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Breast cancer is one of the most common cancers with high incident rate and high mortality rate worldwide. Although different
breast cancer cell lineswerewidely used in laboratory investigations, accumulated evidences have indicated that genomic differences
exist between cancer cell lines and tissue samples in the past decades.The abundantmolecular profiles of cancer cell lines and tumor
samples deposited in the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas now allow a systematical comparison
of the breast cancer cell lines with breast tumors. We depicted the genomic characteristics of breast primary tumors based on
the copy number variation and gene expression profiles and the breast cancer cell lines were compared to different subgroups of
breast tumors. We identified that some of the breast cancer cell lines show high correlation with the tumor group that agrees with
previous knowledge, while a big part of them do not, including the most used MCF7, MDA-MB-231, and T-47D. We presented
a computational framework to identify cell lines that mostly resemble a certain tumor group for the breast tumor study. Our
investigation presents a useful guide to bridge the gap between cell lines and tumors and helps to select the most suitable cell
line models for personalized cancer studies.

1. Introduction

Breast cancer is one of the most frequently diagnosed life-
threatening cancers in women with about 235,000 new cases
expected in the United States in 2014. Breast cancer is a
complex and heterogeneous disease such that they may
have different prognoses. It responds to therapy differently
despite similarities in histological types, grade, and stage.
In the laboratory, the breast cancer is often modelled using
established breast cancer cell lines due to their ease of being
acquired and used [1].

However, accumulated evidences have pointed out the
genomic differences between cancer cell lines and tissue
samples in the past decades [2–4]. In the review of Holliday
and Speirs [1], they demonstrated that cell lines are prone to
genotypic and phenotypic drift during their continual cul-
ture.This is particularly common in themore frequently used
cell lines, especially those that have been deposited in cell
banks formany years [5]. Subpopulationsmay arise and cause

phenotypic changes over time by the selection of specific,
more rapidly growing clones within a population. Consid-
ering these findings, it is essential for researchers to choose
the decent cell lines models when designing experiments and
interpreting results, especially if such cell lines are regarded as
valid models in evaluating the pathobiology of breast cancer
and/or the likely response to novel drug therapies [1].

With the quick development of the whole genome
sequencing and other “-omics” techniques, now it becomes
possible to systematically explore the relationship between
tumor tissues and cancer cell lines and identify the cell
lines that most closely resemble particular tumor subtypes.
In The Cancer Genome Atlas (TCGA), the genome and
expression profiles of at least 500 tissue samples per tumor
type are being comprehensively characterized [6].TheBroad-
Novartis Cancer Cell Line Encyclopedia (CCLE) contains a
compilation of gene expression, chromosomal copy number,
and massively parallel sequencing data from 947 human
cancer cell lines that are used as models for various tumor
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types [7]. These huge data accumulated regarding tumor
samples and cell lines have provided a great potential to mine
their associations and characterize the cancer mechanisms.

Traditionally, breast cancerwas diagnosed into luminalA,
luminal B, HER2+/ER−, basal-like, and normal-like subtypes
based on gene expression profiling or immunohistochemi-
cal (IHC) characteristic [6]. However, classification criteria
defined by using only this information may be not sufficient
and likely overly general. In this study, we focus on the
primary tumors of breast and try to depict the genomic
characteristics of these tumors based on their gene expression
profiles. Besides, previous studies have suggested that DNA
copy number variations (CNVs) are important influential
factors for altered gene expression levels in cancer [8–10]. In
a lung cancer study, approximately 78% genes showed a posi-
tive correlation between CNV and gene expression level [11].
Considering the potential key constitution of CNVs associ-
ated with the gene expression variations in breast tumors,
copy number profiles were also incorporated in this study.

Using the genomic information, the relationship between
these primary breast tumors and the breast cancer cell lines
was explored. Furthermore, as intrinsic differences exist
among the breast tumor, we also attempt to figure out the
correlation between the cell lines and different breast tumor
groups and design an efficient computational framework
which helps to select the most suitable cell line models for
a specified tumor type.

2. Materials and Methods

2.1. Data Collection and Tumor Sample Classification. In our
study, we only reserved breast tumor samples or cancer cell
lines with both genome-wideDNAcopy number information
andmRNA expression profiles available. As a curation result,
543 primary breast tumor samples (including 52 normal
samples) profiled by TCGA [6] and 59 breast cancer cell lines
from the CCLE [7] were obtained.

Generally, breast cancer may be categorized into luminal
A, luminal B, HER2+/ER−, basal-like, and normal-like sub-
types based on gene expression profiling or immunohisto-
chemical (IHC) characteristics [12, 13]. However, large-scale
genomics projects have revealed heterogeneities exist within
the same class of breast cancer patients defined by the classic
grouping [6]. Here, in order to make a relatively consistent
molecular background for the tumor samples in the same
group, we subdivided the 491 breast tumors into 8 groups
according to the presence or absence of expression of the
estrogen receptor (ER), the human epidermal growth factor
receptor 2 (ERBB2/HER2), and progesterone receptor (PR) in
combination, and there are ER group (ER+, PR−, and HER−;
𝑛 = 46), PR group (ER−, PR+, and HER−; 𝑛 = 5), HER
group (ER−, PR−, and HER+; 𝑛 = 19), ERPR group (ER+,
PR+, and HER−; 𝑛 = 282), ERHER group (ER+, PR−, and
HER+; 𝑛 = 14), PRHER group (ER−, PR+, andHER+; 𝑛 = 1),
TP group (ER+, PR+, and HER+; 𝑛 = 38), and TN group
(ER+, PR+, and HER+; 𝑛 = 86). The PRHER group was
removed in the further study as there was only one sample
in the group. The expression pattern of the three marker
genes in all tumor samples was shown in supplementary

Figure 1 in the Supplementary Material available online at
http://dx.doi.org/10.1155/2015/901303.

2.2. Copy Number Data Analysis. Level 3 copy number data
was downloaded for breast tumor samples from TCGA
(platform: Affymetrix SNP6) [6]. As the CNV sizes are quite
different across the tumor samples, the CNV profiles were
further broken into gene basis. To enable the gene based
analysis, the Bioconductor package CNTools was used to
map the segmented copy number data of TCGA samples
to genes [14], and each gene corresponds to only one CNV
segment. The mean copy number profile of each group of the
TCGA samples was obtained by calculating the mean signal
of each gene across all tumor samples in this group. Copy
number data (gene level) for cancer cell lines was obtained
from CCLE (platform: Affymetrix SNP6) [7]. As reported
by TCGA and CCLE, the significant focal copy number
alterations in individual tumor samples/cancer cell lines were
identified from segmented data using GISTIC [15].

Four classes of abnormal segments were considered based
on their estimated copy number [16]:

(1) single copy deletion (copy number < 1.5),
(2) double copy deletion (copy number < 0.5),
(3) gain of copy number (copy number > 2.5),
(4) amplification (copy number > 3.5).

2.3. Gene Expression Data Analysis. We used data from the
Agilent G4502A 07 platform for TCGA, with measurements
of 17,814 genes. Differentially expressed genes were selected
based on the fold change of gene expression between each
groups of tumor samples and the control (normal group)
under the cutoff of | log 2foldchange| > 1 [17]. The overex-
pression/underexpression frequency was calculated for each
gene in each tumor group. For example, gene A was overex-
pressed in ER group as compared to the normal group,
and then the proportion of tumor samples in ER group
with expression value of gene A higher than the mean
expression value of gene A in normal group was defined as
the overexpression frequency of gene A in ER group.

CCLE expression data was obtained using Affymetrix
U133 Plus 2.0 Arrays, with measurements of 18,926 genes.
Differentially expressed genes were selected based on the fold
change of gene expression between each cell line and the
average of expression value of all the cell lines [17].

For the comparison between gene expression data from
TCGA and CCLE, robust 𝑧-scores (median-centered expres-
sion values divided by the median absolute deviation) were
derived separately for the two data sets from CCLE and
TCGA, and only common genes were remained.

2.4. Gene Set Functional Enrichment Analysis. Gene set
enrichment analyses were performed for the functional
annotation of the differential expressed genes. Functional
Annotation Tools in DAVID Bioinformatics Resources [18]
were used to carry out these analyses. Those gene ontology
biological process terms with 𝑃 value less than 0.05 and
genes more than two were considered as significant enriched
functions for further analysis.
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Figure 1: (a) DNA copy number change profiles in each group of breast tumor samples. The CNVs frequency of the whole genome was
calculated, the gains of copy number were marked in red, and the losses were marked in green. The 𝑦-axis in each subgraph represents the
frequency of the copy number gain/loss of the corresponding gene. (b) Clustering of the CNV data. The CNVs on each chromosome in each
sample group were clustered separately. The gains of copy number were marked in red and the losses were marked in blue.

2.5. The Construction of “Pathway of the 384 Genes in Breast
Tumors”. First, pathways closely related to breast cancer
were collected via NCI website (http://www.cancer.gov/) and
literature review, and they are Estrogen Signaling pathway,
ERBB pathway, PI3K/Akt/mTOR Signaling pathway, p53
Signaling pathway, Ras Signaling pathway [19], Notch Sig-
naling pathway [20], Wnt Signaling pathway [21], and NFkB
pathway [22]. These pathways were retrieved from KEGG
pathway database [23] and compiled into a big pathway via
the overlapping elements.

2.6. Rank Aggregation. Two ranking lists derived from copy
number profiles and gene expression profiles were fused
into one ranking list using R package RankAggreg [24].
Cross Entropy Monte Carlo (CE) algorithm together with
Spearman distance was used to perform the rank fusion. The
maximum number of iterations was set as 1000.

3. Result

3.1. Genomic Characteristics of Breast Tumor
3.1.1. Copy Number Variations in Breast Tumors. The TCGA
and other groups have made great effort to explore the
genomic landscape of breast cancer [6, 25]. After classifying
the tumor samples from TCGA, we found that, as compared
to the normal samples, the tumor samples in other groups
show similar copy number variation (CNV) pattern (supple-
mentary Figure 2).Then,we obtained 2,426 geneswithCNVs
for all groups (supplementary Table 1). It is noteworthy that,
for all the groups, the majority of the genes are undergoing
frequent copy number gain (Figure 1). Chromosomes 1, 8, 17,
and 20 contained most of the genes with CNVs. According
to previous studies [6, 26], many genes on chromosomes 8
and 17 show copy number gain, such asMYCon chromosome
8q24, and HER2 as well TOP2A on chromosome 17q21.1.
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Figure 2: Copy number variation value and expression value of the 384 genes. The 7 circles inside represent the copy number variation of
the 384 genes in the 7 tumor groups. The gains of copy number were marked in red and the losses were marked in green. The genes were
arranged in chromosomal order (chr1→ chr 𝑋). The circular rings denote different tumor groups (from outside to inside: ER, PR, HER,
ERPR, ERHER, TP, and TN). The 7 circles outside represent the expression value of the 384 genes in the 7 tumor groups. The overexpressed
genes were in red and the underexpressed ones were in blue. The genes were arranged in chromosomal order (chr1→ chr 𝑋). The circular
rings denote different tumor groups (from outside to inside: ER, PR, HER, ERPR, ERHER, TP, and TN).

3.1.2. Differentially ExpressedGenes in Breast Tumors. Totally,
there were 4,843 differentially expressed genes (DEGs) for
all groups of tumor samples from TCGA (supplementary
Table 2). 399 of theDEGswere overexpressed in all the tumor
groups, while 588 of them were underexpressed in all groups
(supplementary Figures 3 and 4). There were only 5 overex-
pressed genes and 14 underexpressed genes unique for ER
group, while there were 254 overexpressed genes and 219
underexpressed genes unique for TN group (supplementary
Figures 3 and 4). Then, the overexpression/underexpression
frequency was calculated for each of the 4,843 genes in each
group. Notably, 413 of the genes differ greatly in these tumor

sample groups (the deviation between the highest and the
lowest frequency of the gene across the groups is bigger
than 1), and they were significantly enriched in regulation of
hormone levels and cell adhesion.

3.1.3. Genes with Correlations between Copy Number and
Expression. We found that totally 384 individual genes show
copy number change associated with the alteration in their
expression for all tumor sample groups (Figure 2 and sup-
plementary Table 3). The majority of these genes were dis-
tributed in chromosomes 1, 8, and 17, which is not surprising,
as most of the genes with CNVs were concentrated in these
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Figure 3: Pathway of the 384 genes in breast tumors. The yellow boxes are the genes that showed copy number change associated with
alteration in their expression for all tumor sample groups.The five-pointed stars or triangles with different colors denote the genes in different
breast tumor groups.

chromosomes.The genes with high copy number change also
show high gene expression change, such as ERBB2, PSMD3,
and TCAP. Altogether these genes are significantly enriched
in biological processes related to cell cycle. Amplified (and
overexpressed) genes are prime therapeutic targets. For
example, the use of the drug trastuzumab against ERBB2
has been shown to improve breast cancer survival rates
alone or in combination with other treatments [27–29]. The
amplified genes with overexpression in each tumor sample
groups might be the potential therapeutic targets for the
specific tumor type, such asCCND1,CCNE2 for the ERgroup
and E2F5, EIF2C2 for the PR group. 23 of these genes are
distributed in the pathways which are closely related to breast
cancer: ERBB pathway, PI3K/Akt Signaling pathway, NFkB
pathway, and so forth (Figure 3) whereas whether these genes
are druggable needs further exploration.

3.2. Correlation between Breast Cancer Cell
Lines and Tumor Samples

3.2.1. Characteristics of the Breast Cancer Cell Lines. Among
the 59 breast cancer cell lines in CCLE dataset, MCF7, MDA-
MB-231, and T-47D are the three most used cell line models
for breast cancer account for 82%of current PubMed citations

out of the 59 analyzed cell lines (Figure 4). The presence or
absence of expression of ER, HER2, and PR in these cell
lines was shown in Figure 4, and accordingly, the cell lines
were clustered into three parts. These cell lines were also
classified into 7 groups as for the breast tumors.The cell lines
within the same group show quite different copy number
pattern (supplementary Figure 5). The number of overex-
pressed/underexpressed genes and the count of genes with
copy number changes in each cell line were also shown
in Figure 4. In general, most of the cell lines have more
genes with CNVs rather than DEGs, while CAL51, HS343T,
HS606T, HS281T, HMEL, HS274T, HS739T, and HS742T
have more DEGs rather than genes with CNVs.

3.2.2. Comparing the Breast Cancer Cell Lines to the Tumor
Groups. For each cell line, the copy number profiles were
compared with the mean copy number profile of each
tumor sample group by calculating Spearman correlation
coefficients using the 2,426 genes with CNVs profiles in
the tumor samples (Figure 5). In this way, we obtained the
correlation between each of the cell lines and the different
tumor groups. 12 cell lines (e.g., BT20, BT474, EFM19, etc.)
showhigh correlationwith their preclassification indicated by
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Figure 4: General information of the 59 breast cancer cell lines. The fold change values of ER, HER2, and PR in these cell lines were
summarized in a heat map, with blue indicating low fold change value and orange indicating high fold change value.

the presence or absence of expression of ER, HER2, and PR in
the cell line. We surprisingly found that the most cited three
cell lines MCF7, MDA-MB-231, and T-47D do not show high
correlation with the preclassified tumor group. Additionally,
some cell lines (HS343T, HS606T, HS739T, and HS742T)
show low correlation to any one of the tumor groups. This is
probably due to the fact that these established breast cancer
cell lines are not derived from the primary breast tumors but
from tumor metastases. This means that these cell lines are
derived from more aggressive metastatic tumors, rather than
the primary lesion [1]. Besides, cell lines are purer than tumor
samples, which tend to be contaminated with stromal cells

[4]. In addition, cell lines are prone to genotypic and pheno-
typic drift during their continual culture, especially those that
have been deposited in cell banks for many years [30].

Then, the gene expression profiles of each cancer cell
line were compared with the mean gene expression pro-
file of each tumor sample group by calculating Spearman
correlation coefficients using the 4,843 genes differentially
expressed in the tumor samples (Figure 6). In this way, we
obtained the correlation between each of the cell lines and the
different tumor groups. As a whole, the correlation between
cell lines and tumor sample groups using gene expression
profiles is in accordance with that revealed using CNVs data.
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Figure 5: Correlation between the 59 breast cancer cell lines and the tumor sample groups using copy number data.

The difference is that the correlation values are lower than
those calculated using CNVs information but with higher
concordance (29 cell lines) with the classification indicated
by the presence or absence of expression of ER, HER2, and
PR in the cell line. HS343T, HS606T, HS739T, and HS742T
also show low correlation to any one of the tumor groups.

Additionally, we examined the overlap ratio of genes that
showed copy number change associated with alteration in
their expression between each breast cancer cell line and each
tumor sample group (Figure 7).This ratio could also indicate
the correlation between cancer cell lines and different tumor
samples, as it shows high consistency with that only by copy
number profiles or gene expression profiles.

3.3. Ranking of the Breast Cancer Cell Lines as CandidateMod-
els for Certain TumorGroup Study. Breast cancer is a complex
disease thatmanifests as a result of coordinated alterations on
genomic, epigenomic, and proteomic levels. Therefore, it is
important to take into account the multiple datasets together
to optimize strength of biological information acrossmultiple
assays relevant to breast cancer. With the accumulated copy
number profiles and gene expression profiles for different

cancer cell lines and tumor samples, we could evaluate
whether a certain breast cancer cell line is a good model for
a specific tumor group by integration of these two aspects
of information. We designed a ranking aggregation model of
the cell lines according to their correlation with each tumor
group based on the integration of copy number profiles and
gene expression profiles. First, the breast cancer cell lines
were ranked in descending order of their similarity with each
tumor group using copy number profiles and gene expression
profiles, respectively. Then, for each tumor group, the two
derived ranking lists of the breast cancer cell lines were fused
into one ranking list using R package RankAggreg [24]. In
this way, the good cell linemodels for each tumor groupswere
picked out from the 59 breast cancer cell lines.

For each tumor group, the cell lines ranked in the top
resemble the tumor group best and might be the best cell
line models for laboratory studies. Suggested by the final
ranking list, the best three cell line models for each breast
tumor group were listed as follows: CAMA1, BT483, and
HCC202 (ER group); HCC70, HCC1143, and HCC1937 (PR
group);MDAMB453,HCC2218, andUACC893 (HERgroup);
MDAMB453, CAL148, and ZR751 (ERHER group); HCC202,
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Figure 6: Correlation between the 59 breast cancer cell lines and the tumor sample groups using gene expression profiles.

BT483, andZR751 (ERPR group);MDAMB453,MDAMB361,
and UACC893 (TP group); HCC1599, HCC70, and HCC1569
(TN group).There results may provide useful clues for future
personalized breast cancer study.

3.4. Comparing All the Cancer Cell Lines with Breast Tumor
Samples. Similarly, we also evaluated the correlation between
all the cancer cell lines in CCLE and breast tumor sam-
ple groups, using the copy number information and gene
expression profiles (supplementary Tables 4 and 5). From the
perspective of either copy number or gene expression profiles,
respectively, some breast cancer cell lines were ranked with
high correlation with any of the breast tumor groups while,
interestingly, we also identified that some lung cancer cell
lines and ovary cancer cell lines also present high correlation
with at least one of the breast tumor groups.

4. Discussion

4.1. Breast Tumor Sample Groups Differ Greatly in the Regula-
tion of Hormone Levels and Cell Adhesion. 413 of the DEGs
differ greatly in the frequency of overexpression/underex-
pression across the different tumor sample groups. After

conducting the gene set functional enrichment analysis, we
found these genes were significantly enriched in biological
processes including the regulation of hormone levels and cell
adhesion.The enrichment in the regulation of hormone levels
is expected. As cell adhesion is related to cancer metastasis,
we checked the literatures and found that different breast
cancer subtypes show disparity in metastasizing to different
sites [31, 32]. However, the classification of breast cancer
into subtypes does not typically inform about metastatic
behavior. These genes (COL9A1, ITGB8, ITGB6, TTYH1,
RET, etc.) enriched in the cell adhesion may serve as impor-
tant indicators of different types of breast cancer. Due to
limited information in this field, the roles of these genes
in manipulating the tendency of breast cancer metastasis to
different sites need to be further studied.

4.2. Correlation between Breast Cancer Cell Lines and the
Tumor Samples. The integrative genomic study of copy num-
ber profiles and gene expression profiles collected on the
same set of cancer cell lines and patient samples could serve
as an efficient way to depict the characteristics of different
tumor types and cancer cell lines. Besides, the integrated
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Figure 7:The overlap ratio of genes shows copy number change associated with alteration in their expression between each breast cancer cell
lines and the tumor sample groups.

investigation of the two perspectives also provides a guide to
reveal the relationship between breast cancer cell lines and
the tumor samples, as well as selecting the suitable cell lines
for the corresponding breast tumor group. In general, the
correlation between the cancer cell lines and the tumor sam-
ple groups indicated by the two aspects was consistent with
each other. The association between copy number variations
and gene expression has been investigated by several research
groups [33, 34]. As DNA copy number variations (CNVs) are
important influential factors for altered gene expression levels
in cancer, the observed high consistency was expected.

Some of the cancer cell lines have high correlation with
the preclassified tumor group based on the presence or
absence of expression of ER, HER2, and PR in the cell
line, while a big part of them does not show this tendency,
including the most used MCF7, MDA-MB-231, and T-47D.
According to ATCC (http://www.atcc.org/) which is one of
the largest biosources in the world and offers investigators a
complex array of human, animal, insect, fish, and stem cell
lines, these three cell lines are not from primary breast cancer
but aremetastatic breast cancer cell lines derived frompleural
effusion. Some of the cell lines (HS343T, HS606T, HS739T,
and HS742T) have low correlation to any one of the primary
tumor groups either calculated using copy number profiles or
gene expression profiles. The low correlation probably lies in
that they are not originated from primary tumors, or maybe
these cell lines were contaminated during their continual
culture.

Indicated by the fused rank based on the similarity of
copy number profiles and gene expression profiles, the most

resemble breast cancer cell lines were picked out as the good
models for different tumor groups. Further evidences might
be identified by investigating mutation profiles, proteomics
data, and so forth.

4.3. Lung Cancer Cell Lines and Ovary Cancer Cell Lines
Show High Correlation with the Breast Tumor Samples. By
evaluating the correlation between other cancer cell lines in
CCLE with the breast tumor groups, we found some of the
lung cancer cell lines and the ovary cancer cell lines showhigh
relevance with the breast tumors. In the systematic analysis of
the genomic characteristics of breast tumors, the similarity
between ovary tumors and lung tumors was observed [6].
The high correlation between some of the ovary/lung cancer
cell lines and the breast tumors was understandable. In
addition to the similar CNV profile (e.g., common gains in
chromosomes 1, 8, 17, and 20) and gene expression profile
(e.g., overexpression of AKT3, MYC) between the breast
tumor samples and the ovary/lung cancer cell lines, there
are some other commonalities between them. For example,
breast tumors and ovary tumors have common risk factors
including hormone therapy, obesity, and inherited genetic
risk such as BRCA1 and BRCA2 [35, 36]. For breast tumors
and lung tumors, they have high frequency of TP53 muta-
tions, EGFR mutation, and so forth [37].

5. Conclusion

In this paper, we investigated the correlation between differ-
ent groups of primary breast tumors and breast cancer cell
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lines using copy number profiles and gene expression profiles.
Although the relevance between tumors and cancer cell lines
seems not very high, while considering their ease of use, there
is no doubt that established cell lines will continue to be used
as models for breast cancer. Our study is expected to provide
a useful guide for researchers to understand the limitations of
the cells and select the suitable cell lines as the tumor model
for better investigation of cancer mechanism.
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