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Abstract

Background: The present study was designed to test the hypothesis that inactivation of virtually
any component within the pathway containing the BRCA| and BRCA2 proteins would increase the
risks for lymphomas and leukemias. In people who do not have BRCA| or BRCA2 gene mutations,
the encoded proteins prevent breast/ovarian cancer. However BRCA| and BRCA2 proteins have
multiple functions including participating in a pathway that mediates repair of DNA double strand
breaks by error-free methods. Inactivation of BRCAI, BRCA2 or any other critical protein within
this "BRCA pathway" due to a gene mutation should inactivate this error-free repair process. DNA
fragments produced by double strand breaks are then left to non-specific processes that rejoin
them without regard for preserving normal gene regulation or function, so rearrangements of DNA
segments are more likely. These kinds of rearrangements are typically associated with some
lymphomas and leukemias.

Methods: Literature searches produced about 2500 epidemiology and basic science articles
related to the BRCA pathway. These articles were reviewed and copied to a database to facilitate
access. Meta-analyses of statistical information compared risks for hematologic cancers vs.
mutations for the components in a model pathway containing BRCA/2 gene products.

Results: Deleterious mutations of genes encoding proteins virtually anywhere within the BRCA
pathway increased risks up to nearly 2000 fold for certain leukemias and lymphomas. Cancers with
large increases in risk included mantle cell lymphoma, acute myeloid leukemia, acute lymphocytic
leukemia, chronic lymphocytic leukemia, and prolymphocytic leukemia. Mantle cell lymphoma is
defined by a characteristic rearrangement of DNA fragments interchanged between chromosomes
I'l and 14. DNA translocations or rearrangements also occur in significant percentages of the other
cancers.

Conclusion: An important function of the BRCA pathway is to prevent a subgroup of human
leukemias and lymphomas that may involve non-random, characteristic gene rearrangements. Here,
the genetic defect in BRCA pathway deficiencies is a chromosomal misrepair syndrome that may
facilitate this subgroup of somatic cancers. Inactivation of a single gene within the pathway can
increase risks for multiple cancers and inactivation of a different gene in the same pathway may have
similar effects. The results presented here may have clinical implications for surveillance and
therapy.
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Background

BRCA1 and BRCA?2 proteins are thought to be essential to
prevent breast/ovarian cancer largely because of the high
lifetime risks faced by carriers of mutations in the corre-
sponding genes. More modest increases in risk for other
cancers have also been noted [1-5]. Basic science studies
find multiple biologic functions for BRCA1 and BRCA2
proteins [6-15], including participating within a pathway
that mediates error-free repair of DNA double strand
breaks by homologous recombination [15].

Fig. 1 summarizes a model for this error-free double
strand break repair pathway (based on reference [16]).
BRCA1 and BRCA2 gene products are placed within a
sequence encompassing the MRE11, Rad50 and NBS1
complex (MRN complex), ATM, CHEK2, BRCA1, BRCA2,
and Fanconi anemia proteins. For the purposes of this
paper, this model will be referred to as the "BRCA path-

way.

A critical protein function lost from anywhere within this
error-free repair BRCA pathway may force repair of DNA
double strand breaks by lower fidelity, error prone meth-
ods. Risks for cancers mediated by such errors should then
greatly increase. Lymphomas and leukemias can be asso-
ciated with large gene rearrangements, which can be pic-
tured as arbitrary rejoining of broken DNA fragments. For
example, almost all mantle cell lymphomas have a char-
acteristic interchange between pieces of chromosomes 11
and 14 [t(11;14)(q13;q32)]. In some leukemias, the
make-up of a fusion protein may bear witness to other
abnormal repairs [e.g. [17]]. Error-tolerant repair may also
leave other signs such as in the acute myeloid leukemias,
where there may be evidence of abnormal gene fusions,
duplications, inversions, deletions or reciprocal transloca-
tions [18]. The present study was designed to test the
hypothesis that inactivation of a critical component of the
BRCA pathway would favor gene rearrangements that
underlie some lymphomas and leukemias. The results
show that risks for a subset of leukemias and lymphomas
increase up to nearly 2000 fold. The results may have clin-
ical implications for surveillance and chemotherapy.

Methods

The study was designed to review the risks for leukemias
and lymphomas associated with a deleterious mutation
within a prototype BRCA pathway (Fig. 1) for error-free
double strand break repair. The purpose of this article is
not to examine functionality of specific gene variants, but
rather to examine the effect of loss of gene function any-
where within a testable pathway on risk for specific hema-
tologic cancers. For many of the studies examined,
especially case series, the exact genetic variant is unknown
but loss of gene function (regardless of the reason) was
confirmed by other means (e.g. RNA, protein or other
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Schematic model for the "error-free" BRCA double strand
break repair pathway Brief overview of components within
the BRCA pathway used here as a working model that was
tested here. The model is based largely on reference 16.
BRCA?2 is the same as FANCD and the interaction between
BRCAI and Fanconi anemia protein | is shown. While the
gene products shown represent the over-all pathway, "error-
free" double strand break repair by homologous recombina-
tion undoubtedly involves other proteins but the discussion
is limited to those shown. Not shown are details of the I3
Fanconi anemia gene products and additional components
including EMSY, a whole family of RADS5 | related proteins,
DCC, cohesins and accessory proteins. Deficiency states may
be rare or unknown for these additional proteins and large
epidemiologic studies are uncommon. Other protein kinases
related to ATM carry out similar functions in response to
other genotoxic stresses, and some of them collaborate with
ATM. Proteins within the pathway also interact with other
branches of the DNA damage response and with further pro-
teins.
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tests). Genes examined were ATM, NBS1, MRE11, BRCA1,
BRCA2, Fanconi anemia genes usually studied as a group
including 13 known genes, and CHEK2.

PubMed, PubMed Central, Google, and Google scholar
searches were conducted to collect relevant research arti-
cles related to the model BRCA pathway. These searches
were for epidemiology studies published within the last
~20 years and basic science articles published within the
past ~15 years. About 2500 articles were reviewed and
copied to a database to facilitate search and further review.
Where available statistical information permitted, meta-
analysis with heterogeneity testing was conducted com-
paring cancer risk vs. deleterious mutation of a pathway
gene.

Case-control, cohort and prevalence studies were
reviewed. Data from studies that measured cancer inci-
dences associated with epigenetic modification of path-
way genes and/or alterations in protein or mRNA levels
were also included. Epidemiologic studies were excluded
in whole or in part if they did not provide required data or
permit calculation of required information or if they were
superseded or subsequently invalidated. The rarity of
mutations in some molecules limited data available and
limited the analysis of some BRCA pathway components.
As far as possible, statistical analyses were limited to gene
variants either known to eradicate normal protein func-
tion or to severely lower normal levels. All the mutations
were spontaneously occurring and/or inherited except for
therapy related (somatic) inactivation of BRCA1 in acute
myeloid leukemia (AML). To verify that therapy related
disease did not bias the results it was compared to data for
primary AML.

Epidemiologic data was tabulated as odds ratios or rela-
tive risks: for ATM associations with NHL as MCL, with
ALL, CLL, and PLL; for Fanconi anemia gene associations
(13 known genes) with primary AML, with leukemia
before age 15 and with ALL; for BRCA1 associations with
primary and therapy related AML and with CML; for
BRCA2 associations with AML, ALL and CLL; for NBS1
associations with lymphomas, ALL and NHL; and for
CHEK 2 associations with CLL.

The DerSimonian-Laird random effects model[21] was
used throughout since it relaxes the assumption of a com-
mon effect due to mutation. This may be more appropri-
ate here than fixed effects models since inactivating
mutations can in theory have different targets with differ-
ent effect sizes. However, the uncertainty bounds for ran-
dom effects are more conservative and often larger. When
at least three studies were available, meta-analysis was
performed. For the 9 studies available for ATM mutations
in MCL, potential methodological confounders were
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ruled out by generating subgroups without the potential
confounder. Statistical associations were compared to
independent basic science experiments and to basic sci-
ence theory.

Data from the NCI Surveillance Epidemiology and End
Result (SEER) program was used to compare incidences in
the general population for the approximate age ranges in
Fanconi anemia groups. The NCI "DevCan" program was
used to calculate cumulative control incidences for can-
cers affecting Fanconi anemia patients. Population data in
DevCan came from 10,000 patients using 1999-2001 fig-
ures, but was matched as closely as possible to patient
numbers in the Fanconi anemia study. Relative risks and
confidence intervals for random effects models were then
calculated by StatsDirect and RevMan. In Fanconi anemia,
death, bone marrow transplant, AML and solid tumors
censor or alter the natural history of other conditions but
competing risk models were not used.

The prevalence of ATM mutation heterozygotes in the
general population is widely cited as 0.3% to 1%. The
incidence of biallelic mutations which are required to
cause the hereditary disease A-T is much smaller (3/mil-
lion to 11/million) [22,23]. Use of any value within this
range as a control would give much larger risks. However,
a population prevalence of 1% for ATM mutations was
used to prevent overstating differences from the general
population.

Heterogeneity was calculated as non-combinability of
odds ratios by the Breslow-Day method, from the incon-
sistency statistic[24], by a moment based method and
graphically from L'Abbe plots. None of the meta-analyses
presented showed evidence for heterogeneity by these cri-
teria. Chi-square tests on combined odds ratios were per-
formed. Bias was assessed using the method of Egger and
by inspecting funnel plots for asymmetry[25]. There was
no statistical evidence of publication bias for summary
estimates (results not shown).

A general limitation of meta-analysis is that access to orig-
inal data is limited or the data is so old that some calcula-
tions in publications are impossible to reproduce.
Fortunately, some articles used in meta-analyses con-
tained both raw and final calculated data. This enabled
control experiments to check the validity of calculations
based on raw data. Testing raw instead of final data gave
no or very small errors as confirmed dozens of times. To
rule out computer program errors, the RevMan program
from the Cochrane Review Group was used to verify some
calculations made by StatsDirect. Microsoft Excel with the
data-analysis add-in was used for some calculations.
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Results

The present study was designed to test the hypothesis that
inactivation of virtually any component within the BRCA
pathway would increase risks for lymphomas and leuke-
mias. Risks were summarized [see Additional file 1] for
leukemias and lymphomas vs. mutations or aberrations at
numerous steps within the model pathway in Figure 1.
Each of the genes within the BRCA pathway is considered
below. The conclusion emerges that inactivation of any of
these genes greatly increases risks for a subgroup of leuke-
mias and lymphomas. This subgroup includes (B-cell)
mantle cell lymphoma (MCL), acute myeloid leukemia
(AML), T-cell acute lymphocytic leukemia (T-ALL),
chronic lymphocytic leukemia (B-CLL) and T-cell prolym-
phocytic leukemia (T-PLL). The large increases in risk sug-
gest that preventing these diseases must be an important
physiologic function of the complete BRCA pathway. The
results also suggest a mechanism for this function.

Inactivation of the BRCA pathway gene ATM favors a
translocation associated with mantle cell lymphoma

9 studies of the incidence of ATM mutations in MCL from
a total of 363 patient samples were summarized [see Addi-
tional file 1]. Meta-analysis seemed appropriate initially
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because all the studies found very strong odds ratios for an
ATM-MCL association, so all 9 studies have the same gen-
eral pattern (criteria used by the Cochrane Review group).
Combining the 9 studies then as described in Methods
[21-25], gave 70.26 [95% CI = 34.59-142.72] as the min-
imum odds ratio that a mantle cell lymphoma contains an
ATM mutation (Table 1). The chi? test value that the
pooled odds ratio differs from 1 was 138.30, P < 0.0001.
No significant heterogeneity was found by multiple crite-
ria given in Methods but there are only 9 estimates based
on 363 people, a comparatively small pooled population.

Additional statistical confirmation that MCL is associated
with ATM mutation was obtained for the data used. The
product-moment linear correlation coefficient was calcu-
lated for total experimental samples with MCL vs. experi-
mental samples with ATM mutation. The correlation
coefficient value was 0.95 indicating a strong association.

The translocation t(11;14)(q13;q32) is present in almost
all mantle cell lymphomas[19,20]. This translocation is
consistent with the misrepair of a double strand break.
The MCL tumors associated with this translocation corre-

Table I: Summary of statistical associations for leukemias and lymphomas with BRCA pathway mutations

Cancer Gene mutation/polymorphism Data from studies with 95% confidence = Combined values from meta-
intervals in brackets [see Additional file I]  analysis (3 or more studies)

OR = 123.75 [18.84-5056.6]

OR =70.26 [34.59-142.72]

OR = 74.25 [9.34-3203.5]
OR =297 [23.49-1311.9]
OR = 83.25 [12.9-3408.7]
OR = 81.00 [9.11-3582.4]
OR = 25.67 [3.66-1095.9]
OR = 57.32 (7.25 — 2490.3)
OR = 44 (3.57 - 2186.4)
OR = 44 (5.85 — 1898.9)

MCL ATM
Lymphomas NBSI
PLL ATM
ALL ATM
ALL Fanconi anemia genes

ALL
Leukemia before age |15

NBSI
Fanconi anemia genes

CLL ATM

CLL CHEK?2 (1157T)

CLL BRCA2 (N372H)
AML Fanconi anemia genes
AML BRCAI

RR = 1860 [Cl = 972.3-3467]
OR = 84.15 [11.43-3549.9]
OR = 165.00 [19.51-7007.2]
OR = 198 [19.02-8662]

OR = 16.16 [2.04-724.3]
OR =25.55 [3.14-1144.6]
OR =2.72 [0.86-10.1]

RR = 13.26 [4.11-42.68]

RR =10.76 [3.61-32.03]
OR = 1.85 [CI = |.42-2.25]
RR =227.4[170.8-302.1]
RR =127.4 [95.21-170.2]
OR = 46.59 [6.59-1972.5]
OR = 15.97 [1.66-762.5]
OR = 13.83 [2.11-580.4]
OR = 14.83 [1.85-infinite]
OR = 1.45[1.13-1.86]

RR =723.4 [385.7-1355.8]
RR= 684.8 [371.6—1261.8]
RR =818.2 [2.37-287,689]
Association discussed in text

OR = 137.11 [39.68 to 473.76]

OR =17.98 [5.37-60.18]

OR =21.91 [6.57 to 73.09]

RR= 703.35 [363.7-1354.5]
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late with loss of ATM function within the BRCA pathway
[Table 1 and Additional file 1, columns 5 and 6].

ATM mutation: evidence for association with the
leukemias T-ALL, B-CLL, and T-PLL

There are very high odds ratios for an association of an
ATM deficit not only with MCL, but also with T-ALL, B-
CLL, and T-PLL (Table 1). Substantial percentages of any
of these diseases associate with misrepair of some double
strand break leading to gene rearrangement or deletion
within an affected hematopoietic cell lineage. Fusion pro-
teins and/or gene rearrangements have been documented
in about 30% of 2367 children with ALL [26], in 11% of
B-CLL [27] and in high percentages of atypical CLL with
poor prognosis[28]. Table 1 and Additional file 1 also
show that ALL and CLL can be associated with any of sev-
eral BRCA pathway malfunctions. Table 2 summarizes
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independent information [29-43,15] corroborating high
risks for leukemias and lymphomas associated with ATM
deficits or with other BRCA pathway abnormalities.

T-PLL is a rare malignant proliferation of post-thymic T-
cells, usually with an aberrant T-cell receptor rearrange-
ment that activates oncogenes. Data showing an associa-
tion between T-PLL and ATM mutation are more limited
than data for ATM associations with the other diseases.
Nonetheless depending on the study, there was an ATM
mutation in 46-66% of 77 tested T-PLL patients [see
Additional file 1, columns 5 and 6]. The association is sta-
tistically significant but the confidence intervals are broad
(Table 1). To verify this association, T-PLL risks were then
considered in ataxia-telangiectasia (A-T) patients who
inherit biallelic mutations in ATM. A-T patients have a
10% risk for leukemias and lymphomas which is about

Table 2: Independent evidence corroborating associations between a subset of hematologic cancers and mutations in BRCA pathway

genes

Cancer/abnormality Gene mutated

Leukemia, NHL ATM

Evidence

Reference

56 patients with A-T have standardized incidence ratio for 30

leukemia and NHL of |13 (ClI = 41-246)

Thymomas, lymphoblastic ymphomas ATM

Atm deficient mice are immunodeficient with a high incidence of 30

thymomas or lymphoblastic lymphomas

PLL, ALL and B-CLL ATM

PLL, ALL and B-CLL tumors have cytogenetic and immunologic

30, 31.

similarities to MCL.

T-PLL ATM

A-T patients have biallelic mutations in ATM and they develop 32

stable clones that progress to T-PLL-like disease

B-CLL ATM

Myeloid leukemias

Double strand breaks

Gross chromosomal rearrangements

Homologous recombination repair

Acute promyelocytic leukemia

Thymoma, T-cell development,
chromosomal abnormalities

FANCDI

Fanconi anemia all types

Brca2

FANC]J (BRCAI)

BRCAI

Brca2

ATM mutant B-CLL tumors have a proven defect in the repair of 29

ionizing radiation induced damage, a function normally mediated
by the BRCA pathway. ATM phosphorylates BRCAI after gamma
radiation induced DNA damage.

FANCDI is the same as BRCA2 and a FANCD I/BRCAZ2 biallelic
defect associates with leukemias that are much more likely to be
myeloid than leukemias that develop in those with normal
FANCD I/BRCA2. Myeloid leukemias have increased activity of
the non-homologous end joining pathway, the less specific
alternative to the BRCA pathway.

All Fanconi anemia cells exhibit frequent spontaneous visible
chromosome breaks

Murine Brca2 is essential to suppress gross chromosomal
rearrangements such as translocations after chromosome
breakage. Mouse cells with truncated Brca2 accumulate
chromosome breaks and aberrant chromatid exchanges.

BRCAI interacts with FANC]. Homologous recombination repair
stimulated by double strand breaks is compromised both in
FANC] deficient cells and in cells with BRCA| mutations that
preclude FANC] interaction.

BRCAI was found to co-localize with the promyelocytic leukemia
protein (PML) in promyelocytic nuclear bodies that function in
heterochromatin remodeling at the G2 phase and PML protein
plays an essential role in the organization of the ionizing radiation
induced DNA repair complex.

Mice homozygous for a truncating mutation in Brca2 surviving to
adulthood die from thymic lymphoma. BRCA?2 regulates RADS|
recombinase which is essential in dividing cells. Mice carrying a T-
cell specific disruption of the Brcal gene display markedly
impaired T-lymphocyte development and proliferation with
increased chromosomal abnormalities.

37

34-37

15,38

39,40

41,42

43,44
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100 fold higher than in the general population. In A-T
there is a recurrent malignancy similar to T-PLL with a
similar course, a similar immunophenotype, and similar
cytogenetics [reference [32] and Table 2]. T-PLL occurs at
high frequency in A-T families compared to non A-T fam-
ilies[33]. These considerations support the association
between ATM mutations and T-PLL.

In some cases, there is no truly reliable way to distinguish
somatic from inherited mutations in the BRCA pathway.
It is unlikely that this biases the results. The first row in
Table 2 gives the risk for some leukemias and lymphomas
in A-T patients. Risks for A-T patients are similar to those
summarized in Table 1 for ATM mutations in people who
do not have hereditary A-T [also see Additional file 1].
Somatic BRCA1 data can also be compared to that for the
hereditary disease Fanconi anemia because BRCA1 inter-
acts with the Fanconi protein FANC]. Therapy related
inactivation of BRCA1 (preventing its interaction with
FANC]) causes risks for AML comparable to risks for AML
due to hereditary Fanconi anemia (see below).

Fanconi Anemia genes within the BRCA pathway and early
leukemias

I also examined potential associations between hereditary
Fanconi anemia gene mutations and risk of hematologic
cancers. Results were available from about 80 years of
published data in Fanconi anemia databases [34-36].
Data exists from a relatively large number of patients in 3
summary studies. The Fanconi anemia studies each report
very large hazard ratios for early leukemias and calculated
relative risks are also high [see Additional file 1]. Fanconi
anemia patients have a relative risk of 703.35 for AML as
calculated by meta-analysis (Table 1). Frequent spontane-
ous chromosome breaks and gross-chromosomal rear-
rangements are visible in Fanconi anemia cells (Table 2),
consistent with large increases in risk for cancers mediated
by chromosome rearrangements. Some data predates the
ability to identify individual Fanconi mutations. This
merged data was justified for use here because of the close
interactions and relationships among Fanconi proteins
(Figure 1).

BRCAI and BRCA2 genes in the BRCA pathway and AML,
leukemias and lymphomas

Independent and unrelated lines of investigation strongly
implicate BRCA1 and BRCA2 deficiencies in hematologic
cancers. This information is summarized below and there
is additional corroborating evidence [15,37-44] in Table
2. BRCA1 deficiency is strongly associated with both de
novo- and therapy related AML. 32% (32/112) of primary
AML tumors and 75% (16/21) of therapy related AML
tumors have reduced BRCA1 gene expression [reference
[45] and see Additional file 1]. In chronic myelogenous
leukemia (CML) cells, BRCA1 is also down regulated,
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becoming nearly undetectable in leukemia cells from
patients during chronic phase and blast crisis [see Addi-
tional file 1]. Deleterious BRCA2 sequence variants are
over-represented in cases of T-cell Non-Hodgkins lym-
phoma (NHL) or CLL [see Additional file 1], consistent
with a role for BRCA?2 in preventing these diseases.

Relationships and critical interactions exist among
BRCA1, BRCA2 and Fanconi anemia proteins(e.g. Fig. 1
and Table 2). Because of connections between Fanconi
proteins and leukemias, these relationships further impli-
cate BRCA1/BRCA2 deficits in leukemias. As an example
of interactions between Fanconi anemia proteins and
BRCA1/2 proteins, the Fanconi anemia protein FANC]
forms an essential complex with BRCA1. This complex
brings FANC]J (together with replication protein A) into
nuclear foci at the site of DNA damage. FANC] then
unwinds DNA sufficiently so that error-free repair can
begin (Table 2). In kindreds who have BRCA2 (FANCD1)
mutations on top of another Fanconi anemia mutation,
leukemia occurs at a median age of 2.2 years instead of
13.4 years [reference [37] and Additional file 1].

Some epidemiologic studies show increased risks for
leukemia/lymphomal1] in identified BRCA1 or BRCA2
mutation carriers [46,47] and in large populations eligible
for mutation testing [48-53]. Family history can be used to
determine eligibility for mutation testing and can estimate
the likelihood that a BRCA1 or BRCA2 mutation exists
within the family[1]. Rauscher et al [54] reported that
family history of breast cancer increased risk due to a
range of leukemia risk factors that were generally weak or
non-existent when considered alone. Combined with a
family history of breast cancer, ever-smoking [RR;, = 2.4,
CI = 1.2-4.8], general solvent exposure (RR;; = 1.9, CI =
1.1-3.4), aromatic hydrocarbon exposure (RR;; = 3.8, CI
= 1.1-14), and diagnostic ionizing radiation exposure
(RRy; = 2.1, CI = 1.2-3.8) were all associated with
increased leukemia incidence. There was no increased
incidence associated with any of these exposures in the
absence of a family history of breast cancer|[54].

MREI 1-Rad50-NBS|I: a complex of BRCA pathway genes
and lymphomas and leukemias

Abnormalities in a complex containing the BRCA path-
way proteins MRE11, Rad50 and NBS1 (MRN complex)
also associate with leukemia and lymphoma. Rarely,
hypomorphic mutations in MRE11 occur in individuals
with "Ataxia-Telangiectasia-Like-Disorder" (ATLD). Lym-
phocytes from ATLD patients may carry chromosome
translocations identical to lymphocytes from A-T
patients[55], implying a corresponding predisposition to
leukemias and lymphomas. A hypomorphic mutation of
the NBS1 gene causes Nijmegan Breakage Syndrome
(NBS). Patients in the International NBS study group have
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enormously elevated risks for lymphoma at ages 1-22 (RR
= 1860) [see Additional file 1]. Heterozygotes have lower
risks but still appear predisposed to lymphomas and
leukemias [see Additional file 1]. Lymphocytes or other
cells from NBS patients show increased chromosomal
translocations[56].

CHEK2: a BRCA pathway gene and lymphomas and
leukemias

Checkpoint kinase 2 (CHEK2) participates in the BRCA
pathway by phosphorylating BRCA1, promoting cell cycle
arrest, and activating DNA repair in genetically damaged
cells[57]. CHEK2 may also affect risks for hematologic
cancers. The CHEK?2 variant 1157T is significantly associ-
ated with CLL [see Additional file 1]. CHEK2 mutations
were uncommon in NHL but 9% of these tumors showed
either total or near-total absence of the CHEK2 pro-
tein[58]. CHEK2 alterations responsible for these low lev-
els occur in a subset of aggressive lymphomas having a
relatively high number of chromosomal imbalances|58].
CHEK2 may also have some relationship to promyelo-
cytic leukemia (PML) because CHEK2 phosphorylates the
tumor suppressor PML gene protein leading to apopto-
sis[59] Although the composition of nuclear bodies con-
taining PML varies during the cell cycle, they may also
contain other members of the BRCA pathway and partici-
pate in double strand break repair[60,61].

Discussion

Participation of BRCA pathway deficiencies in leukemias
and lymphomas can be explained by incorporating fea-
tures of overlapping theories for how cancers arise. These
theories are differentiation-maturation mutations cooper-
ating with proliferation/survival mutations, lineage-
addiction or -dependency models, and the existence of
"cancer stem cells" arising from an ordered sequence of
phenotypically distinct stem-cell and intermediate-pre-
cursor populations [62-64]. Applying elements of these
current theories helps clarify the present results as dis-
cussed below.

Some lymphomas and leukemias are defined by non-ran-
dom, characteristic gene rearrangements [e.g. [65-68]] but
people can have small numbers of cells containing one of
these translocations that may not progress to cancer. Thus
additional abnormalities are required to create cancer.
According to one hypothesis[62], two kinds of gene rear-
rangements or other mutations cooperate to produce
leukemias and lymphomas (i-ii). i. Gene rearrangements
or other mutations that give a growth and/or survival
advantage to malignant cells. ii. Gene rearrangements or
other mutations that impair differentiation.

Mantle cell lymphoma (MCL) is associated here with a
BRCA pathway deficit and this association is consistent
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with current cancer models. In almost all cases of MCL,
there is a characteristic exchange of fragments between
chromosome 11 and chromosome 14. The rearrangement
occurs within a subset of naive pregerminal center cells in
the B-cell lineage. This "MCL translocation" results in the
juxtaposition of the BCL1 gene (cyclin D1) and the immu-
noglobulin heavy chain locus. The MCL translocation
causes cyclin D1 to become overexpressed because it
comes under the control of the highly active immu-
noglobulin gene enhancer. Overexpressed cyclin D1 then
probably functions as an oncogene by accelerating cell
division. This gives a growth advantage to cells containing
the rearrangement. In some systems, cancer cell lines are
dependent on a cyclin D1 oncogene for survival (onco-
gene addiction). Abnormal cells here with the cyclin D1
oncogene, have a growth advantage that makes further
mutations more likely to accumulate. A BRCA pathway
deficit causes an underlying deficiency in error-free repair
that increases the number of abnormal cells and adds fur-
ther to the chances for additional abnormalities. How-
ever, the aberrant B-cell lineage may well condition the
range of mutations allowed because of embedded differ-
entiation or developmental programs. "Atypical CLL"
shares cytogenetic and immunologic features with
MCL[32,69]. The same "MCL translocation" between
chromosomes 11 and 14 occurs in "atypical CLL." [69],
consistent with this macro-genomic alteration being
restricted to the B-cell lineage.

AML is another example of a disease associated with a def-
icitin BRCA-pathway-mediated DNA repair. The hallmark
of all AML types is a severe block in myeloid differentia-
tion. In previous sections of this paper, Fanconi anemia
patients were shown to have >700 fold increase in com-
bined relative risk for AML (Table 1). In Fanconi anemia,
the BRCA pathway deficiency leads to visibly increased
numbers of chromosome breaks, gaps, rearrangements,
and quadriradii in the presence of DNA damaging agents.
This may result from a documented increase in repair by
the less specific process of non-homologous end joining.

AML is the generic term for a group of myeloid leukemias
that have a clonal expansion of immature myeloid pro-
genitor stages (blasts) in the bone marrow, blood or other
tissues. Different categories of AML can depend on a par-
ticular mutation event that creates a block in differentia-
tion and the stage within the myeloid lineage when the
event occurs. Translocation events, duplications, inver-
sions, or deletions would be favored by BRCA pathway
defects and they represent potential ways to create a differ-
entiation block typical of AML. Although other types of
mutation also create differentiation blocks in AML, the
large increases in relative risk in Fanconi anemia suggests
that gene rearrangements are important. In Fanconi ane-
mia, translocations occur at a rate that is at least ten times
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greater than normal after exposure to ionizing radiation
[70].

An example of a translocation capable of creating a differ-
entiation block is the recurring t(3;12)(q26;p13) translo-
cation. In a Fanconi anemia patient, this rearrangement
was present in the bone marrow at the time of initial diag-
nosis of myelodysplastic syndrome (often a precursor of
AML). The patient had a normal constitutional karyotype
but AML then developed. When acute transformation to
AML occurred, cytogenetic analysis found multiple chro-
mosome deletions and rearrangements typical of Fanconi
anemia[71]. Fanconi anemia is a rare inherited disease,
but the same t(3;12) translocation is sometimes the first
and the only cytogenetic abnormality found in AML
patients who do not have hereditary Fanconi anemia. This
particular rearrangement is thought to predispose to AML
as follows[72]. It causes overexpression of the EVI-1 gene
because EVI-1 becomes driven by the TEL pro-
moter[71,62]. Normally EVI-1 is expressed in early mye-
loid progenitor cells where it helps determine whether
progenitors differentiate or proliferate. Abnormal EVI-1
expression probably contributes to AML by interfering
with other genes controlling the commitment to differen-
tiate. These progenitors are designed to proliferate rapidly
and then to differentiate. Failure to induce timely differ-
entiation might result in a prolonged proliferation phase
favoring the accumulation of additional cooperating
events. This places the progenitors at much higher risk for
leukemia [63]. A background of hereditary Fanconi ane-
mia would greatly increase chances for gene rearrange-
ments and deletions in progenitors both as initial and as
cooperating events.

A variety of gene rearrangements due to misrepaired dou-
ble strand breaks also occur frequently in other diseases
associated here with BRCA pathway deficiencies. In some
cases of T-PLL, one gene rearrangement deregulates the
expression of the T-cell receptor. Similarly, any of several
recurring chromosomal translocations can be detected in
substantial numbers of cases of childhood ALL.

Defects in the BRCA pathway increase the risks for a subset
of lymphomas and leukemias that are probably associated
with gene rearrangements. However a BRCA pathway def-
icit does not cause the underlying gene rearrangements.
The deficit allows more mistakes in double strand break
repair, increases the numbers of cells with mistakes and
then permits abnormal cells to survive.

In myeloid leukemias, certain sites may associate with up
to 40 different gene partners and chromatin structural ele-
ments closely associate with such breakpoints [68]. Some
of these translocations have prognostic significance. Per-
haps certain chromosome regions are selected for these

http://www.biomedcentral.com/1471-2407/7/152

rearrangements because they are more actively transcribed
and exposed in a transcription complex[73]. The proxim-
ity between neighboring chromosomes may also be an
influence.

Some tumors [see Additional file 1] contain evidence that
ATM deficiency compromises the BRCA pathway regard-
less of other pathways involving ATM. Gene fusions or
other rearrangements often found in some of these
tumors bear witness to a double strand break repaired by
error-prone methods. The cancers reported here are thus
primarily somatic in origin but the predisposition to mis-
repair of DNA breaks and chromosomal instability may
be inherited. Inactivation of a single gene can increase
risks for multiple cancers and inactivation of a different
gene in the same pathway may have similar effects [see
Additional file 1].

The deficiencies that increase risk for leukemias and lym-
phomas may well be helpful in understanding other can-
cers in BRCA1/2 mutation carriers. The involvement of
BRCA pathway deficits in a subset of hematologic cancers
has implications for surveillance and for therapy in hema-
tologic and perhaps in other cancers. These deficits sug-
gest the need for improved surveillance. They also present
a vulnerability that may be exploited during therapy.

Reciprocal translocations and other chromosome rear-
rangements also occur in breast and in ovarian
tumors[74,75]. Comparative genome hybridization has
shown that human epithelial breast tumors undergo
widespread gains and losses of chromosomes early in
their development, correlating well with the presence of
complex chromosomal rearrangements [76]. In compar-
ing hematological and epithelial cancers in 2001, Ponder
asked "Are there similar mechanisms among the more
complex chromosomal changes in epithelial malignan-
cies, or do epithelial cancers have different genetic mech-
anisms of development?" [77]. The data in the present
paper adds the information that the same BRCA pathway
can be disabled in both breast and hematological cancers,
showing that further consideration of Ponder's question
may be very helpful.

Conclusion

BRCA1 and BRCA? are critical to prevent breast and ovar-
ian cancers in mutation carriers but the proteins partici-
pate in processes that are fundamental for survival in
other types of cells. The genetic defect accompanying
BRCA pathway deficiencies studied here is a chromo-
somal misrepair syndrome. This work shows that the
pathway containing BRCA1/2 gene products is essential to
prevent a group of leukemias and lymphomas. The results
may have clinical implications for surveillance and chem-
otherapy in these and perhaps in other cancers.
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