represent signaling in normal
756 tissue complicates experimental verification of these hypotheses. Estimating the
757 therapeutic window of wild-type versus mutant signaling presents a promising
758 direction for dynamic signaling modeling, especially when parameters for wild-type
759 signaling are quantifiable. Ultimately, the clinical experiment of a regimen involving
760 intermediate MEK inhibition and low panRAF inhibition needs to be implemented to
761 assess the effect on toxicity. A main result of this work is to show that this regime
762 remains so far likely untested for Belvarafenib and Cobimetinib.
763 An insight revealed by analyzing patient-to-patient pharmacokinetic variability is the
764 degree of precision in dosing needed to leverage synergy in the clinics. We have
765 observed that the synergistic space of the dose landscape is pretty narrow compared to
766 the fluctuations in free drug concentrations across patients. For each regime in which
767 average drug concentrations were solidly in the synergistic space, we found some
768 patients whose fluctuations in drug levels positioned them outside of synergy. This has
769 implications for how preclinical evidence of synergy should be applied to implement
770 drug combinations in the clinic. Conceptually, our observations might propose a more
771 general principle often overlooked in clinical development. Using clinical data on patient
772 responses, it has been shown that most drug combinations in the clinic in practice act
773 independently or additively, even when pre-clinical work suggested strong synergy [42].
774 We find it unlikely that mechanisms of synergy identified pre-clinically do not operate in
775 human tumors. Here, we argue that synergy might not often be observed clinically
776 because of the practical issue of maintaining drug concentrations within the synergistic
777 regimes. We suggest that the methodology developed here can be applied early on in
778 clinical decision making to inform on the likelihood of achieving and maintaining
779 synergy in a patient population.
780

781
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782 5. Conclusions
783 In this study, we explore the use of preclinical cell line drug response data
784 alongside computational modeling to determine the optimal dosages of pan-RAF
785 (Belvarafenib) and MEK (Cobimetinib) inhibitors for melanoma treatment. The main
786 findings is that the two main oncogenic drivers in melanoma, BRAF V600 and NRAS
787 Q61 hotspot mutations, result in different underlying signaling biology requiring
788 different treatment regimes using the same drugs. We show that most combinatorial
789 dose regimens achievable in the clinic are effective for treating BRAF-mutant melanoma
790 thanks to single-agent higher potency and drug additivity, whereas NRAS-mutant
791 melanoma requires more precise dosing to harness drug synergy, posing practical
792 implementation challenges due to interpatient pharmacokinetic variability.
793
794 Our research underscores that precision medicine should not only aim to identify
795 the most effective drug combination for a given indication, but also tailor dosing
796 regimens to match the pathway biology driven by mutational mechanisms, among other
797 biologic factors. In these contexts, the need for precision dosing becomes imperative,
798 demanding thorough examination within both pre-clinical and translational research
799 frameworks. By introducing a novel methodological approach, our study seeks to tackle
800 the challenges associated with implementing precision dosing strategies, propelling the
801 efforts to enhance the personalization of cancer treatment.
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Figure 1. Drug screen reveals additivity of combined pan-RAF and MEK inhibition in
BRAF-mutant melanoma, but synergy in NRAS mutant melanoma cell lines. (a) Single agent drug
screen on 43 melanoma cell lines including those with BRAF and NRAS mutations. Drug
effectiveness quantified via IC50 values. (b) Combination drug screen on the same 43 melanoma
cell lines. Drug combination synergies quantified via Bliss scores. (c) Measured in vitro effects of
Cobimetinib and Belvarafenib combinations on the relative viability of select cell lines with drug
synergies quantified by Bliss excess.
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Figure 2. Computational modeling and molecular experiments implicate a negative feedback loop
in the response of NRAS vs BRAF mutant melanomas to panRAF and MEK inhibitors. (a-b)
Schematic of the MAPK pathway in (a) NRAS Q61 and (b) BRAF V600E melanomas. (c-d)
Quantification of pMEK, total MEK, pERK, and total ERK protein levels obtained via western
blotting under the indicated combinations of Cobimetinib and Belvarafenib in (¢) MEL-JUSO and
(d) A-375 cells. () Model predictions for steady state percentages of active RAF, pMEK, and pERK
under indicated concentrations of Belvarafenib and Cobimetinib. Results are shown for both BRAF

V600E and NRAS Q61 models.
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Figure 4. Prediction of in vivo xenograft tumor volume control by panRAF and MEK inhibition
achieved using in vitro cell line response and in vivo exposures. (a) Conversion of relative viability
to GR metric for IPC-298 in vitro drug responses and projection of mouse PK data onto in vitro
responses to obtain predicted tumor growth rates (b) Comparison between predicted tumor
growth rates and experimentally measured tumor growth rates. Part of the tumor volume
experiments re-analyzed here were previously published in [25].
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Figure 5. Leveraging synergy in NRAS mutant melanoma at equivalent clinical doses requires at
least intermediate MEK inhibition thus allowing lower Belvarafenib doses. (a) Workflow for
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and drug synergies at clinically equivalent concentrations. (b) Predicted viability of cell panels and
drug synergies at clinically equivalent drug concentrations.
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Figure 6. Pharmacokinetic variability in patients limits the precision to obtain synergistic
responses in NRAS mutant melanoma tumors (a) Individual virtual patient PK trajectories
resulting from the indicated drug regimen projected onto in vitro responses. (b) The distribution
of GR metric values (left) and Bliss excess values (right) measured from 75 single patient
trajectories. Multiple drug regimens are compared, rows and columns labels indicate the
Cobimetinib and Belvarafenib doses used in the specific drug regimen.
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