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 Simple Summary 
 Combining  drugs  is  crucial  for  enhancing  anti-cancer  responses.  However,  the  potential  of 
 pre-clinical  data  in  identifying  suitable  combinations  and  dosage  is  often  underutilized.  In  this 
 study,  we  leverage  preclinical  in  vitro  cell  line  drug  response  data  and  computational  modeling  of 
 signal  transduction  and  of  pharmacokinetics  to  elucidate  distinct  dose  requirements  for  the 
 combination  of  pan-RAF  and  MEK  inhibitors  in  melanoma.  Our  findings  reveal  a  more 
 synergistic,  but  narrower  dosing  landscape  in  NRAS  vs  BRAF  mutant  melanoma,  which  we  linked 
 to  a  mechanism  of  adaptive  resistance  through  negative  feedback.  Further,  our  analysis  suggests 
 the  importance  of  drug  dosing  strategies  to  optimize  synergy  based  on  mutational  context,  yet 
 highlights  the  real-world  challenges  of  maintaining  a  narrow  dose  range.  This  approach 
 establishes  a  framework  for  translational  investigation  of  drug  responses  in  the  refinement  of 
 combination  therapy,  balancing  the  potential  for  synergy  and  practical  feasibility  in  cancer 
 treatment planning. 

 Abstract 
 Purpose:  This  study  explores  the  potential  of  preclinical  in  vitro  cell  line  response  data  and 
 computational  modeling  in  identifying  optimal  dosage  requirements  of  pan-RAF  (Belvarafenib) 
 and  MEK  (Cobimetinib)  inhibitors  in  melanoma  treatment.  Our  research  is  motivated  by  the 
 critical  role  of  drug  combinations  in  enhancing  anti-cancer  responses  and  the  need  to  close  the 
 knowledge  gap  around  selecting  effective  dosing  strategies  to  maximize  their  potential.  Results:  In 
 a  drug  combination  screen  of  43  melanoma  cell  lines,  we  identified  unique  dosage  landscapes  of 
 panRAF  and  MEK  inhibitors  for  NRAS  vs  BRAF  mutant  melanomas.  Both  experienced  benefits, 
 but  with  a  notably  more  synergistic  and  narrow  dosage  range  for  NRAS  mutant  melanoma. 
 Computational  modeling  and  molecular  experiments  a�ributed  the  difference  to  a  mechanism  of 
 adaptive  resistance  by  negative  feedback.  We  validated  in  vivo  translatability  of  in  vitro 
 dose-response  maps  by  accurately  predicting  tumor  growth  in  xenografts.  Then,  we  analyzed 
 pharmacokinetic  and  tumor  growth  data  from  Phase  1  clinical  trials  of  Belvarafenib  with 
 Cobimetinib  to  show  that  the  synergy  requirement  imposes  stricter  precision  dose  constraints  in 
 NRAS  mutant  melanoma  patients.  Conclusion:  Leveraging  pre-clinical  data  and  computational 
 modeling,  our  approach  proposes  dosage  strategies  that  can  optimize  synergy  in  drug 
 combinations,  while  also  bringing  forth  the  real-world  challenges  of  staying  within  a  precise  dose 
 range. 

 Keywords:  signal  transduction;  targeted  therapy;  drug  combination;  mechanistic  model;  systems 
 pharmacology; adaptive resistance; precision medicine 
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 1. Introduction 
 Cancer  is  a  disease  marked  by  abnormal  cell  growth  and  the  potential  to  spread  and 

 cause  death.  Despite  its  complexities,  cancers  often  carry  vulnerabilities  that  make  them 
 susceptible  to  targeted  treatments  [1–3]  .  Precision  medicine  provides  a  promising 
 approach  to  exploit  these  vulnerabilities  and  effectively  kill  cancer  cells.  However, 
 designing  effective  targeted  therapies  is  not  straightforward.  The  dynamic  nature  of 
 cancer  cells  enables  them  to  adapt  and  develop  resistance  mechanisms,  often  rendering 
 single-drug  treatments  less  effective  [4,5]  .  As  a  response,  the  medical  field  has  turned 
 towards  combined  drug  regimens,  simultaneously  targeting  multiple  vulnerabilities  in 
 cancer  cells.  Identifying  effective  drug  combinations,  however,  is  only  one  part  of  the 
 puzzle.  The  dosing  regimes  of  these  combinations  that  yield  maximal  benefit  while 
 maintaining  tolerability  must  also  be  determined.  Current  approaches  to  delineate  these 
 aspects often fall short. 

 I  n  vitro  drug  screens  using  cancer  cell  lines  represent  a  primary  tool  for  identifying 
 drug  combinations  that  act  beneficially  on  lines  exhibiting  traits  of  interest  [6,7]  . 
 Typically,  changes  in  cell  viability  are  measured  in  response  to  the  serial  dilution  of  two 
 drugs,  also  called  a  drug  dose-response  matrix,  and  the  benefits  of  combining  drugs  is 
 quantified  based  on  principles  such  as  Highest  Single  Agent  (HSA),  Bliss  independence, 
 Loewe  additivity,  and  others  [8,9]  .  These  enable  the  computation  of  combination  scores, 
 which  are  used  to  rank  the  effectiveness  of  drug  combinations  with  respect  to  single 
 agents.  A  significant  limitation  in  the  use  of  combination  scores  is  the  inadequate 
 consideration  of  the  specific  point  in  the  dose-response  landscape  where  benefits  are 
 observed,  leading  to  the  omission  of  drug  dose  from  the  benefit  assessment.  This  can 
 lead  to  an  inaccurate  assessment  of  clinical  potentials  and  a  mischaracterization  of 
 biomarkers,  particularly  in  situations  where  cancer  populations  exhibit  responses  at 
 distinct effective dose ranges. 

 The  reasons  for  these  limitations  are  both  practical  and  conceptual.  A  practical 
 limitation  is  the  lack  of  computational  frameworks  for  easily  manipulating  large-scale 
 dose-response  data  and  extracting  dose-specific  information.  While  tools  that  adhere  to 
 FAIR  software  principles  have  been  recently  developed  [10,11]  ,  they  still  lack  mature 
 capabilities  for  extracting  and  analyzing  response  data  at  the  (free)  drug  concentrations 
 determined  by  pharmacokinetics  in  the  clinic  [12]  .  A  more  profound  conceptual 
 limitation  is  the  unclear  translatability  of  in  vitro  drug  responses  to  in  vivo  se�ings.  The 
 primary  strategies  used  are  either  qualitative,  such  as  benchmarking  exposures  to 
 single-point  i  n  vitro  metrics  like  the  half-maximal  inhibitory  concentration  (IC50)  values, 
 or  require  extensive  datasets  and  efforts,  as  in  mechanistic  modeling  [13]  or  machine 
 learning  [14]  .  Recently,  success  has  been  reported  in  using  in  vitro  growth  rate  inhibition 
 values  with  pharmacokinetic  parameters  to  estimate  in  vivo  drug  response  [15,16]  ,  but 
 these  results  were  limited  to  single-agent  response.  Improving  the  frameworks  for  drug 
 dose-response  analysis  and  testing  the  translatability  of  in  vitro  drug  combinations  to  in 
 vivo  is required to exploit the full potential of  pre-clinical data. 

 While  dose-response  experiments  with  cell  lines  provide  insightful  data  on  drug 
 impact,  their  phenomenological  nature  limits  mechanistic  understanding.  Thus, 
 methods  able  to  link  dose-response  data  to  molecular  measurements  and  information  on 
 protein  structures  and  networks  are  needed.  Increasingly,  computational  dynamic 
 models  —  mathematical  representations  of  molecular  networks  —  are  being  deployed  to 
 elucidate  these  mechanisms  [4,17]  .  Due  to  its  role  in  cancer  and  advanced  molecular 
 understanding,  the  MAPK  signaling  pathway  has  been  the  focus  of  current 
 developments  of  computational  models  of  drug  response  [18–22]  .  These  models  are 
 perpetually  updated  to  incorporate  new  conditions  and  advancements  in  the 
 understanding  of  oncogenic  signaling.  A  necessary  development  is  the  use  of  these 
 models  to  explain  variations  seen  in  drug  responses  based  on  traits  of  interest,  such  as 
 mutational  status,  and  link  phenotypes  to  mechanistic  insights  at  the  clinically  relevant 
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 dose.  The  promise  is  that  these  models  can  generalize  correlative  trends  based  on 
 theoretical  reasonings  and  provide  molecular  insights  that  can  be  experimentally 
 verified. 

 In  this  study,  we  deploy  a  framework  that  combines  preclinical  in  vitro  cell  line  drug 
 response  data  and  computational  modeling  of  signal  transduction  and  pharmacokinetics 
 to  unravel  the  dose  requirements  of  pan-RAF  and  MEK  inhibition  for  melanoma 
 treatment.  The  development  of  RAF  inhibitors  has  seen  many  advancements  with  initial, 
 first-generation  inhibitors  showing  effectiveness  against  active  RAF  monomers  such  as 
 BRAF  V600E  [23]  .  The  primary  limitation  of  these  inhibitors  is  their  inability  to  block, 
 and  sometimes  even  paradoxically  enhance,  RAF  dimer  signaling.  As  a  result,  the 
 inhibitors  are  ineffective  against  prevalent  mutations  like  NRAS  Q61,  which  signal 
 through  RAF  dimers,  and  are  liable  to  escape  mechanisms  through  RAF  dimer  signaling 
 [24]  .  This  has  spurred  the  development  of  several  small-molecule  ATP-competitive 
 panRAF  inhibitors,  such  as  Belvarafenib  [25]  ,  which  are  capable  of  targeting  RAF  dimers 
 and  are  currently  in  clinical  trials.  Bolstered  by  robust  preclinical  evidence  [26–28]  ,  in  the 
 clinic  panRAF  inhibitors  are  being  combined  with  MEK  inhibitors  to  achieve  stronger 
 pathway  suppression  and  avoid  mechanisms  of  resistance  [trials:  NCT03284502, 
 NCT04417621,  NCT03905148,  NCT04249843  and  NCT03429803].  However,  the  ways  in 
 which  these  drugs  inhibit  activity  under  the  two  major  activating  mutations  in 
 melanoma,  BRAF  V600E  and  NRAS  Q61  hotspot  mutations,  and  the  corresponding  drug 
 dose  landscape  are  still  being  explored.  To  this  end,  we  apply  our  approach  in  the  hopes 
 of  unraveling  how  this  drug  combination  impacts  different  mutational  contexts  and 
 identifying effective drug regimens for clinical use. 

 2. Materials and Methods 

 2.1 Drug combination screen 
 Screening  Drugs  Management  and  Quality  Control.  Drugs  were  obtained  from 

 in-house  synthesis  or  purchased  from  commercial  vendors.  A  fully  automated  transfer 
 system  by  Nova  Technology  (Innovate  Engineering)  was  used  to  transfer  material  from  a 
 dry  library,  solubilize  with  DMSO,  and  log  the  solutions  into  our  compound 
 management  system.  A  high  throughput  liquid  chromatography  mass 
 spectrometry/ultraviolet  absorbance/charged  aerosol  detector/chemiluminescent 
 nitrogen  detector  (LCMS/UV/CAD/CLND)  system  was  used  to  verify  the  identity, 
 purity,  and  concentration  of  drugs  used  in  the  gCSI  screens.  The  LCMS/UV/CAD/CLND 
 system  consisted  of  an  LCMS/UV  system  (Shimadzu)  with  LC-30AD  solvent  pump,  2020 
 MS,  Sil-30AC  autosampler,  SP-M30A  UV  detector,  and  CTO-20A  column  oven;  a  Corona 
 Veo  RS  CAD  (Thermo  Scientific);  and  a  model  8060  CLND.  Drugs  with  lower  than  80% 
 purity  and  20%  below  expected  concentration  were  excluded.  An  Echo  555  acoustic  drop 
 ejection  (ADE)  liquid  handler  (Labcyte)  was  fully  integrated  in  the 
 ultra-high-throughput  screening  uHTS  system  to  dispense  DMSO  solubilized 
 compounds  (Dawes  et  al.,  2016).  Nine-point  dose–response  curves  at  1:3  dilution  were 
 generated  using  ADE  as  a  means  of  transferring  library  compounds  at  ultra-low  volume 
 (in  nanolitre  scale)  to  achieve  direct  dilution  of  compounds.  Starting  doses  for 
 Vemurafenib,  Belvarafenib  and  Cobimetinib  were  10,  10  and  5  µM,  respectively.  The 
 uHTS  system  delivered  assay-ready  daughter  plates  at  31,000  concentration.  A  DMSO 
 backfill  step  was  performed  to  achieve  an  equal  volume  of  DMSO  in  each  well. 
 Assay-ready  drug  plates  were  stored  at  -80  C  until  the  day  of  compound  addition  and 
 subjected  to  a  single  freeze-thaw  cycle.  The  use  of  ADE  technology  limited  the  final 
 DMSO  concentration  in  assay  plates  to  0.1%,  which  was  shown  to  have  a  negligible 
 effect  on  cell  growth.  Seeding  densities  were  optimized  for  each  cell  line  to  obtain 
 70-80%  confluence  after  6  days.  The  cells  were  plated  into  384  well  plates  (Greiner, 
 781091)  and  then  treated  with  compound  the  following  day  in  a  final  DMSO 
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 concentration  of  0.1%.  The  relative  numbers  of  viable  cells  were  measured  by 
 luminescence using CellTiter-Glo (Promega, G7573). 

 2.2 Higher drug-dose resolution combination responses 
 We  generate  higher  drug-dose  resolved  10x10  drug  combination  responses  centered 

 around  clinically  relevant  doses  for  5  cell  lines:  A375,  IPC-298,  MEL-JUSO,  SK-MEL-2 
 and  SK-MEL-30.  Seeding  densities  were  optimized  to  obtain  70-80%  confluence  after  6 
 days.  Cells  were  seeded  into  384-well  plates  24  hours  prior  to  compound  addition,  and 
 treated  with  compound  the  following  day  (final  DMSO  concentration  0.1%).  Compound 
 stocks,  10  mM  in  DMSO,  supplied  by  Genentech  Compound  Management.  Belvarafenib 
 and  Cobimetinib  were  dosed  using  an  HP  300  automatic  dose  dispenser  as  a  10  x  10 
 combinatorial  drug  matrix  with  serial  dose  dilutions  starting  from  1  to  0.002  µM  for 
 Belvarafenib  and  0.5  to  0.002  µM  for  Cobimetinib.  After  120  hours,  relative  numbers  of 
 viable cells were measured using Cell Titer-Glo (Promega, G7573). 

 2.3 Western Blots 
 Anti-MEK1  (12671,  WB  1:1,000),  anti-pMEK  (S217/S221)  rabbit  mAb  (41G9)  (9154, 

 WB  1:1,000),  anti-ERK  (9107,  WB  1:1,000),  anti-pERK  (T202/Y204)  (9101,  WB  1:1,000), 
 purchased  from  Cell  Signaling  Technology.  IR-conjugated  secondary  antibodies,  Goat 
 anti-Mouse  680LT  (926-68020,  WB:  1:10,000)  and  Goat  anti-Rabbit  800CW  (926-32211, 
 WB:  1:10,000)  purchased  from  Li-Cor.  All  westerns  were  scanned  on  Li-Cor  Odyssey 
 CLX using duplexed IR-conjugated secondary antibodies. 

 SK-MEL-28,  A-375,  and  SK-MEL-2  were  obtained  from  ATCC.  IPC-298  and 
 MEL-JUSO  were  obtained  from  DSMZ.  Cell  lines  were  maintained  in  the  recommended 
 media  and  supplemented  with  10%  heat-inactivated  FBS  (HyClone,  SH3007003HI),  1X 
 GlutaMAX (Gibco, 35050-061), and 1X Pen Strep (Gibco, 15140-122). 

 Immunoblo�ing  was  performed  using  standard  methods.  Cells  were  briefly  washed 
 in  ice-cold  PBS  and  lysed  in  the  following  lysis  buffer  (1%  NP40,  50  mM  Tris,  pH 7.8,  150 
 mM  NaCl,  5 mM  EDTA)  plus  protease  inhibitor  mixture  (Complete  mini  tablets;  Roche 
 Applied  Science,  11836170001)  and  phosphatase  inhibitor  mix  (ThermoFisher  Scientific, 
 78420).  Lysates  were  centrifuged  at  15,000  rpm  for  10  minutes  at  4 °C  and  the  protein 
 concentration  was  determined  by  BCA  (ThermoFisher  Scientific,  23227).  Equal  amounts 
 of  protein  were  resolved  by  SDS-PAGE  on  NuPAGE,  4-12%  Bis-Tris  Gels  (ThermoFisher 
 Scientific,  WG-1403)  and  transferred  to  nitrocellulose  membrane  (Bio-Rad,  170-4159). 
 After  blocking  in  blocking  buffer  (Li-Cor,  927-40000),  membranes  were  incubated  with 
 the  indicated  primary  antibodies  and  analyzed  by  the  addition  of  secondary  antibodies 
 IRDye  680LT  Goat  anti-Mouse  IgG  (Li-Cor,  926-68050)  or  IRDye  800CW  Goat  anti-Rabbit 
 IgG  (Li-Cor,  926-32211).  The  membranes  were  visualized  on  a  Li-Cor  Odyssey  CLx 
 Scanner. 

 2.4 Immunofluorescence and high-content imaging 
 Cells  were  washed  twice  with  1x  PBS  and  fixed  with  4%  paraformaldehyde  (PFA) 

 for  15 min  at  25 °C.  To  remove  PFA,  cells  were  washed  with  1x  PBS  three  times,  and  PFA 
 was  quenched  by  incubating  cells  with  50 mM  NH  4  Cl  for  10 min  at  25 °C.  Cells  were 
 then  rinsed  twice  with  PBS  and  permeabilized  with  ice-cold  methanol  for  10  min  at  -20 
 °C.  Following  permeabilization,  cells  were  first  incubated  with  a  blocking  buffer  for  1 
 hour  at  room  temperature  (1x  PBS/  5%  normal  serum/0.3%  TritonX-100)  followed  by 
 overnight  incubation  with  the  primary  antibody  against  phospho-ERK  (Cell  Signaling 
 Technology,  catalog  no.  4370S)  at  1:800  dilution  at  4  °C.  The  next  day,  cells  were  washed 
 three  times  with  1x  PBS  and  incubated  for  one  hour  at  room  temperature  with  the 
 secondary  antibody  (Jackson  ImmunoResearch  Laboratories,  catalog  no.  711-606-152). 
 To  stain  the  nucleus  and  cell  body,  cells  were  incubated  with  NucBlue™  Fixed  Cell 
 ReadyProbes™  Reagent  (Catalog  number:  R37606)  and  HCS  CellMask™  Blue  Stain 
 (Catalog  number:  H32720)  for  20  min  at  room  temperature.  Finally,  cells  were  washed 
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 three  times  with  1X  PBS,  and  imaged  on  the  Opera  Phenix  HCS  machine  (PerkinElmer) 
 using  the  40X water  immersion  objective  using  confocal  modality.  Analysis  and 
 quantification were conducted on Harmony (PerkinElmer) software. 

 2.5 Tumor volume experiments in xenografts 
 G03083045.23-6  (free  base  of  GDC-5573,  Lot  23-6;  hereafter  referred  to  as 

 Belvarafenib)  was  provided  to  Genentech  as  a  solution  at  concentrations  of  3.3  mg/mL 
 and  6.6  mg/mL  (expressed  as  free-base  equivalents)  in  5%  dimethyl  sulfide/5% 
 Cremophor  EL.  Cobimetinib  (GDC-0973,  Lot  150-10)  was  provided  by  Genentech  as  a 
 solution  at  concentrations  of  1.1  mg/mL  (expressed  as  free-base  equivalents)  in  0.5% 
 (w/v)  methylcellulose/0.2%  Tween  80™.  All  concentrations  were  calculated  based  on  a 
 mean  body  weight  of  22  g  for  the  NCR.nude  mouse  strain  used  in  this  study.  The  vehicle 
 controls  were  5%  dimethyl  sulfide/5%  Cremophor  EL  and  0.5%  (w/v) 
 methylcellulose/0.2%  Tween  80™.  Test  articles  were  stored  in  a  refrigerator  set  to 
 maintain  a  temperature  range  of  4-7  °C.  All  treatments  and  vehicle  control  dosing 
 solutions were prepared once a week for three weeks. 

 Female  NCR.nude  mice  that  were  6-7  weeks  old  were  obtained  from  Taconic 
 Biosciences  (New  York)  weighing  an  average  of  22  g.  The  mice  were  housed  at 
 Genentech  in  standard  rodent  micro-isolator  cages  and  were  acclimated  to  study 
 conditions  at  least  3  days  before  tumor  cell  implantation.  Only  animals  that  appeared  to 
 be healthy and that were free of obvious abnormalities were used for the study. 

 Human  melanoma  IPC-298  cells  were  obtained  from  the  ATTC  (Rockville,  MD) 
 harbor  NRAS  Q61L  mutation.  Cells  were  cultured  in  vitro,  harvested  in  log-phase 
 growth,  and  resuspended  in  Hank’s  Balanced  Salt  Solution  (HBSS)  containing  Matrigel 
 (BD  Biosciences;  San  Jose,  CA)  at  a  1:1  ratio.  The  cells  were  then  implanted 
 subcutaneously  in  the  right  lateral  thorax  of  140  NCR.nude  mice.  Each  mouse  was 
 injected  with  20  *  10^6  cells  in  a  volume  of  100  mL.  Tumors  were  monitored  until  they 
 reached  a  mean  tumor  volume  of  250-300  mm  3  .  Mice  were  distributed  into  six  groups 
 based  on  tumor  volumes  with  n=10  mice  per  group.  The  mean  tumor  volume  across  all 
 six groups was 240 mm  3  at the initiation of dosing. 

 Mice  were  given  vehicles  (100  µL  5%  DMSO/5%  CremEL  and  100  µL  0.5%  MCT),  15 
 mg/kg  or  30  mg/kg  Belvarafenib  (expressed  as  free-base  equivalents)  and  5  mg/kg 
 Cobimetinib  (expressed  as  free-base  equivalents).  All  treatments  were  administered  on 
 a  daily  basis  (QD)  orally  (PO)  by  gavage  for  21  days  in  a  volume  of  100  mL  for 
 Belvarafenib  or  Cobimetinib.  Tumor  sizes  and  mouse  body  weights  were  recorded  twice 
 weekly  over  the  course  of  the  study.  Mice  were  promptly  euthanized  when  tumor 
 volume exceeded 2000 mm  3  or if body weight loss was  ≥ 20% of their starting weight. 

 All  drug  concentrations  were  calculated  based  on  a  mean  body  weight  of  22  g  for 
 the  NCR.nude  mouse  strain  used  in  this  study.  The  study  design  is  summarized  in 
 Table  S1.  Tumor  volumes  were  measured  in  two  dimensions  (length  and  width)  using 
 Ultra  Cal-IV  calipers  (model  54  −  10  −  111;  Fred  V.  Fowler  Co.;  Newton,  MA)  and 
 analyzed  using  Excel,  version  14.2.5  (Microsoft  Corporation;  Redmond,  WA).  The  tumor 
 volume  was  calculated  with  the  following  formula:  Tumor  size  (mm  3  )  =  (longer 
 measurement  ×  shorter  measurement^2)  ×  0.5.  Animal  body  weights  were  measured 
 using  an  Adventura  Pro  AV812  scale  (Ohaus  Corporation;  Pine  Brook,  NJ).  Percent 
 weight  change  was  calculated  using  the  following  formula:  Body  weight  change  (%)  = 
 [(current body weight/initial body weight) – 1) × 100] 

 Percent  animal  weight  was  tracked  for  each  individual  animal  while  on  study  and 
 the  percent  change  in  body  weight  for  each  group  was  calculated  and  plo�ed  (  Figure 
 S1  ).  A  generalized  additive  mixed  model  (GAMM)  was  employed  to  analyze 
 transformed  tumor  volumes  over  time.  As  tumors  generally  exhibit  exponential  growth, 
 tumor  volumes  were  subjected  to  natural  log  transformation  before  analysis.  Changes  in 
 tumor  volumes  over  time  in  each  group  are  described  by  fits  (i.e.,  regression  splines  with 
 auto-generated  spline  bases)  generated  using  customized  functions  in  R  version  3.4.2 
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 (2017-09-28)  (R  Development  Core  Team  2008;  R  Foundation  for  Statistical  Computing; 
 Vienna, Austria). 

 For  assessment  of  gene  expression  in  harvested  tumors,  total  RNA  was  extracted 
 from  xenograft  tumor  tissue  using  RNeasy  Plus  Mini  kits  (Qiagen)  following  the 
 manufacturer’s  instructions.  RNA  quantity  was  determined  using  a  NanoDrop 
 spectrophotometer  (Thermo  Fisher  Scientific).  Transcriptional  readouts  were  assessed 
 using  a  Fluidigm  BioMark  HD  System  (Standard  BioTools)  according  to  the 
 manufacturer’s  recommendations.  RNA  (100  ng)  was  subjected  to  cDNA  synthesis  and 
 pre-amplification  using  the  High-Capacity  cDNA  RT  Kit  and  TaqMan  PreAmp  Master 
 Mix  (Thermo  Fisher  Scientific)  per  the  manufacturer’s  protocol.  Following  amplification, 
 samples  were  diluted  1:4  with  Tris  EDTA  pH  8.0  and  qPCR  was  conducted  using  a 
 Fluidigm  96.96  Dynamic  Array  and  the  Fluidigm  BioMark  HD  System  (Standard 
 BioTools)  according  to  the  manufacturer’s  recommendations.  Cycle  threshold  (Ct)  values 
 were  converted  to  fold  changes  or  percentages  in  relative  expression  values  (2ˆ-(ddCt)) 
 by  subtracting  the  mean  of  the  housekeeping  reference  genes  from  the  mean  of  each 
 target gene followed by subtraction of the mean vehicle dCt from the mean sample dCt. 

 Blood  was  harvested  from  mice  treated  for  4  days  and  3h  after  the  last  dosing  to 
 quantify  the  free  concentrations  of  drugs  in  plasma.  Briefly,  the  concentration  of 
 Belvarafenib  and  Cobimetinib  in  each  sample  was  determined  using  a  non-validated 
 LC-MS/MS  method  using  labeled  internal  standards  (Cobimetinib:  13C6,  Belvarafenib: 
 d5)  with  qualified  curve  ranges  (Cobimetinib:  1.00  to  100  ng/mL  with  2000  ng/mL 
 dilution  QC,  Belvarafenib:  5.00  to  5000  ng/mL  with  75,000  ng/mL  dilution  QC)  using 
 specific  columns  (Cobimetinib:  Waters  Xbridge  C18,  50  x  2.1  mm,  3.5  um,  Belvarafenib: 
 Phenomenex,  Onyx  Monolithic  C18,  50  x  2.0  mm)  and  MS/MS  transition  ranges 
 (Cobimetinib:  532.2-249.1,  Belvarafenib:  479.1-328.0,  13C6  Cobimetinib:  538.2-255.1, 
 Belvarafenib-d5:  484.1-333.1).  The  lower  limit  of  quantitation  (LLOQ)  was  1.00  ng/mL  for 
 Cobimetinib  and  5.00  ng/mL  for  Belvarafenib.  Free  plasma  concentrations  were 
 calculated  by  multiplying  the  plasma  concentration  in  each  sample  with  the  fraction 
 unbound in plasma. 

 2.6 Computational dynamic modeling of MAPK signaling 
 The  MARM2  model  is  wri�en  in  the  PySB  framework  (h�ps://pysb.org)  and 

 describes  interactions  of  the  EGFR/MAPK  signaling  pathway.  The  model,  along  with 
 relevant  parameters,  trained  on  a  range  of  conditions  with  MEK  and  RAF  inhibitors,  was 
 obtained  from  Fröhlich,  F.  and  Gerosa,  L.  et  al.  [19]  .  A  curation  step  was  performed 
 wherein  unnecessary  species  and  their  associated  model  components  were  removed. 
 The  pan-RAF  inhibitor  Belvarafenib  was  implemented  by  se�ing 
 ep_RAF_RAF_mod_RAFi_double_ddG  =  0,  removing  the  reduction  in  binding  affinity 
 of  a  type  1.5  RAF  inhibitor  (Vemurafenib)  to  a  partially  inhibited  RAF  dimer  [29]  .  For 
 NRAS  Q61  mutants,  the  hydrolysis  rate  of  NRAS  GTP,  catalyze_NF1_RAS_gdp_kcatr, 
 was  reduced  by  a  factor  of  10,  and  the  stability  of  CRAF  dimers, 
 ep_RAF_RAF_mod_RASgtp_double_ddG,  was  reduced  by  a  factor  of  5.  Furthermore, 
 since  CRAF  is  the  dominant  RAF  species  in  NRAS  Q61,  we  removed  BRAF  in  order  to 
 greatly  reduce  model  size  and  computation  times.  The  reduced  tendency  for 
 phosphorylated  CRAF  to  bind  to  RAS  and  form  dimers  is  an  important  negative 
 feedback  mechanism  [30,31]  ,  which  we  will  refer  to  as  pRAF  feedback.  To  be�er 
 understand  the  impacts  of  this  feedback  we  generate  an  extra  NRAS  Q61  model  with  the 
 feedback  removed.  Through  this  process,  three  models  are  obtained:  BRAF  V600E, 
 NRAS Q61 with pRAF feedback, and NRAS Q61 without pRAF feedback. 

 Each  model  is  converted  to  a  set  of  ODEs  using  BNG  [32]  and  then  simulated  until  a 
 steady  state  is  reached.  The  steady  state  is  achieved  when  the  relative  change  of  all 
 species  is  less  than  0.1%  over  a  period  of  at  least  4  hours.  For  the  steady  state 
 dose-responses,  100  inhibitor  dose  conditions  are  generated  from  10  Cobimetinib  doses 
 (0  µM  and  9  doses  from  10  -2.75  µM  to  10  0  µM)  and  10  Belvarafenib  doses  (0  µM  and  9 
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 doses  from  10  -2.25  µM  to  10  0.5  µM).  The  initial  steady  state  system  is  subjected  to  one  of 
 these  dose  conditions  then  simulated  until  the  steady  state  is  reached.  The  full 
 simulation  times  for  all  conditions  were  as  follows:  BRAF  V600E  -  475  s,  NRAS  Q61 
 without  pRAF  feedback  -  474  s,  and  NRAS  Q61  with  pRAF  feedback  -  330  s  (ran  on 
 MacBook  Pro  with  M2  Max  chip).  Bliss  values  are  then  generated  from  the  steady  state 
 values  using  the  synergy  Python  library  (h�ps://github.com/djwooten/synergy).  For  the 
 time  course  responses,  the  initial  steady  state  system  is  simulated  for  24  hours,  then 
 dosed  with  Cobimetinib  (0.5  µM)  and  either  0  or  133  nM  of  Belvarafenib.  The  system  is 
 then  simulated  for  8  additional  hours.  The  full  simulation  times  were  as  follows:  NRAS 
 Q61  without  pRAF  feedback  -  32  s,  NRAS  Q61  with  pRAF  feedback  -  32  s,  and  BRAF 
 V600E - 27 s (ran on MacBook Pro with M2 Max chip). 

 2.7  Analysis of drug dose-responses 
 Cell  viability  data  were  processed  to  relative  viability  to  obtain  single-agent  fits  and 

 metrics  (e.g.  IC50,  Emax  and  AUC),  as  well  as  drug  combination  fits  and  metrics  such  as 
 HSA  (Highest  Single  Agent)  and  Bliss  scores.  Briefly,  single-agent  fits  for  each  drug  and 
 cell  line  were  obtained  using  the  drm  fi�ing  function  from  the  drc  R  package  [33]  using  a 
 three-parameter  (LL.3u)  or  a  four-parameter  (LL.4)  log-logistic  function  that  relates  drug 
 dose  to  relative  viability.  For  drug  combination  data,  HSA  and  Bliss  scores  were 
 calculated  as  the  average  of  the  10%  highest  HSA  and  Bliss  excess  values  observed 
 across  the  full  dose  ranges  tested,  respectively.  HSA  and  Bliss  excess  values  for  each 
 dose  combination  tested  were  calculated  by  subtracting  the  observed  response  against 
 the  expected  response  under  the  HSA  and  Bliss  models.  As  an  observed  response,  we 
 used  a  smoothened  version  of  the  experimental  drug  combination  matrix  of  relative 
 viability  obtained  by  fi�ing  dose-response  curves  along  every  fixed  dose  of  each  drug 
 and  averaging  the  fi�ed  values.  The  HSA  expectation  matrix  was  calculated  by  selecting 
 for  each  dose  combination  the  maximum  response  of  each  individual  agent  in  the 
 observed  response.  The  Bliss  expectation  was  calculated  using  the  Bliss  independence 
 formula  given  as  the  sum  of  the  responses  of  the  individual  drugs  minus  their  product 
 [8]  .  Data  import,  processing  and  calculations  were  performed  using  the  R  package  gDR 
 [10]  . 

 2.8  Projection of in vivo free drug concentrations  on in vitro growth responses 
 Nominal  drug  concentrations  associated  with  growth  viability  responses  were 

 converted  to  free  drug  concentrations  in  order  to  project  the  free  drug  concentrations 
 measured  in  vivo  in  mice  or  patients.  Briefly,  nominal  drug  concentrations  were 
 multiplied  by  the  fraction  unbound  (fu)  of  Belvarafenib  and  Cobimetinib,  which  was 
 measured  to  be  0.034  in  10%  FBS  media  and  estimated  to  be  0.068  in  5%  FBS  media  for 
 Belvarafenib  and  measured  to  be  0.196  in  10%  FBS  media  and  0.3  in  5%  FBS  media  for 
 Cobimetinib.  To  estimate  the  viability  of  responses  or  Bliss  excess  values  at 
 corresponding  in  vivo  free  drug  doses,  the  matrix  with  corresponding  dose-matrix 
 responses  with  units  converted  in  free  drug  concentrations  was  interpolated  using  the 
 function  interp2  from the  pracma  R package. 

 2.9 Prediction of tumor growth inhibition in xenografts 
 GR  metric  was  calculated  from  the  relative  viability  of  IPC-298  cells  treated  with  a 

 combination  of  Belvarafenib  and  Cobimetinib  by  se�ing  an  experimentally  measured 
 untreated  doubling  time  of  60  hours  as  described  in  Hafner  et  al.  [16]  using  the  gDR 
 package.  The  resulting  GR  metric  was  converted  to  control-normalized  growth  rates,  i.e. 
 the  growth  rate  of  treated  cells  divided  by  the  growth  rate  of  control  cells.  The  growth 
 rate  of  control-treated  IPC-298  xenograft  tumors  was  calculated  using  the  doubling  time 
 of  18  days  estimated  from  measured  tumor  volumes  to  be  0.0385  day  -1  .  Using  free  drug 
 concentrations  measured  in  mice  for  Belvarafenib  and  Cobimetinib,  corresponding 
 control-normalized  growth  rates  were  estimated  from  the  in  vitro  matrix  dose-response. 
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 Control-normalized  growth  rates  were  multiplied  by  the  baseline  tumor  growth  to 
 predict  the  growth  rate  achieved  by  tumors  at  any  given  dosing  regime.  The  obtained 
 growth  rates  were  used  in  an  exponential  growth  model  to  simulate  tumor  volumes  in 
 time and compared to experimental data. 

 2.10 Pharmacokinetic (PK) modeling of drug concentrations in patient 
 Synthetic  PK  profiles  were  generated  for  Belvarafenib  and  Cobimetinib  which 

 recapitulate  the  population  level  PK  variability  expected  for  each  respective  compound. 
 For  each  compound,  500  synthetic  PK  profiles  were  generated  at  each  of  the  following 
 dosing  regimens  (Belva:  50  mg  QD,  100  mg  BID,  200  mg  BID,  and  400  mg  BID,  Cobi:  20 
 mg  QOD,  20  mg  QD,  40  mg  QD,  and  60  mg  QD).  These  simulations  were  performed  in 
 R  4.1.1  using  mrgsolve  based  on  the  published  population  PK  (popPK)  model  for 
 Cobimetinib  and  a  popPK  model  developed  on  the  available  individual 
 time-concentration  profiles  from  n=243  patients  treated  with  Belvarafenib  in 
 NCT03118817,  NCT02405065  and  NCT03284502.  Both  models  were  developed  using  the 
 non-linear  mixed  effects  approach  as  implemented  in  NONMEM  [34]  .  Simulations  were 
 conducted  until  steady  state  after  which  drug  levels  were  recorded  for  use.  In  particular, 
 of  the  30  days  of  simulation,  days  22–26  were  saved  for  analysis,  providing  at  least  two 
 complete  cycles  of  drug  concentrations  for  each  condition.  Simulated  plasma  total  drug 
 concentrations  in  ng/mL  were  divided  by  the  corresponding  molecular  weight 
 (Belvarafenib  =  478.93  g/mol  ,  Cobimetinib=  531.3  g/mol)  to  obtain  total  drug 
 concentrations  in  µM.  These  were  multiplied  by  the  fraction  unbound  in  plasma 
 measured at 0.00258 for Belvarafenib and 0.052 for Cobimetinib. 

 2.11 Clinical tumor growth simulations 
 A  clinical  tumor  growth  inhibition  (TGI)  model  (Claret  et  al.  [35]  )  was  used  to 

 describe  the  tumor  dynamics  of  patients  treated  in  NCT03118817  and  NCT03284502. 
 This  model  was  developed  using  the  population  approach  as  implemented  in 
 NONMEM  version  7.5.0.  The  model  that  best  described  the  observed  tumor  dynamics 
 was  a  biexponential  growth  model  as  described  by  Stein  et  al.  [36]  .  In  this  model,  tumor 
 dynamics  evolve  from  an  estimated  initial  tumor  size  TS  0  ,  with  key  treatment-related 
 parameters  describing  the  tumor  growth  rate  constant  (KG)  (1/week)  and  tumor 
 shrinkage  rate  constants  (KS)  (1/week).  Individual  empirical  Bayesian  estimates  (EBE) 
 [37]  for  KG  and  KS  were  summarized  in  melanoma  patients  and  stratified  by  mutational 
 status.  Model-based  tumor  dynamics  were  simulated  for  1  year  for  each  of  these  groups 
 based on the mean KG and KS for the group given the same TS  0  = 50. 

 3. Results 

 3.1. PanRAF and MEK inhibition is additive in BRAF-mutant, but synergistic in NRAS-mutant 
 cell lines 

 We  performed  an  in  vitro  drug  screen  to  assess  the  dose-response  of  43  melanoma  cell 
 lines  treated  with  the  type  1.5  “first-generation”  RAF  inhibitor  Vemurafenib  [38]  and  the 
 type  2  “panRAF''  inhibitor  Belvarafenib  combined  with  the  allosteric  MEK  inhibitor 
 Cobimetinib.  We  measured  drug  responses  using  the  CellTiter-Glo  cell  viability  assay  in 
 a  9-by-9  drug  combination  matrix  design  with  half-log  dilution  series  starting  at  the  top 
 concentrations  of  10  µM  for  Vemurafenib  and  Belvarafenib  and  5  µM  for  Cobimetinib. 
 Cell  viability  readouts  were  processed  using  the  gDR  R  package  [10]  to  obtain  relative 
 viability  and  calculate  the  half-maximal  inhibitory  concentrations  (IC50)  (  Figure  1a  )  and 
 Bliss  scores  (  Figure  1b  )  as  metrics  of  single-agent  potency  and  combination  benefit, 
 respectively.  As  expected  and  serving  as  a  control,  Vemurafenib  as  a  single  agent  was 
 found  to  only  inhibit  melanoma  lines  carrying  BRAF  V600E/K  mutations,  which  signal 
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 as  BRAF  monomers  and  are  thus  sensitive  to  type  1.5  RAF  inhibitors  that  specifically 
 inhibit  RAF  monomers  (  Figure  1a  ).  In  addition  to  the  BRAF  V600E/K  mutant  lines, 
 Belvarafenib  also  inhibited  most  melanoma  lines  with  a  NRAS  hotspot  mutation 
 (specifically  Q61R,  Q61K,  Q61V  and  Q61L)  or  wild-type  for  RAS/RAF  proteins.  This  was 
 in  line  with  previous  reports  [27]  ,  as  these  mutational  contexts  canonically  signal 
 through  RAF  dimers  and  are  thus  sensitive  to  type  2  RAF  inhibitors  that  block  dimeric 
 signaling  (  Figure  1a  ).  The  MEK  inhibitor  Cobimetinib  inhibited  the  growth  of  most  cell 
 lines,  validating  their  broad  dependency  on  MAPK  signaling,  but  interestingly  had  a 
 much  higher  potency  on  cell  lines  carrying  the  BRAF  V600E/K  mutation  (log10  mean= 
 -1.66  uM,  std=  0.6)  than  the  NRAS  mutation  (log10  mean=  -1.08  uM,  std=  0.39  )  or 
 RAS/RAF wild-type (log10 mean= -0.68 uM, std=  0.82  )  (  Figure 1a  ). 

 This  difference  in  Cobimetinib’s  single-agent  potency  appeared  to  extend  to  the  way  it 
 combined  with  Belvarafenib,  as  quantified  by  Bliss  scores  (  Figure  1b  ).  The  combination 
 of  Belvarafenib  and  Cobimetinib  presented  Bliss  scores  around  zero  for  most  BRAF 
 V600E/K  cell  lines  but  positive  Bliss  scores  in  most  NRAS  mutant  or  RAS/RAF  wild-type 
 lines  (  Figure  1b  ).  Bliss  scores  are  calculated  as  the  highest  difference  between 
 experimentally  observed  and  theoretical  expected  relative  viability  based  on  Bliss 
 independence.  With  values  closer  to  zero,  Bliss  scores  for  BRAF  V600E/K  melanoma 
 lines  (mean=  0.10  std=  0.06  )  show  that  Belvarafenib  and  Cobimetinib  inhibition  is  mostly 
 additive.  High  Bliss  scores  for  NRAS  mutant  (mean=  0.27  ,  std=  0.12  )  and  RAS/RAF 
 wild-type  lines  (mean=  0.25  ,  std=  0.12  )  highlight  a  synergistic  reduction  in  relative 
 viability  compared  to  single-agent  responses  at  the  same  doses.  We  note  that  there  is  a 
 small  number  of  BRAF  mutant  lines  (5/32)  that  show  synergistic  pharmacological 
 responses  similar  to  NRAS  mutant  lines.  The  dose  range  at  which  the  maximal  benefit  is 
 achieved  can  be  visualized  by  showing  relative  viability  and  Bliss  excess  calculated  at 
 each  drug  dose  combination,  as  shown  for  representative  BRAF  and  NRAS  mutant  cell 
 lines  (  Figure  1c  ).  While  Bliss  excess  showed  drug  additivity  across  the  entire 
 dose-response  landscape  in  BRAF  V600E/K  lines,  NRAS  mutant  melanoma  lines 
 presented  a  narrow  concentration  range  in  which  the  combination  of  panRAF  and  MEK 
 inhibitor highly synergized in inhibiting cancer growth (  Figure 1c  ). 

 3.2.  Upregulation  of  MEK  phosphorylation  in  NRAS  Q61,  but  not  in  BRAF  V600  contexts  is 
 linked with synergy to panRAF and MEK inhibitors 
 We  reasoned  that  the  different  ways  in  which  panRAF  and  MEK  inhibitors  combine  in 
 NRAS  vs  BRAF  mutant  melanomas  likely  originate  from  the  distinct  pathway  rewiring 
 caused  by  these  oncogenic  mutations.  As  previously  reported,  NRAS  Q61  signals 
 through  RAS-dependent  RAF  dimers  that  are  sensitive  to  negative  feedback  operating 
 on  RAFs  [31,39]  (  Figure  2a  ).  Instead,  BRAF  V600E/K  signal  as  RAS-independent  RAF 
 monomers that are insensitive to upstream negative feedback (  Figure 2b  ). 
 To  confirm  the  engagement  of  negative  feedback  in  NRAS  Q61,  but  not  BRAF  V600 
 contexts,  we  performed  western  blot  experiments  with  MEL-JUSO  (  Figure  2c  )  and  A-375 
 cell  lines  (  Figure  2d  )  to  measure  the  phosphorylation  status  of  the  MEK  and  ERK  kinases 
 upon  inhibition  with  Cobimetinib,  with  or  without  a  single  dose  of  Belvarafenib.  ERK 
 phosphorylation,  the  functional  output  of  the  MAPK  signaling  cascade,  revealed  a  trend 
 similar  to  relative  viability  readouts:  as  a  single  agent,  Cobimetinib  had  lower  potency 
 and  a  shallower  dose-response  on  the  NRAS  Q61  line  MEL-JUSO  than  the  BRAF  V600 
 line  A-375  (  Figure  2c-d  ).  Moreover,  combining  a  fixed  dose  of  Belvarafenib  synergized  in 
 reducing  ERK  phosphorylation  in  the  MEL-JUSO  lines,  but  was  additive  in  the  A375 
 line. 
 MEK  phosphorylation  measurements  were  used  as  a  proxy  to  assess  the  relief  of 
 upstream  negative  feedback  on  MAPK  signaling.  It  has  previously  been  shown  that 
 upon  MEK  inhibition,  negative  feedback  release  can  be  observed  as  a  paradoxical 
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 increase  in  pMEK  due  to  higher  upstream  signaling  [40]  .  Indeed,  we  found  that  at  doses 
 as  low  as  10  nM,  Cobimetinib  induced  an  increase  in  MEK  phosphorylation  in  the 
 MEL-JUSO  cell  line  while  causing  a  decrease  in  the  A-375  cell  line.  Interestingly,  the 
 synergy  observed  between  Belvarafenib  and  Cobimetinib  appeared  to  saturate  at  the 
 dose  of  50  nM  Cobimetinib,  which  corresponds  to  full  engagement  of  negative  feedback 
 as  shown  by  higher  MEK  phosphorylation  in  the  Cobimetinib  single-agent  treatment 
 (  Figure  2c-d  ).  Paradoxical  activation  of  MEK  phosphorylation  caused  by  Cobimetinib 
 was  abolished  by  adding  Belvarafenib,  likely  due  to  a  counteracting  of  the  negative 
 feedback  relief  on  RAF  dimers  (  Figure  2c-d  ).  These  results  support  the  hypothesis  that 
 the  negative  feedback  relief  observed  through  pMEK  upregulation  is  linked  to  the 
 differential  response  of  NRAS  Q61  and  BRAF  V600E  lines  to  Cobimetinib  and  in 
 combination with Belvarafenib. 

 3.3.  Computational  model  of  MAPK  signaling  implicates  negative  feedback  in  the  response  of 
 NRAS and BRAF mutant melanoma lines to panRAF and MEK inhibitors 
 To  ground  this  hypothesis  on  a  quantitative  framework  and  disentangle  mechanisms  of 
 drug  synergy,  we  modified  an  existing  computational  model  of  MAPK  signaling  that 
 can  be  instantiated  with  a  BRAF  V600  or  a  NRAS  Q61  oncogenic  driver  [19,20]  .  Briefly, 
 we  implemented  and  calibrated  a  previously  missing  negative  feedback  that  links  ERK 
 phosphorylation  with  an  inhibitory  phosphorylation  of  RAF.  This  phosphorylation 
 reduces  the  ability  for  RAF  to  bind  to  RAS,  dimerize,  and  facilitate  signaling  [30,31]  .  In 
 order  to  quantitatively  assess  whether  pRAF  feedback  is  capable  of  explaining  the  above 
 observations  and  to  be�er  understand  the  consequences,  we  made  use  of  the  BRAF 
 V600E  and  NRAS  Q61  with  pRAF  feedback  models  described  in  method  section  2.6. 
 These  models  indeed  capture  the  observations  made  for  western  blo�ing  data  (  Figure 
 2e  ).  The  NRAS  Q61  model  exhibits  a  strong  increase  in  pMEK  under  single  agent 
 Cobimetinib  which  is  significantly  diminished  with  the  addition  of  Belvarafenib  while 
 single  agent  Cobimetinib  is  effective  on  the  BRAF  V600E  model.  For  an  NRAS  Q61 
 model  with  the  pRAF  feedback  removed,  there  is  li�le  to  no  increase  in  pMEK  in 
 response  to  Cobimetinib  (  Figure  S2  )  offering  support  to  the  hypothesis  that  negative 
 feedback  is  key  for  differential  drug  responses  between  NRAS  and  BRAF  mutant 
 tumors. 
 Next,  we  used  the  model  to  simulate  a  full  drug  combination  matrix  response  for 
 Belvarafenib  and  Cobimetinib.  We  sampled  a  dose  range  focused  on  the  area  of  synergy 
 and  predicted  MEK  and  ERK  phosphorylation  responses  in  BRAF  V600  and  NRAS  Q61 
 contexts  (  Figure  3a-b)  .  The  model  predicted  that  in  those  dose  ranges  ERK 
 phosphorylation  would  be  strongly  inhibited  in  the  BRAF  V600  context  by  both  single 
 agents  and  in  combination.  Conversely,  it  would  only  strongly  inhibit  pERK  by  synergy 
 in  the  NRAS  Q61  context,  with  a  paradoxical  activation  of  pMEK  by  Cobimetinib.  To 
 validate  model  predictions,  we  used  immunofluorescence-based  microscopy  to  quantify 
 ERK  phosphorylation  in  A-375  and  MEL-JUSO  cell  lines  across  a  6-by-6  dose  dilution 
 matrix  of  Cobimetinib  and  Belvarafenib,  finding  that  it  accurately  and  quantitatively 
 matched  model  predictions  (  Figure  3c  ).  This  suggests  that  the  synergistic  rather  than 
 additive  response  to  panRAF  and  MEK  inhibition  observed  in  NRAS  mutant  vs  BRAF 
 mutant  melanoma  is  driven  by  the  sensitivity  to  negative  feedback  of  the  former 
 compared  to  the  la�er.  Moreover,  drug  responses  are  determined  by  the  degree  of 
 inhibition of ERK phosphorylation that is directly translated into cell viability. 

 3.4.  In  vitro  drug  dose-responses  assessed  at  clinically  relevant  concentrations  can  accurately 
 predict inhibition of tumor growth in vivo 

 Next,  we  wondered  if  insights  obtained  from  in  vitro  viability  responses  are  relevant  to 
 understanding  in  vivo  drug  dosage  and  tumor  responses.  A  direct  translatability  is  not 
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 obvious  as  several  parameters  are  different  between  in  vitro  and  in  vivo  se�ings,  such  as 
 microenvironment,  growth  dynamics,  cellular  states,  pharmacokinetic  profiles,  drug 
 distribution,  etc.  To  directly  test  translatability,  we  devised  a  computational 
 methodology  to  predict  in  vivo  tumor  volume  responses  using  as  inputs  in  vitro 
 dose-responses  and  in  vivo  drug  concentrations.  We  applied  this  methodology  to  predict 
 tumor  responses  of  IPC-298  melanoma  cells  grafted  in  flanks  of  mice  treated  for  21  days 
 with clinically relevant doses of Belvarafenib and Cobimetinib (  Figure 4a-b  ). 

 First,  we  re-assessed  the  in  vitro  relative  viability  of  IPC-298  cells  using  a  10-by-10  dose 
 matrix  of  Belvarafenib  and  Cobimetinib  with  concentration  ranges  that  be�er  match  in 
 vivo  relevant  doses  (  Figure  4a  ).  This  provides  a  more  refined  map  on  which  to  score 
 growth  inhibition  at  in-vivo  drug  concentrations  compared  to  the  large  drug  screen. 
 Subsequently,  we  converted  relative  viability  into  growth  rate  inhibition  using  the  GR 
 metric  [15]  .  Briefly,  the  baseline  doubling  rate  of  IPC-298  cells  (60h)  was  used  to  back 
 calculate  initial  seeding  cell  numbers  and  calculate  the  growth  rate  inhibition  at  every 
 Belvarafenib  and  Cobimetinib  dose  (  Figure  4a  ).  GR  values  between  one  and  zero 
 quantify  a  degree  of  growth  arrest,  zero  indicates  complete  stasis  and  negative  values 
 indicate  net  cell  loss  (  Figure  4a  ).  Then,  we  converted  nominal  drug  concentrations  to 
 free  drug  concentrations  by  multiplying  the  fraction  unbound  (fu)  in  the  serum  of  each 
 drug (Belvarafenib fu = 0.034, Cobimetinib fu = 0.196). 

 Second,  we  projected  onto  the  dose-response  matrix  the  free  drug  concentrations 
 measured  in  the  plasma  of  mice  treated  with  15  mg/kg  (free  drug  =  8  nM)  or  30  mg/kg 
 (free  drug  =  20  nM)  of  Belvarafenib  or  5  mg/kg  (free  drug  =  3  nM)  of  Cobimetinib  QD  for 
 3  days  and  measured  3  h  post  last  dose.  This  allowed  us  to  estimate  the  growth  rate 
 inhibition  expected  from  in  vitro  data  at  the  corresponding  free  drug  concentrations  for 
 single-agent  and  combination  treatments  (  Figure  4a  ).  Finally,  we  calculated  the  baseline 
 growth  rate  of  IPC-298  xenografts  in  mice  treated  with  vehicle  QD  for  21  days  and 
 scaled  the  growth  rate  according  to  the  corresponding  in  vitro  growth  rate  inhibition  at 
 each  dose  regime.  This  allows  us  to  predict  the  steady  state  tumor  volume  progressions 
 that  should  be  achieved  in  vivo  (  Figure  4b  ).  Comparison  with  tumor  volume  growth 
 experimentally  measured  in  mice  treated  for  21  days  showed  an  accurate  prediction  of 
 tumor  growth  dynamics  (  Figure  4b  ).  As  single  agents,  Belvarafenib  achieved  partial  and 
 complete  cytostasis  at  15  mg/kg  and  30  mg/kg,  respectively,  while  Cobimetinib  achieved 
 li�le  to  no  tumor  growth  inhibition  at  5  mg/kg  (  Figure  4b  ).  The  addition  of  5  mg/kg  of 
 Cobimetinib  to  15  mg/kg  and  30  mg/kg  Belvarafenib  shifted  tumor  control  from 
 cytostatic  to  cytotoxic  (  Figure  4b  ),  proving  that  synergy  scored  in  the  in  vitro  se�ing 
 quantitatively  translates  into  in  vivo  responses.  Expression  of  genes  measured  at  the  end 
 of  treatment  confirmed  that  improved  tumor  control  is  linked  to  stronger  inhibition  of 
 genes  that  report  on  the  activity  of  MAPK  signaling  (e.g.  FOSL1,  DUSP6,  SPRY4).  Please 
 note  that  data  for  three  of  the  five  conditions  used  as  comparators  for  tumor  volumes 
 and  gene  expression  analysis  here  were  previously  reported  in  [25]  .  This  confirms  the 
 mechanistic  basis  for  synergy  previously  identified  using  in  vitro  experiments  and 
 computational modeling (  Figure S2b  ). 

 3.5.  Drug  levels  required  for  additive  and  synergistic  responses  in  NRAS-  and  BRAF-  mutant 
 melanoma can be achieved clinically 
 We  next  wondered  whether  the  additive  and  synergistic  behaviors  of  BRAF  and  NRAS 
 mutant  melanomas  observed  in  vitro  occur  at  clinically  relevant  drug  concentrations  in 
 patients.  In  order  to  evaluate  clinically  relevant  concentrations  of  Belvarafenib  and 
 Cobimetinib,  we  calculated  the  average  and  standard  deviation  of  free  drug 
 concentrations  from  the  respective  clinical  PK  models  under  16  dose  regimens  (4  unique 
 dose  schemes  for  each  drug)  using  the  simulated  responses  from  day  22  to  26,  as 
 described  in  section  2.10.  The  average  predicted  in  vitro  drug  combinations  were 
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 converted  to  free  drug  concentrations  and  projected  onto  the  in  vitro  responses  as 
 described  in  section  2.8  (  Figure  5a  ).  This  approach  was  used  on  both  the  A-375  (BRAF 
 V600E)  and  IPC-298  (NRAS  Q61)  cell  lines  to  obtain  the  GR  metric  and  Bliss  excess 
 values for these two mutational contexts at clinically relevant concentrations. 
 In  the  BRAF  mutant  context,  all  but  the  weakest  clinically  realized  combinations  of 
 Belvarafenib  and  Cobimetinib  perform  similarly,  inhibiting  tumor  growth,  as  shown  by 
 the  corresponding  GR  metric  values,  without  significant  synergistic  effects,  as  shown  by 
 low  Bliss  excess  values  (  Figure  5b  left  ).  As  a  result,  we  conclude  that  in  BRAF  V600E 
 lines  there  is  li�le  motivation  to  achieve  precise  drug  combination  levels  in  the  patient. 
 For  these  lines,  a  drug  regimen  of  intermediate  intensity  should  be  sufficient  to  inhibit 
 tumor  growth.  Conversely,  the  choice  of  drug  regimen  had  a  greater  impact  on  the 
 extent  of  growth  inhibition  in  the  NRAS  mutant  context  (  Figure  5b  right  ).  Strong  tumor 
 inhibition  is  either  achieved  with  potent  Belvarafenib  (at  400  mg  QD)  or  Cobimetinib  (at 
 60  mg  DQ)  single-agent  activity  or  by  synergy  achieved  at  intermediate  doses,  with  the 
 highest  synergy  with  good  tumor  control  observed  for  100  mg  BID  Belvarafenib  and  20 
 or  40  mg  QD  Cobimetinib.  This  shows  that  the  mutational  context  creates  a  different 
 need  for  dosing  of  the  two  combination  agents,  where  leveraging  synergy  in  NRAS 
 mutant  melanoma  is  be�er  achieved  at  intermediate  doses  of  Cobimetinib  that  lower  the 
 requirement of Belvarafenib to synergize. 
 As  shown  by  standard  deviation  errors,  we  note  that  the  variability  in  the  predicted 
 drug  levels  is  quite  large,  especially  for  the  higher  doses  (  Figure  5a  bo�om  left  ).  This 
 suggests  there  might  be  significant  issues  in  achieving  a  highly  synergistic  drug 
 combination  with  precision  in  individual  patients.  The  NRAS  Q61  context  thus  requires 
 a  more  thorough  analysis  of  the  impacts  of  this  variability  to  gain  insight  into  which,  if 
 any, drug regimens achieve adequate levels of growth inhibition through synergy. 

 3.6.  Pharmacokinetic  variability  in  patients  highlights  precision  requirement  for  synergistic 
 responses in NRAS mutant melanoma tumors 
 We  decided  to  assess  the  role  that  the  patient-to-patient  variability  in  pharmacokinetic 
 profiles  has  in  leveraging  synergistic  vs  additive  responses.  The  PK  models  in  this  study 
 provide  drug  levels  for  individual,  virtual  patients,  which  enables  us  to  develop  a 
 mapping  from  each  single  patient’s  PK  profile  to  a  distribution  of  drug  effects  the 
 patient  experiences,  i.e.  GR  metric  and  Bliss  Excess  values.  To  accomplish  this,  we  obtain 
 the  patient’s  free  drug  concentrations  once  per  hour  over  the  course  of  48  hours  (  Figure 
 S3  ),  then  project  these  concentrations  onto  the  GR  metric  and  Bliss  scores  of  each 
 mutational  context  in  the  same  way  we  projected  the  average  free  drug  levels  in  section 
 3.5.  Doing  this  for  multiple  patients  reveals  the  impacts  of  patient-to-patient  variation  as 
 well  as  the  effects  resulting  from  the  temporal  variation  of  drug  levels  (  Figure  6a  ).  From 
 this we see a single drug regimen can generate different responses within a population. 
 This  indicates  a  significant  challenge  for  treatments;  a  given  regimen  might,  for  example, 
 work  well  for  one  patient,  but  have  less  effect  for  another.  In  order  to  gain  a  be�er 
 understanding  of  which  regimens  consistently  result  in  high  benefit/low  tumor  growth 
 across  all  patients  and  times,  we  examine  the  full  distribution  of  predicted  effects  that 
 result  from  a  given  drug  regimen  (  Figure  6b  ).  We  find  that  because  BRAF  V600E  tumors 
 lack  significant  synergy  (low  Bliss  excess)  and  still  achieve  consistently  strong  tumor 
 suppression  (high  GR  values)  from  drug  regimens  with  as  low  dosing  as  Belvarafenib 
 100  mg  QD  and  Cobimetinib  20  mg  QD.  Therefore,  we  conclude  that  drug  additivity 
 imposes no strict requirements on the precision of dosing in this mutational context. 
 Conversely,  NRAS  Q61  tumors  are  seen  to  achieve  tumor  control  by  significant  synergy 
 (high  Bliss  excess)  for  drug  combinations  that  leverage  partial  single-agent  MEK 
 inhibition  at  20  and,  even  be�er,  40  mg  QD  regimen,  which  combine  well  with  doses  as 
 low  as  50  mg  QD  and  100  mg  BID  of  Belvarafenib.  Distribution  of  growth  inhibition 
 measured  by  GR  and  synergy  by  Bliss  excess  visualized  via  violin  plots  show,  however, 
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 that  combinations  with  50  mg  QD  Belvarafenib  suffer  from  incomplete  responses  due  to 
 the  large  variability  in  free  drug  concentrations  in  individual  patients.  This  happens 
 because  combinations  with  50  mg  QD  Belvarafenib  lie  very  close  to  the  synergy 
 boundary  in  the  dose  landscape  and  fluctuations  bring  the  response  outside  of  the 
 synergistic  regimes  (  Figure  6a-b  ).  Of  all  the  synergistic  combinations,  Cobimetinib  at  40 
 mg  QD  with  Belvarafenib  at  100  mg  BID  seem  to  achieve  consistent  tumor  control  with 
 lower  patient-to-patient  variability  and  moderate  single  agent-activities,  thus 
 representing  an  ideal  drug-sparing  synergistic  point  in  the  dose  landscape.  This 
 underscores  the  importance  of  using  dose  regimes  with  high  synergy  when  treating 
 NRAS  Q61  tumors  to  achieve  strong  effects  while  minimizing  the  effect  of 
 pharmacokinetic fluctuations. 

 3.7.  Clinical  trials  support  distinct  combinability  of  panRAF  and  MEK  inhibitors  in  BRAF  and 
 NRAS mutant patients 
 To  ascertain  the  validity  of  insights  from  modeling  and  experiments,  we  analyzed 
 limited  data  available  from  Phase  1  clinical  trials  combining  Belvarafenib  and 
 Cobimetinib  in  the  treatment  of  melanoma  patients.  We  fit  a  clinical  tumor  growth 
 inhibition  (TGI)  model  [35]  to  describe  the  tumor  dynamics  of  patients  treated  in  clinical 
 trials  NCT03118817  and  NCT03284502,  as  described  in  section  2.11.  The  model  describes 
 the  observed  tumor  dynamics  with  a  biexponential  growth  model  with  tumor  dynamics 
 evolving  for  one  year  from  the  estimated  initial  tumor  size,  with  tumor  growth  rate  and 
 tumor  shrinkage  rate  constants  summarized  in  melanoma  patients  and  stratified  by 
 mutational  status  [36]  .  The  simulations  provide  support  for  the  differential  contribution 
 of  increasing  the  Cobimetinib  dose  in  the  BRAF-mutant  vs  NRAS-mutant  se�ing.  As  we 
 predicted,  the  supralinear  impact  on  growth  from  increasing  Cobimetinib  doses  on  the 
 NRAS  mutant  tumors  subjected  to  a  constant  Belvarafenib  dose  (  Figure  7b  bo�om  ) 
 indicates  the  presence  of  synergistic  effects.  While  the  more  linear  impact  on  growth 
 from  increasing  Cobimetinib  doses  on  the  BRAF  mutant  tumor  subjected  to  a  constant 
 Belvarafenib  dose  (  Figure  7b  top  )  indicates  the  drugs  are  acting  in  a  more  additive 
 fashion.  This  synergy  does  appear  important  for  reaching  desired  effects  in  NRAS 
 mutant  tumors,  with  a  combination  of  Cobimetinib  and  Belvarafenib  outperforming 
 single agent Belvarafenib at suppressing tumor growth. 
 Clinical  data  allow  us  to  assess  another  key  information  for  the  design  of  drug 
 combinations  not  included  in  our  analysis,  namely  if  tolerability  is  a  relevant  issue  that 
 constrains  drug  regimens.  In  the  clinical  trial  NCT03284502,  the  regimen  of  Belvarafenib 
 200  mg  BID  continuously  and  Cobimetinib  40  mg  QD  21/7  led  to  3  dose-limiting 
 toxicities  (DLTs)  (G3  colitis,  G3  diarrhea,  G3  nausea)  in  2  patients  [41]  .  These  and  other 
 reported  treatment-emergent  toxicities  (“dermatitis  acneiform,  diarrhea,  constipation, 
 and  increase  in  blood  creatine  phosphokinase”)  suggest  on-target  toxicity  on  wild-type 
 MAPK  signaling.  Consequently,  Cobimetinib  was  reduced  to  20  mg  QD  while 
 Belvarafenib  was  dose  escalated  to  300  mg  BID,  which  did  not  result  in  DLTs  [41]  .  Our 
 analysis  described  in  Figure  6b  shows  that  at  200  mg  BID  Belvarafenib  and  40  mg  QD 
 Cobimetinib,  Belvarafenib  and  Cobimetinib  are  already  both  substantially  active  as 
 single  agents  in  NRAS  mutant  cells,  suggesting  that  the  combination  is  not  leveraging 
 synergy  as  effectively  and  is  likely  impinging  on  wild-type  MAPK  signaling.  Increasing 
 Belvarafenib  to  300  mg  BID  while  reducing  Cobimetinib  to  20  mg  QD  shifts  the 
 contribution  to  mostly  Belvarafenib  as  single-agent,  likely  reducing  toxicity  but  also 
 losing  synergistic  effects  on  NRAS-mutant  tumors.  Our  analysis  suggests  maintaining 
 Cobimetinib  at  40  mg  QD  or  QOD  while  reducing  Belvarafenib  to  as  low  as  50-100  mg 
 QD/BID  is  an  alternative  approach  to  de-escalate  dose  intensity  which  might  be�er 
 leverage  synergy  of  tumor  inhibition  without  invoking  strong  single-agent  effects,  the 
 possible  culprits  of  toxicity.  To  the  best  of  our  knowledge,  this  regime  of  intermediate 
 Cobimetinib dose and low Belvarafenib dose remains untested in the clinic. 
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 4. Discussion 
 This  study  integrates  drug  response  s,  signaling  modeling  and  pharmacokinetic 
 simulations  to  identify  mutational  scenarios  sensitive  to  specific  co-dosing  regimens  in 
 precision  therapy  for  melanoma.  Our  main  finding  is  that  panRAF  and  MEK  inhibition 
 exhibit  additive  effects  in  BRAF-mutant  tumors  and  synergistic  effects  in  NRAS-mutant 
 tumors  and  that  this  difference  translates  into  distinct  requirements  in  terms  of  dosing 
 regimens  and  dosing  precision  in  the  clinic.  Our  approach  addresses  a  number  of 
 shortcomings  typically  encountered  in  translating  in  vitro  to  in  vivo  drug  responses.  In 
 the  following,  we  will  elaborate  on  these  findings  as  well  as  discuss  the  constraints  and 
 limitations of our own methodology. 
 We  identified  differences  in  the  benefit  of  panRAF  and  MEK  co-inhibition  through  a 
 drug  screen  of  43  melanoma  cell  lines.  While  the  screen  was  strongly  biased  for  BRAF 
 V600  mutations,  high  synergy  was  evident  in  four  NRAS  mutant  lines  as  quantified  by 
 Bliss  excess  analysis.  Our  analysis  extended  beyond  these  traditional  combination 
 metrics  by  projecting  in  vivo  drug  doses  onto  drug  combination  responses.  Key  to  this 
 projection  was  gathering  information  on  free  drug  concentrations  coming  from  in  vivo 
 xenograft  experiments  and  pharmacokinetic  models  trained  using  clinical  data.  Our 
 approach  confirmed  that  the  additivity  and  synergy  detected  in  vitro  apply  at  clinically 
 achievable  doses  of  Belvarafenib  and  Cobimetinib.  The  computational  tool  we  developed 
 for  this  analysis  aids  in  the  definition  of  dose-response  matrices  reflective  of  clinical 
 conditions and is publicly available to encourage use in the scientific community. 
 An  issue  with  projecting  clinical  concentrations  on  drug  dose-response  data  is  the 
 translatability  from  in  vitro  to  in  vivo  .  We  found  that  converting  relative  viability  to 
 growth  rate  inhibition  via  GR  metric  allowed  for  precise  prediction  of  tumor  inhibition 
 in  a  xenograft  model.  This  methodology  was  previously  shown  to  be  effective  for  single 
 agent  drugs,  but  with  the  necessity  of  an  inferred  conversion  factor  to  relate  in  vitro  and 
 in  vivo  drug  concentrations  [16]  .  We  found  that  in  our  system  this  factor  is  unnecessary, 
 i.e.  it  is  unity.  It  is  possible  that  other  drug  combinations  or  cell  lines  will  not  enjoy  this 
 direct  correspondence.  Using  the  approach  we  develop  here  to  systematically  assess 
 conversion  factors  across  drug  combinations  and  cancer  models  should  help  extract  the 
 principles  by  which  in  vitro  responses  translate  to  in  vivo  se�ings,  guiding  translatability 
 of  pre-clinical  studies.  While  our  findings  suggest  this  is  possible,  a  notable  limitation  is 
 the  reliance  on  cell  lines  and  xenografts,  which  might  not  accurately  represent  clinical 
 response  as  they  may  not  fully  encapsulate  the  intricate  biology  of  patient  tumors  and 
 lack critical elements such as the immune system. 
 Mechanistically,  we  identified  a  negative  feedback  on  RAF  dimers  in  NRAS  mutant 
 melanoma  as  the  likely  culprit  behind  their  lower  sensitivity  to  single-agent  MEK 
 inhibition  and  synergistic  response  to  panRAF  co-inhibition.  These  findings  largely 
 confirm  prior  research  [26–28]  ,  but  were  extended  using  computational  modeling  of 
 signal  transduction  to  provide  a  quantitative  framework  for  understanding  and 
 predicting  mechanisms  of  drug  adaptation.  We  have  shown  that  a  previously  developed 
 model  of  MAPK  signaling  [19,20]  could  be  extended  to  explore  synergy  mechanisms 
 specific  to  these  mutational  contexts.  Moreover,  we  used  the  model  to  design 
 experiments  that  validated  the  key  link  between  the  degree  of  ERK  inhibition  achieved 
 in  BRAF  and  NRAS  mutant  cell  lines  and  drug  responses.  As  noted  in  the  results  section, 
 there  was  a  small  fraction  of  BRAF-mutant  lines  that  exhibited  synergistic  responses 
 similar  to  NRAS-mutant  lines.  Mechanistic  insights  from  modeling  indicate  that  these 
 BRAF-mutant  lines  might  activate  dimeric  RAF  signaling  either  at  baseline  or  in 
 response  to  treatment,  therefore  suggesting  that  drug  synergy  might  also  be  required  to 
 curb resistance mechanisms in BRAF-mutant tumors. 
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 With  a  mechanistic  understanding  in  hand,  next  we  assessed  drug  responses  at 
 clinical-relevant  concentrations  to  retrospectively  evaluate  dosing  regimes  tested  in  the 
 clinic  and  foresight  alternative  strategies.  As  scored  through  the  lenses  of  pre-clinical 
 data,  we  realized  that  the  initial  combination  tested  in  the  clinic  of  200  mg  BID 
 Belvarafenib  and  40  mg  QD  Cobimetinib  does  not  fully  leverage  synergy  since  both 
 drugs,  but  especially  Belvarafenib,  are  quite  effective  as  single-agents.  Interestingly,  this 
 dose  regime  was  also  not  well  tolerated  in  the  clinic,  most  likely  due  to  on-target 
 toxicity.  Our  analysis  suggests  that  to  fully  leverage  synergy  and  reduce  single-agent 
 activity,  Cobimetinib  could  be  kept  at  40  mg  QD  or  QOD  dosing  while  Belvarafenib 
 could  be  reduced  substantially  to  50  or  100  mg  QD/BID.  This  strategy  agrees  with  the 
 preclinical  evidence  that  synergy  is  best  leveraged  when  the  negative  feedback  elicited 
 by  MEK  inhibition  is  partially  active  to  dramatically  potentiate  panRAF  inhibition.  We 
 hypothesize  that  the  alternative  strategy  of  lowering  Cobimetinib  to  20  mg  QD  and 
 escalating  Belvarafenib  to  300  mg  BID  might  come  at  the  cost  of  losing  single-agent 
 potency of MEK inhibition and, therefore, drug synergy. 
 Although  supported  by  preclinical  data  for  efficacy,  utilizing  drug  synergy  in  a  regimen 
 of  intermediate  MEK  inhibition  and  low  panRAF  inhibition  to  minimize  on-target 
 toxicities  in  the  clinic  remains  to  be  validated.  In  principle,  on-target  toxicities  could  be 
 reduced  if  the  mechanisms  behind  drug  synergy  are  not  strongly  operating  in  healthy 
 tissues.  While  evidence  seems  to  suggest  the  tendency  of  synergy  in  therapeutic  effects 
 to  be  significantly  stronger  than  the  synergy  in  toxic  effects  [43]  ,  the  picture  is  far  from 
 clear.  On  the  downside,  the  negative  feedback  mechanisms  behind  drug  synergy 
 operating  on  Ras  signaling  and  RAF  dimerization  are  presumably  active  in  healthy  cells. 
 In  contrast,  NRAS  Q61  hotspot  mutations  disrupt  the  Ras  loading  cycle  in  a  manner  that 
 likely  amplifies  dependency  on  negative  feedback—and  thus  drug  synergy—relative  to 
 healthy  cells.  A  lack  of  cell  line  models  that  accurately  represent  signaling  in  normal 
 tissue  complicates  experimental  verification  of  these  hypotheses.  Estimating  the 
 therapeutic  window  of  wild-type  versus  mutant  signaling  presents  a  promising 
 direction  for  dynamic  signaling  modeling,  especially  when  parameters  for  wild-type 
 signaling  are  quantifiable.  Ultimately,  the  clinical  experiment  of  a  regimen  involving 
 intermediate  MEK  inhibition  and  low  panRAF  inhibition  needs  to  be  implemented  to 
 assess  the  effect  on  toxicity.  A  main  result  of  this  work  is  to  show  that  this  regime 
 remains so far likely untested for Belvarafenib and Cobimetinib. 
 An  insight  revealed  by  analyzing  patient-to-patient  pharmacokinetic  variability  is  the 
 degree  of  precision  in  dosing  needed  to  leverage  synergy  in  the  clinics.  We  have 
 observed  that  the  synergistic  space  of  the  dose  landscape  is  pre�y  narrow  compared  to 
 the  fluctuations  in  free  drug  concentrations  across  patients.  For  each  regime  in  which 
 average  drug  concentrations  were  solidly  in  the  synergistic  space,  we  found  some 
 patients  whose  fluctuations  in  drug  levels  positioned  them  outside  of  synergy.  This  has 
 implications  for  how  preclinical  evidence  of  synergy  should  be  applied  to  implement 
 drug  combinations  in  the  clinic.  Conceptually,  our  observations  might  propose  a  more 
 general  principle  often  overlooked  in  clinical  development.  Using  clinical  data  on  patient 
 responses,  it  has  been  shown  that  most  drug  combinations  in  the  clinic  in  practice  act 
 independently  or  additively,  even  when  pre-clinical  work  suggested  strong  synergy  [42]  . 
 We  find  it  unlikely  that  mechanisms  of  synergy  identified  pre-clinically  do  not  operate  in 
 human  tumors.  Here,  we  argue  that  synergy  might  not  often  be  observed  clinically 
 because  of  the  practical  issue  of  maintaining  drug  concentrations  within  the  synergistic 
 regimes.  We  suggest  that  the  methodology  developed  here  can  be  applied  early  on  in 
 clinical  decision  making  to  inform  on  the  likelihood  of  achieving  and  maintaining 
 synergy in a patient population. 
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 5. Conclusions 
 In  this  study,  we  explore  the  use  of  preclinical  cell  line  drug  response  data 

 alongside  computational  modeling  to  determine  the  optimal  dosages  of  pan-RAF 
 (Belvarafenib)  and  MEK  (Cobimetinib)  inhibitors  for  melanoma  treatment.  The  main 
 findings  is  that  the  two  main  oncogenic  drivers  in  melanoma,  BRAF  V600  and  NRAS 
 Q61  hotspot  mutations,  result  in  different  underlying  signaling  biology  requiring 
 different  treatment  regimes  using  the  same  drugs.  We  show  that  most  combinatorial 
 dose  regimens  achievable  in  the  clinic  are  effective  for  treating  BRAF-mutant  melanoma 
 thanks  to  single-agent  higher  potency  and  drug  additivity,  whereas  NRAS-mutant 
 melanoma  requires  more  precise  dosing  to  harness  drug  synergy,  posing  practical 
 implementation challenges due to interpatient pharmacokinetic variability. 

 Our  research  underscores  that  precision  medicine  should  not  only  aim  to  identify 
 the  most  effective  drug  combination  for  a  given  indication,  but  also  tailor  dosing 
 regimens  to  match  the  pathway  biology  driven  by  mutational  mechanisms,  among  other 
 biologic  factors.  In  these  contexts,  the  need  for  precision  dosing  becomes  imperative, 
 demanding  thorough  examination  within  both  pre-clinical  and  translational  research 
 frameworks.  By  introducing  a  novel  methodological  approach,  our  study  seeks  to  tackle 
 the  challenges  associated  with  implementing  precision  dosing  strategies,  propelling  the 
 efforts to enhance the personalization of cancer treatment. 
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 Figure 1.  Drug screen reveals additivity of combined  pan-RAF and MEK inhibition in 
 BRAF-mutant melanoma, but synergy in NRAS mutant melanoma cell lines. (a) Single agent drug 
 screen on 43 melanoma cell lines including those with BRAF and NRAS mutations. Drug 
 effectiveness quantified via IC50 values. (b) Combination drug screen on the same 43 melanoma 
 cell lines. Drug combination synergies quantified via Bliss scores. (c) Measured in vitro effects of 
 Cobimetinib and Belvarafenib combinations on the relative viability of select cell lines with drug 
 synergies quantified by Bliss excess. 
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 Figure 2.  Computational modeling and molecular experiments  implicate a negative feedback loop 
 in the response of NRAS vs BRAF mutant melanomas to panRAF and MEK inhibitors. (a-b) 
 Schematic of the MAPK pathway in (a) NRAS Q61 and (b) BRAF V600E melanomas.  (c-d) 
 Quantification of pMEK, total MEK, pERK, and total ERK protein levels obtained via western 
 blo�ing under the indicated combinations of Cobimetinib and Belvarafenib in (c) MEL-JUSO and 
 (d) A-375 cells. (e) Model predictions for steady state percentages of active RAF, pMEK, and pERK 
 under indicated concentrations of Belvarafenib and Cobimetinib. Results are shown for both BRAF 
 V600E and NRAS Q61 models. 
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 Figure 3.  Mechanistic modeling of MAPK signaling quantitatively  predicts responses to panRAF 
 and MEK inhibitors in NRAS and BRAF mutant melanoma cell lines. (a-b)  Model predictions for 
 pMEK and pERK steady-state levels under indicated concentrations of Belvarafenib and 
 Cobimetinib. Reported values are given relative to drugless conditions. Drug synergy analysis is 
 quantified via excess over Bliss. Values are shown for both (a) BRAF V600E and (b) NRAS Q61 
 model predictions. (c) Model prediction (top) and immunofluorescence data (bo�om) for pERK 
 levels in response to Cobimetinib and Belvarafenib combinations. Values provided for BRAF 
 V600E model and cell line, A-375, (left) and NRAS Q61 model and cell line, IPC-298, (right). 
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 Figure 4.  Prediction of  in vivo  xenograft  tumor volume  control by panRAF and MEK inhibition 
 achieved using  in vitro  cell line response and  in  vivo  exposures. (a) Conversion of relative viability 
 to GR metric for IPC-298 in vitro drug responses and projection of mouse PK data onto in vitro 
 responses to obtain predicted tumor growth rates (b) Comparison between predicted tumor 
 growth rates and experimentally measured tumor growth rates. Part of the tumor volume 
 experiments re-analyzed here were previously published in  [25]  . 
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 Figure 5.  Leveraging synergy in NRAS mutant melanoma  at equivalent clinical doses requires at 
 least intermediate MEK inhibition thus allowing lower Belvarafenib doses. (a) Workflow for 
 mapping in vivo free drug concentrations onto in vitro drug responses to predict cell responses 
 and drug synergies at clinically equivalent concentrations. (b) Predicted viability of cell panels and 
 drug synergies at clinically equivalent drug concentrations. 
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 Figure 6.  Pharmacokinetic variability in patients  limits the precision to obtain synergistic 
 responses in NRAS mutant melanoma tumors (a) Individual virtual patient PK trajectories 
 resulting from the indicated drug regimen projected onto in vitro responses. (b) The distribution 
 of GR metric values (left) and Bliss excess values (right) measured from 75 single patient 
 trajectories. Multiple drug regimens are compared, rows and columns labels indicate the 
 Cobimetinib and Belvarafenib doses used in the specific drug regimen. 
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 Figure 7.  Tumor growth inhibition in patients simulated  using a model trained on Phase 1 clinical 
 trials support the additive vs synergistic dose landscape of BRAF vs NRAS mutant melanoma 
 patients for panRAF and MEK co-inhibition (a) Simulated tumor growth under indicated 
 Belvarafenib and Cobimetinib regimens for BRAF and NRAS mutant melanoma patients  .  Belva 
 mono is 400/450 mg BID (b) Distribution of tumor growth rates for indicated drug regimen within 
 simulated populations of patients with BRAF V600E (top) or NRAS Q61 (bo�om) tumors. 
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