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The control of arm movements through intracortical brain–machine interfaces (BMIs)
mainly relies on the activities of the primary motor cortex (M1) neurons and mathematical
models that decode their activities. Recent research on decoding process attempts
to not only improve the performance but also simultaneously understand neural and
behavioral relationships. In this study, we propose an efficient decoding algorithm using
a deep canonical correlation analysis (DCCA), which maximizes correlations between
canonical variables with the non-linear approximation of mappings from neuronal to
canonical variables via deep learning. We investigate the effectiveness of using DCCA for
finding a relationship between M1 activities and kinematic information when non-human
primates performed a reaching task with one arm. Then, we examine whether using
neural activity representations from DCCA improves the decoding performance through
linear and non-linear decoders: a linear Kalman filter (LKF) and a long short-term memory
in recurrent neural networks (LSTM-RNN). We found that neural representations of M1
activities estimated by DCCA resulted in more accurate decoding of velocity than those
estimated by linear canonical correlation analysis, principal component analysis, factor
analysis, and linear dynamical system. Decoding with DCCA yielded better performance
than decoding the original FRs using LSTM-RNN (6.6 and 16.0% improvement on
average for each velocity and position, respectively; Wilcoxon rank sum test, p < 0.05).
Thus, DCCA can identify the kinematics-related canonical variables of M1 activities,
thus improving the decoding performance. Our results may help advance the design of
decoding models for intracortical BMIs.

Keywords: primary motor cortex (M1), decoding algorithm, Kalman filter, long short-term memory recurrent
neural network, intracortical brain–machine interface, deep canonical correlation analysis

INTRODUCTION

The primary motor cortex (M1) is robustly linked to the kinematic parameters of the upper limbs
(Humphrey, 1972; Humphrey and Corrie, 1978; Georgopoulos et al., 1982, 1986; Sergio et al., 2005;
Schwartz, 2007; Aggarwal et al., 2008; Vargas-Irwin et al., 2010). This concept provides a basis for
decoding information in an intracortical brain–machine interface (BMI), which often harnesses
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M1 activities to infer continuous movement parameters in order
to enable the neural control of external effectors. Intracortical
BMIs have largely relied on functional relationships between M1
activities and kinematics (Moran and Schwartz, 1999b; Paninski
et al., 2003; Wu et al., 2004; Shanechi et al., 2016; Vaskov et al.,
2018). For instance, a number of BMIs have been developed
based on a finding that a population vector constructed from the
firing activities of a neuronal ensemble can predict the kinematic
variables of arm movements, such as direction, speed, position,
and velocity (Georgopoulos et al., 1986, 1988; Flament and Hore,
1988; Schwartz et al., 1988; Moran and Schwartz, 1999b; Paninski
et al., 2003; Wang et al., 2007). In addition to the population
vector, neural representations capturing the shared variability
in the population’s neural activity have been demonstrated to
be effective in predicting behavioral covariates (Yu et al., 2009;
Shenoy et al., 2013; Cunningham and Yu, 2014; Kao et al.,
2015). These neural representations can be acquired through
unsupervised learning techniques such as principal components
analysis (PCA) (Ames et al., 2014; Kaufman et al., 2014), factor
analysis (FA) (Yu et al., 2009), and a linear dynamical system
(LDS) based latent-state estimation (Kao et al., 2015) and are
known to allow a decoder to guarantee stable outputs (Yu et al.,
2009; Kao et al., 2013). Such neural representations of neural
population activity could help enhance decoding kinematic
variables. Decoding models for intracortical BMIs are broadly
categorized into two categories. The first category is a generative
method that operates based on the generation of neuronal firing
activities from kinematic states described by encoding models.
The second category is a direct method that operates based on
a direct input–output function approximation from neuronal
firing activities to kinematic variables (Chapin et al., 1999; Sussillo
et al., 2012; Dethier et al., 2013; Ahmadi et al., 2019).

Generative decoding methods designed for BMIs include a
population vector algorithm (Georgopoulos et al., 1986; Schwartz
and Moran, 2000; Van Hemmen and Schwartz, 2008), a Kalman
filter (KF) (Wu et al., 2004, 2006; Gilja et al., 2012; Golub
et al., 2014), a point process-based adaptive filter (Wang et al.,
2009; Shanechi et al., 2014), and a particle filter (Gao et al.,
2001), to name a few. These methods infer kinematic information
from observed neuronal activities via encoding models. The
performance of generative decoding methods thus substantially
depends on the assumptions and appropriateness of encoding
models. Furthermore, direct decoding methods designed for
BMIs include the Wiener filter (Chapin et al., 1999; Serruya
et al., 2002; Fagg et al., 2009; Chhatbar and Francis, 2013; Willett
et al., 2013), support vector regression (Kim et al., 2006; Xu
et al., 2011), and artificial neural networks (ANNs) (Wessberg
et al., 2000; Sanchez et al., 2003). Particularly, ANNs can serve
as a direct approximator of a non-linear functional relationship
between M1 activities and kinematic variables. Various types of
ANNs have been suggested to decode M1 activities, including
time-delay neural networks (Kim et al., 2003; Wang et al., 2005),
recurrent neural network (RNN) (Sussillo et al., 2012), and echo-
state network (Rao et al., 2005). Furthermore, owing to recent
breakthroughs in deep learning, using deep neural networks
(DNNs) for decoding M1 activities has become plausible
(Sussillo et al., 2012; Ahmadi et al., 2019). For instance, a long

short-term memory RNN (LSTM-RNN), one of the non-linear
models harnessing temporal information in past neural activities,
outperformed other decoding models for BMIs (Ahmadi et al.,
2019). Despite their high performance, the intricate architectures
of DNNs often require a much larger training data to achieve
a successful decoding process. Furthermore, recent efforts to
record a larger number of neuronal activities (e.g., >1,000 units)
demand effective representational spaces of neuronal ensemble
activities, which will also reduce the burden of training DNNs
(Marblestone et al., 2013).

Considering the advantage of DNNs as a universal non-
linear approximator, in the present study, we propose a novel
approach for decoding M1 activities to estimate limb kinematics
by exploring a joint representational space between M1
activities and kinematics. In this joint space, the representation
variables of a neuronal ensemble and kinematic parameters
are created in a way to maximize coupling between neuronal
and kinematic representation variables. Among the many ways
of doing so, we leveraged methods, such as a canonical
correlation analysis (CCA), to maximize correlations between
these variables. As one of the multivariate statistical methods,
CCA maximizes correlations between joint (canonical) variables.
A conventional linear canonical correlation analysis (LCCA)
builds a linear mapping between a neuronal ensemble and
canonical variables (Hotelling, 1936; Anderson, 1984; Friman
et al., 2007). However, more informative neuronal canonical
variables can be extracted from neuronal ensemble activities
by using a non-linear method. A recently developed deep
canonical correlation analysis (DCCA) allows us to examine
this possibility by approximating a non-linear mapping from
neuronal ensemble activities to canonical variables with a DNN
(Andrew et al., 2013). Previous non-invasive brain–computer
interface (BCI) studies showed the effectiveness of DCCA
as a means of feature extraction from electroencephalogram
associated with various covariates of interest, such as eye
movements and visual stimulus frequencies (Vu et al., 2016; Qiu
et al., 2018; Liu et al., 2019). For example, Vu et al. successfully
improved the performance of the steady-state visual evoked
potential-based BCI using DCCA-based feature extraction (Vu
et al., 2016). Although DCCA suffers from the same difficulty
in interpreting neural activities as DNNs, canonical variables
estimated by DCCA may effectively represent kinematics-
related neuronal ensemble activities. Consequently, decoding
these canonical variables may achieve a similar or superior
performance to decoding original firing rates (FRs) while keeping
a decoding model concise.

Based on this hypothesis, the present study aims to investigate
how hand velocity information is represented in canonical
variables found by LCCA or DCCA and to compare those
representations with other neural representations (PCA, FA, and
LDS) extracted from naïve ensemble FRs (ZE-FR). Moreover, we
aim to investigate the performance of decoding hand velocity
information from the five types of neuronal representations (E-
FR, PCA, FA, LCCA, and DCCA) using one of the two types of
decoders, i.e., LKF and LSTM-RNN. Additionally, we examine
whether DCCA yields better velocity decoding performance
compared to a neural dynamical filter (NDF), which is a linear
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mapping model to predict kinematic variables from LDS-based
latent states (Kao et al., 2015). In this study, we apply various
decoding methods to the data of M1 firing activity and hand
movements in two non-human primates that performed a 2D
reaching task with one arm.

MATERIALS AND METHODS

Datasets
The two datasets used in this study are available on a
neuroscience data depository, called the Collaborative Research
in Computational Neuroscience (Flint et al., 2012; Lawlor et al.,
2018; Perich et al., 2018). Each dataset includes the cortical firing
activity and hand movement recordings, which were acquired
from a non-human primate performing an arm reaching task
on 2D spaces with one arm (see Figure 1A). The dataset
CRT (center-out reaching task) of Flint et al. includes M1
activities for monkeys to perform a center-out reaching task to
acquire eight different targets that were placed at 45◦ intervals
around a circle with their home placed on the center (Flint
et al., 2012). The dataset SRT (sequential reaching task) of
Lawlor et al. (2018) includes M1 and dorsal premotor cortical
activities during a sequential reaching task, where a series
of targets were randomly displayed on 2D spaces (Lawlor
et al., 2018; Perich et al., 2018). All cortical activities were
extracellularly recorded by a 128-channel acquisition system
(Cerebus, Blackrock Microsystems, Inc., Salt Lake City, UT,
United States) through 96-channel silicon microelectrode arrays
chronically implanted in the arm area of M1.

In this study, we analyzed only M1 activities to develop and
test decoders. The spike trains of each neuron were binned with
a non-overlapping window of 50 ms to maximize the mutual
information between neural FRs and kinematics (Paninski et al.,
2003; Suminski et al., 2010). FRs were estimated by spike
counts within the bin divided by its size (i.e., 50 ms). We
also square-root-transformed the FRs in each bin to make
them more normally distributed for linear decoding models
(Schwartz and Moran, 1999). Then, we performed a Gaussian
kernel smoothing process to reduce temporal noise of individual
unit activities, where the kernel standard deviation (SD) was
determined according to Yu et al. (2009) (SD = 80 ms in the
dataset CRT, SD = 140 ms in the dataset SRT). An instantaneous
hand position was converted into the velocity and its absolute
value (speed). This kinematic combination (velocity and speed)
is shown to be appropriate predictors for establishing tuning
models (Rasmussen et al., 2017). Using the velocity and speed,
we calculated the goodness of fit (r2) of a linear tuning model
for each neuron, which was designed based on the cosine
tuning model (Moran and Schwartz, 1999a), expressed by: z (t) =
β0+β1v(t)+ β2v (t)+ ε (t) where z(t) is FRs, β0, β1, and β2
are model coefficients, and v(t) and v (t) denote a vector of
velocity and its norm (speed) at time t, respectively. Then, we
selected the neurons with r2 > 0.01, where the threshold of
r2 (>0.01) was empirically determined. A total of 155 and 63
neurons passed these criteria in the datasets CRT and SRT,
respectively. The datasets CRT and SRT included 175 and

496 successful trials, respectively, in which animals successfully
acquired the targets during the tasks. To build and validate
decoders, the first 75% of the trials were used for training
and the remaining 25% of the trials were used for testing: the
training and testing sets of the dataset CRT contained 131 and
44 trials, respectively, and those of the dataset SRT contained 372
and 124 trials, respectively. Every parameter estimation of the
models built in this study (see below) was performed using the
training set only.

Neural Representation Extraction via
Supervised Learning Methods
Linear Canonical Correlation Analysis
Canonical correlation analysis is one of the multivariate statistical
methods that extracts joint canonical variables from random
vectors z and x. In this study, z and x correspond to the
FRs [z1, z2, . . . , zM]T

∈ Rm×1 from m neurons and the hand
kinematics [x1, x2, x3]T

∈ R3×1, where x1 and x2 denote the
velocity of the x- and y-coordinates, respectively, and x3 denotes
the speed. An LCCA seeks linear mappings from z and x
to canonical variables by maximizing correlations between
canonical variables (Hotelling, 1936; Anderson, 1984; Friman
et al., 2007). The canonical coefficients {α, β} on these linear
mappings are defined as{

α∗, β∗
}
= argmax

α∗,β∗
ρ
(
αTz, βTx

)
(1)

= argmax
α∗,β∗

αT6ZXβ√
αT6Zα · βT6Xβ

(2)

where ρ(·) denotes a function of the correlation between
canonical variables. 6Z and 6X are the covariance matrices of
centralized data z̄ and x̄, respectively, and 6ZX is the sample
cross-covariance matrix. To make the canonical coefficients
scale-free, the denominator is constrained to have unit variance,
such that {

α∗, β∗
}
= argmax

αT6Zα=βT6Xβ=1
αT6ZXβ (3)

The singular value decomposition is used to derive α∗ and β∗.
Using these variables, the canonical variables of z and x can be
estimated by

ûZ = α∗Tz̄ (4)

ûX = β∗Tx̄ (5)

By using the eigenvectors corresponding to the largest
eigenvalues, we repeatedly computed a pair of canonical
variables, {ûZ, ûX}, until the number of pairs equals m or 3. For
convenience, we call the linear neural (ûZ) and kinematic (ûX)
canonical variables ZLCV and XLCV, respectively.

Deep Canonical Correlation Analysis
A DCCA is one of the advanced CCA methods based on DNNs.
DCCA finds non-linear mappings from z and x to canonical
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FIGURE 1 | Simulation overview for assessing the effects of DCCA on two decoders. (A) Behavioral tasks for each dataset. The left panel denotes a center-out
reaching task which the monkey C performed, and the right panel is a sequential reaching task which the monkey M performed. (B) The schematic diagram depicts
the DCCA between firing rates and kinematic variables. The left inputs (L-input) of the networks indicate the naïve firing rates and the right inputs (R-input) of the
networks denote the kinematic variables: x- and y-velocity, and speed. A dotted-line box between the networks denotes a canonical correlation analysis (CCA)
between the left-canonical variables (ZDCV) and the right-canonical variables (XDCV). (C) The block diagram depicts a simulation paradigm for a comparative study of
decoding. (D) Prediction errors for the state dimensionalities (q) of each dataset. The filled circle denotes proper dimensionality corresponding to the minimum
prediction error for each dimensionality reduction method (Yu et al., 2009). Each color code denotes the dimensionality reduction method.

variables through stacked non-linear transformation layers, as
shown in Figure 1B (Andrew et al., 2013). The non-linear
mappings f lz (z) and f lx (x) are defined as

f lz (z) = σ
(

W(Z)
l u(Z)l−1 + b(Z)l

)
∈ Rm×1 (6)

f lx (x) = σ
(
W(X)

l u(X)l−1 + b(X)l

)
∈ R3×1 (7)

where W(·)
l denotes a matrix of weights at the l-th layer, u(·)l−1 is the

output vector from the (l−1)-th layer, b(·)l is a vector of biases at
the l-th layer, and σ(·) is a non-linear function. A parameter set θ,
which includes W and b, is estimated by maximizing correlations
between functional outputs as follows:

arg max
θ∗Z,θ

∗
X

ρ
(
fZ(z, θZ), fX(x, θX)

)
(8)

To seek θ∗Z and θ∗X, the backpropagation algorithm is used to
optimize parameters W and b based on the gradient of ρ(·).
The parameters in each layer are initialized in advance through a
pretraining process using a denoising autoencoder (Vincent et al.,
2008). The deep neural canonical variables can be computed as
ôZ = fZ(z, θZ), and the deep kinematic canonical variables can
be computed as ôX = fX(x, θX). In that case, we call the deep
neural (ôZ) and kinematic (ôX) canonical variables ZDCV and
XDCV, respectively.

In addition to θ, we also need to optimize the hyperparameters
of DNNs, for which we employed the Bayesian optimization
method (Ahmadi et al., 2019). To optimize the hyperparameters,
we empirically preset the range for each parameter: the number
of nodes in a layer ∈ {24, 25, . . ., 210}, the number of layers
∈ {1, 2, . . ., 4}, an encoder and decoder batch size ∈ {25,
26, . . ., 28}, a learning rate ∈ {1e−5, 1e−4, . . ., 1e−2}, a
regularization parameter for each view ∈ {1e−6, . . ., 1e−1},
a weight decay parameter (or an L2 regularization parameter)
∈ {1e−6, . . ., 1e−1}, and a trade-off parameter ∈ {1e−6, . . .,
1e−1}. While other parameters determine the learning and
architecture of a general DNN, the trade-off parameter is used
for regularizing correlations with a quadratic penalty, uniquely
associated with DCCA. The Bayesian optimization is iteratively
performed 1,000 times to select reliable parameters. Table 1
shows the optimized hyperparameters obtained in this study for
each dataset using the publicly available MATLAB toolbox for the
DCCA (Wang et al., 2015).

Neural Representation Extraction via
Unsupervised Learning Methods
For the purpose of comparison, we also extracted low-
dimensional representations of neural population firing activity
using several methods, including PCA, FA, and LDS, which
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TABLE 1 | Optimized hyperparameters for DCCA with respect to each dataset.

Hyperparameters CRT SRT

Function of Z # nodes (z) 1024 256

# layers (z) 2 2

RCOV (z) 0.04 0.08

Function of X # nodes (x) 1024 64

# layers (x) 3 3

RCOV (x) 0.04 0.04

Common Batch size (encoder, autoencoder) 256/256 128/128

Batch size (decoder, autoencoder) 64/64 512/512

L2 regularization 6.8e−04 3.7e−04

η 0.01 0.01

λ 0.01 0.02

Hidden layer activator is fixed as a sigmoid function.
η, learning rate; λ, trade-off parameter; RCOV, regularization parameter for
the total layers.

are widely used in intracortical BMIs. Below we describe
each method briefly.

Principal Component Analysis
We applied principal component analysis (PCA) to the FR
data of all neuronal units. A Gaussian kernel smoothing
process was used as preprocessing for FRs before applying
PCA to avoid a case where neurons with highly fluctuating
firing rates influenced decoding (Yu et al., 2009). Then, we
extracted principal components (PCs) of FR using PCA from
the training data. Note that PCA was performed on a single
trial basis rather than trial-averaged data in order to focus on
covariance between neuronal units in single trials. To determine
the number of PCs that would be included in the set of
neural representations, we followed the procedure proposed
by Yu et al. (2009). Briefly, using the eigenvectors obtained
from the training set, we extracted all PCs (i.e., as many as
neuronal units) for the testing set, which were then sorted
according to the magnitude of corresponding eigenvalues in
a descending way. Afterward, we selected the first 5 PCs
and reconstructed FRs from them. The mean absolute error
between true FRs and reconstructed FRs was calculated. We
kept adding the next 5 PCs, reconstructing FRs and calculating
error in the same way as above. As a result, the minimum
reconstruction error was achieved with the first 5 PCs for
both datasets of CRT and SRT (Figure 1D), which constituted
neural representations by PCA, denoted as ZPCA. Note that the
smoothing process was applied again to the final set of PCs
before decoding.

Factor Analysis
A factor analysis (FA) allows us to find low-dimensional latent
factors to elucidate shared variability among the population
activities (Santhanam et al., 2009). Again, we performed the
smoothing to FRs before applying FA. To estimate latent factors
from FRs, we adopted the FA method proposed by Yu et al.,
which adjusted FA for neural data (Yu et al., 2009; Kao et al.,
2015). Then, in a similar way to PCA, we determined the number
of factors included in a set of neural representations using the

reconstruction error of the testing set. We found the minimum
error with 20 factors for both CRT and SRT datasets, which
were further used as the set of neural representations by FA,
denoted as ZFA.

Linear Dynamical System for M1 States
Observed neuronal population activity can be interpreted as
a noisy observation of low-dimensional and dynamical neural
states (Shenoy et al., 2013; Kao et al., 2015). Using the LDS-based
neural state estimation approach proposed by Kao et al. (2015),
we estimated dynamic neural latent states from the population
activity. We determined the dimensionality of neural states using
the procedure above based on reconstruction error. We set the
dimensionality to 20 for both CRT and SRT datasets, with which
the minimum reconstruction error was achieved. A vector of
these neural state was used as neural representations by LDS,
denoted as ZLDS. Note that we used a linear filter [formally called
a neural dynamical filter (NDF)] instead of Kalman filter when
decoding ZLDS because ZLDS already represented latent dynamics
of neural activity such that state estimation of Kalman filter might
not be suitable for it.

Neural Representation Analysis
We first examined Pearson correlations between canonical
variables; ρ(ûZ, ûX) or ρ(ôZ, ôZ). Both canonical variables of
neural FRs (ûZ or ôZ) are supposed to adequately represent
kinematic information because they are highly correlated with
the canonical variables of kinematic parameters (ûX or ôX),
provided that the linear or non-linear mappings of LCCA or
DCCA are appropriately built. To validate this assumption, we
performed a tuning analysis of not only the neural canonical
variables but also other neural representations using a linear
regression model, in which the tuning quality of each neural
representation with respect to velocity and speed was analyzed.
The temporal linear regression model of a single neural
representation (z) to the kinematic parameters (x) was given as
z(t) = β0 + βx(t) + ε(t) where β0 and β denote coefficients
and ε(t) is the error term at time t (Schwartz and Moran,
1999, 2000; Paninski et al., 2003; Rasmussen et al., 2017).
The tuning quality of a neural representation was assessed
by the goodness-of-fit (r2) of the tuning model. In addition
to this, we also computed the decoding performance using
each neural representation in the training data with a linear
Kalman filter. The decoding performance was measured by
the mean absolute error between actual and decoded velocity
from the training data. Finally, we assessed the predictive
performance of each of the five neural representations above
during training using both the goodness-of-fit of the tuning
model and the training error.

Decoding Algorithms
Kalman Filter
A linear Kalman filter (LKF) is one of the popular generative
decoding methods based on the linear dynamical system (Wu
et al., 2006). LKF follows a first-order Markov rule, such that a
state vector (velocity and speed) x

t at time t evolves from xt−1
at time t−1. In this study, the state vector corresponds to the
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kinematic parameter vector. The system model, which describes
the state transition, and the observation model, which describes
the generation of observation ot from xt , are given by

xt = Axt−1 + Qt−1 (9)

ot = Hxt + Vt (10)

where A denotes the system model parameter matrix, H is the
observation model parameter matrix, and Q and V are the
process and observation noise following a Gaussian distribution,
respectively. The neural observation vector ot can be either the
ZE-FR vector (zt) or the vector of the other neural representations.
To predict xt , we initialized x0 = 0 at the beginning of every trial

TABLE 2 | Optimized hyperparameters with respect to the representation pairs for LSTM-RNN (CRT/SRT dataset).

ZE-FR ZPCA ZFA ZLDS ZLCV ZDCV

No. nodes 35/40 15/64 15/64 15/15 15/64 35/64

Mini-batch size 128/16 16/256 16/32 128/64 128/32 128/32

RCOV 0.01/0.01 0.05/1e−03 0.02/0.09 0.08/0.09 0.1/0.1 0.1/0.1

η 6e−03/1e−04 0.01/1e−04 0.01/1e−04 1e−04/1e−04 0.01/1e−04 1e−03/1e−04

η, learning rate; RCOV, regularization parameter; no. hidden layers {1}, gradient decay factor {0.95}, squared gradient decay factor {0.95}, and activation function {logistic
sigmoid} are fixed.

FIGURE 2 | Correlations between canonical variables. (A) Correlations between canonical variables extracted by LCCA (ZLCV and XLCV). (B) Correlations between
canonical variables extracted by DCCA (ZDCV and XDCV). The upward-pointing triangles denote the samples per time step of the canonical variables. ρ denotes the
Pearson’s correlation coefficient and p indicates to exist a significant linear regression relationship between X and Z. Each row corresponds to each dimensionality of
the canonical variables. The orange triangles denote the dataset CRT and the blue triangles represent the dataset SRT.
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after converging the Kalman gain to its steady state in advance
(Dethier et al., 2013).

Long Short-Term Memory in Recurrent Neural
Networks
An LSTM-RNN based on an RNN architecture has been well
suited in predicting kinematics from neuronal activities (Ahmadi
et al., 2019). The components of LSTM-RNN are enumerated as
follows: c is a memory cell, f is a forget gate, and i and o are
input and output gates, which correspond to Rl, where l denotes
the number of hidden units. LSTM-RNN operates by regulating
the information flow with these gates via the cell. Given W as
a matrix of weights with respect to the recurrent connection or
input/output, h as a vector of the hidden layer, and b as a vector
of biases, each gate can be calculated by

ft = σsigmoid(Wf,zyt +Wf,lht−1 + bf) (11)

it = σsigmoid(Wi,zyt +Wi,lht−1 + bi) (12)

ot = σsigmoid(Wo,zyt +Wo,lht−1 + bo) (13)

where the input vector y is either the ZE-FR vector (zt) or the
vector of the other neural representations at time t and σsigmoid(·)
denotes the sigmoidal activation function. The subscripts indicate
the corresponding gates and their recurrent connection. The
information flow of the cell memory can be updated by

cu = σtanh(Wc,zzt +Wc,lht−1 + bc) (14)

ct = ft ⊗ ct−1 + it ⊗ cu (15)

ht = ot ⊗ σtanh(ct) (16)

where σtanh(·) denotes the hyperbolic tangent function and ⊗
denotes the element-wise product. To train LSTM-RNN, we
utilized the Adam optimizer built-in MATLAB deep learning
toolbox. The hyperparameters of LSTM-RNN were optimized by
the Bayesian optimizer in the same way as DCCA. The Bayesian
optimizer performed an objective function evaluation 500 times.
In our analysis, we set the gradient decay factor as 0.95 and the
squared gradient decay factor as 0.99. Then, the training batches
were shuffled at every epoch for the training efficiency. Table 2
shows the optimized hyperparameters for LSTM-RNN.

Decoding Performance Evaluation
To evaluate the effects of CCA on decoding, we composed three
representations of neuronal activities: ZE-FR, ZPCA, ZFA, ZLDS,
ZLCV, and ZDCV (see Figure 1C). In this study, we performed
decoding to predict the hand velocity XVEL from each neural
representation using LKF and LSTM-RNN.

For the evaluation of the decoding performance, we measured
the decoding error by the Euclidean distance between the actual
and predicted kinematic parameters. The decoding error was
measured for the hand velocity v and hand position p, which
were reconstructed from the cumulated velocity for each trial.
The decoding error of the i-th trial was calculated as

ei =
1
n

n∑
t=1

e(t) (17)

where e(t) is an absolute instantaneous error, e (t) = |v (t)−
v̂ (t) | or e (t) = |p (t)− p̂ (t) | at time t, and n is the number of
samples in the i-th trial. To compare the decoding performance
between the neural representations (ZE-FR, ZPCA, ZFA, ZLDS,
ZLCV, and ZDCV), we applied the Friedman test to evaluate the
effects of decoder inputs in accordance with the types of decoders
(LKF and LSTM-RNN). For the Friedman test, the dependent
variables consist of a decoding error, and the factors include the
decoder input and decoder type. We also performed a post hoc
statistical analysis using the Bonferroni correction (p< 0.05).

FIGURE 3 | Estimation of neural representations by linear velocity tuning
models (testing data). Single traces of the actual neural representations over
time in each trial of the test data (gray lines) are superimposed by the
corresponding estimates by the linear velocity tuning model (red lines). Here,
we present the representative traces of neural representations that were most
accurately estimated by the linear velocity tuning models yielding the highest
r2, where r2 denotes the goodness-of-fit of the linear velocity tuning model.
The top row indicates the estimation of ZE-FR in each dataset (CRT and SRT).
From the second to fourth rows are the estimations of ZPCA, ZFA, and ZLDS in
each dataset. The bottom two rows denote the estimation of ZLCV and ZDCV.
Column (A) and (B) correspond to dataset CRT and SRT, respectively.
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RESULTS

First, we investigated correlations between the neural and
kinematic canonical variables. Figure 2 depicts correlations
between the canonical variables, each extracted from firing rates
(Z) and kinematics (X), respectively. The canonical variables were
obtained from the testing set either by using LCCA or DCCA.
Correlations were calculated between the corresponding pairs of
neural and kinematic canonical variables, where a total of three
pairs were determined by the number of kinematic parameters.
DCCA resulted in higher correlations than LCCA for every
dataset: the correlation coefficients for the dataset CRT ranged
from 0.93 to 0.95 using DCCA and from 0.84 to 0.90 using LCCA
(p< 0.01, Wilcoxon rank sum test), and those for the dataset SRT
ranged from 0.81 to 0.89 using DCCA and from 0.71 to 0.86 using
LCCA (p< 0.01, Wilcoxon rank sum test).

Next, we examined the tuning of neuronal FRs and neural
representations (ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV)

concerning kinematic parameters (XVEL) using the testing set.
The quality of tuning was measured by the r2 of the linear
regression model with XVEL as the regressors (see Section “Neural
Representation Analysis”).

Figure 3 shows the examples of the actual values of ZE-FR,
ZLCV, and ZDCV and the estimated values by the linear velocity
tuning model. For ZE-FR, we selected the neuron whose FRs
was most accurately estimated by the model (i.e., the highest
value of r2). Among the neural representations analyzed here,
the linear model tracked the variation of ZDCV most accurately
yielding the highest r2 (Friedman test, Bonferroni correction,
p < 0.05). Notably, the linear model can estimate even time-
invariant parts of ZDCV (see the bottom row of Figure 3), which
often spanned over multiple trials, even though XVEL varied
during these periods.

Figures 4A,B depict the distributions of r2 for ZE-FR, ZLCV,
and ZDCV in the datasets CRT and SRT, respectively. The mean
values of r2 for ZDCV (0.93 in the dataset CRT and 0.74 in the

FIGURE 4 | Velocity tuning properties of neuronal canonical variables estimated by the neural representations. (A,B) The points denote the linear velocity tuning
quality (r2) for all dimensions of the input variables (ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV). The red horizontal line denotes the averaged r2 of all dimensions. Black
left-pointing pointer denotes a 95% confidence level of each neural representation’s r2. (C,D) Each panel depicts the topographical map of the input variable to the
kinematic variables, such as velocity (v). In this case, each panel corresponds to the best-tuned dimensionality showing high r2.
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dataset SRT) and ZLCV (0.85 in the dataset CRT and 0.67 in the
dataset SRT) were considerably higher than those for ZPCA (0.40
in the dataset CRT and 0.30 in the dataset SRT), ZFA (0.17 in the
dataset CRT and 0.13 in the dataset SRT), and ZLDS (0.14 in the
dataset CRT and 0.17 in the dataset SRT) (Friedman test, multiple
comparison with Bonferroni correction, p < 0.05). Moreover,
the neural canonical variables found by DCCA (ZDCV) was
more tuned to velocity than those by LCCA (ZLCV) (Wilcoxon
rank sum test: p = 0.02 in the dataset CRT, p = 0.04 in the
dataset SRT). Moreover, the neural canonical variables found by
DCCA (ZDCV) was more tuned to velocity than those by LCCA
(ZLCV). Figures 4C,D depict the topographical maps of the neural
canonical variables showing high r2 in the 2D velocity space.
Although ZLCV and ZDCV were created to maximize correlations
with the canonical variables of kinematics, not kinematics per se,
they showed tuning with the actual velocity.

We then examined both the training error and average r2

of each neural representation, as shown in Figure 5. It reveals
that ZDCV yielded not only the highest r2 but also the lowest
training error (0.09 in the dataset CRT, 0.12 in the dataset SRT).
Although we also observed relatively low training error using
neural representations of FA and LDS, the average r2 of them
were not high compared to those of CCA.

The decoding performance was evaluated for each
combination of neural representations and decoders (see
Figure 1). Figure 6 depicts the true and decoded velocity
trajectories for each combination. The results show that
decoding ZDCV produced the most accurate prediction of
velocity (Friedman test with Bonferroni correction, p < 0.05.
See Tables 3, 4). Figure 7 depicts the true and reconstructed
position trajectories in the dataset CRT. When decoding ZE-FR
and ZLCV, LSTM-RNN reconstructed the hand position more
accurately than LKF. However, when decoding ZDCV, there
was no apparent difference between the decoders. ZDCV also
led to the smallest variance of the reconstructed trajectories
[variance, ZE-FR: x-pos = 0.83, y-pos = 0.82; ZPCA: x-pos = 1.00,
y-pos = 1.01; ZFA: x-pos = 0.83, y-pos = 0.80; ZLDS (NDF):
x-pos = 0.71, y-pos = 0.74; ZLCV: x-pos = 0.74, y-pos = 0.80;
ZDCV: x-pos = 0.61, y-pos = 0.62 when using LKF, whereas ZE-FR:
x-pos = 0.87, y-pos = 0.77; ZPCA: x-pos = 0.75, y-pos = 0.79; ZFA:
x-pos = 0.70, y-pos = 0.65; ZLDS: x-pos = 0.78, y-pos = 0.77; ZLCV:
x-pos = 0.60, y-pos = 0.60; ZDCV: x-pos = 0.53, y-pos = 0.53 when
using LSTM-RNN in the dataset CRT]. Decoding ZDCV yielded
the best performance of reconstructing the hand position using
either LKF or LSTM-RNN (Friedman test, multiple comparison
with Bonferroni correction, p < 0.05. See Tables 3, 4). The
standard deviations (STDs) of the actual velocity and position
in the dataset CRT are X = 0.24 and Y = 0.26 for velocity and
X = 1.82, and Y = 1.76 for position, and those in the dataset
SRT are X = 0.21 and Y = 0.20 for velocity and X = 1.66 and
Y = 1.52 for position. For LKF, the decoding error is less than
the STDs of the X- and Y-axes of the actual velocity by 5.7 and
4.2% on overage, respectively. Moreover, the decoding error is
less than the STDs of the actual position by 72.1 and 69.1%. For
LSTM-RNN, the decoding error is less than the STDs of the
actual velocity by 5.7 and 4.6%, and the decoding error is less
than those of the actual position by 72.3 and 70.0%.

FIGURE 5 | The relationship between training error and average r2 of
velocity-tuning for each dimensionality of the neural representations. Each
colored circle corresponds to the mean of r2 and training error for a neural
representation (ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV). The (A) top and (B)
bottom panel correspond to the datasets CRT and SRT.

Figure 8A depicts the comparison of the decoding error
for the hand velocity across different neural representations
and decoders. For the dataset CRT, the one-way Friedman test
revealed the main effect of neural representation (ZFR, ZPCA, ZFA,
ZLDS, ZLCV, and ZDCV) on the decoding error when using LKF
(χ2 = 166.6, p < 0.01) or when using LSTM-RNN (χ2 = 128.1,
p < 0.01). When using LKF, a post hoc multiple comparison
test with Bonferroni correction showed lower decoding error
with ZDCV than other neural representations (ps < 0.01)
except for ZLDS (p = 0.25). When using LSTM-RNN, it also
showed lower decoding error with ZDCV than other neural
representations (ps < 0.01). For the dataset SRT, the Friedman
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FIGURE 6 | Decoded velocity trajectory from each pair of the variables (testing data). Each column denotes the decoded (X- and Y-axis) velocity trajectories
according to the predictors: ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV. The solid gray lines denote the actual velocity, and the solid red and blue lines depict the
outputs of linear model and LSTM-RNN, respectively. For linear model, LKF was used for ZE-FR, ZPCA, ZFA, ZLCV, and ZDCV, whereas NDF (linear filter) was used for
ZLDS. The vertical gray lines denote boundary between trial intervals for the reaching. The top (A) and bottom (B) panel correspond to the datasets CRT and SRT.

TABLE 3 | Correlation coefficients of the decoded velocity (datasets CRT and SRT).

LKF ZE-FR ZPCA ZFA ZLDS* ZLCV ZDCV

CRT

X 0.64 ± 0.25 0.38 ± 0.30 0.72 ± 0.27 0.82 ± 0.21 0.73 ± 0.28 0.77 ± 0.33

Y 0.69 ± 0.18 0.62 ± 0.26 0.71 ± 0.20 0.84 ± 0.13 0.75 ± 0.18 0.84 ± 0.18

SRT

X 0.58 ± 0.29 0.60 ± 0.40 0.66 ± 0.31 0.76 ± 0.24 0.66 ± 0.31 0.71 ± 0.31

Y 0.54 ± 0.29 0.51 ± 0.35 0.62 ± 0.31 0.59 ± 0.28 0.62 ± 0.32 0.64 ± 0.32

LSTM-RNN ZE-FR ZPCA ZFA ZLDS ZLCV ZDCV

CRT

X 0.74 ± 0.26 0.70 ± 0.29 0.80 ± 0.20 0.82 ± 0.25 0.79 ± 0.32 0.80 ± 0.33

Y 0.81 ± 0.16 0.76 ± 0.22 0.83 ± 0.14 0.87 ± 0.14 0.87 ± 0.15 0.91 ± 0.11

SRT

X 0.72 ± 0.31 0.74 ± 0.35 0.79 ± 0.27 0.78 ± 0.31 0.78 ± 0.28 0.79 ± 0.27

Y 0.69 ± 0.28 0.72 ± 0.31 0.73 ± 0.29 0.69 ± 0.36 0.75 ± 0.26 0.75 ± 0.28

Decoding error of ZLDS* corresponds to that of the NDF.

test revealed the main effect of neural representation on the
decoding error when using LKF (χ2 = 75.8, p < 0.01) or
when using LSTM-RNN (χ2 = 25.7, p < 0.01). When using
LKF, the post hoc test showed lower decoding error with
ZDCV than other neural representations (ps < 0.01) except
for ZLDS (p ∼= 1). When using LSTM-RNN, it showed lower
decoding error with ZDCV than ZE-FR (p < 0.01) only, while

showing no difference between ZDCV and other representations
(ps> 0.05).

Figure 8B depicts the comparison of the error between true
and reconstructed hand positions. For the dataset CRT, the
Friedman test revealed the main effect of neural representation
on the position error when using LKF (χ2 = 71.9, p < 0.01)
or when using LSTM-RNN (χ2 = 80.7, p < 0.01). When using
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TABLE 4 | Velocity and position decoding errors (datasets CRT/SRT).

LKF ZE-FR ZPCA ZFA ZLDS* ZLCV ZDCV

Velocity (cm/s)

CRT 0.21 ± 0.04 0.28 ± 0.07 0.21 ± 0.04 0.16 ± 0.05 0.19 ± 0.04 0.13 ± 0.03

SRT 0.16 ± 0.05 0.17 ± 0.05 0.16 ± 0.04 0.15 ± 0.04 0.16 ± 0.05 0.15 ± 0.05

Position (cm)

CRT 0.97 ± 0.36 1.20 ± 0.44 0.99 ± 0.34 0.91 ± 0.55 0.87 ± 0.32 0.57 ± 0.24

SRT 0.95 ± 0.60 1.01 ± 0.53 0.94 ± 0.43 0.90 ± 0.53 0.93 ± 0.48 0.83 ± 0.45

LSTM-RNN ZE-FR ZPCA ZFA ZLDS ZLCV ZDCV

Velocity (cm/s)

CRT 0.18 ± 0.05 0.19 ± 0.05 0.16 ± 0.04 0.14 ± 0.05 0.13 ± 0.03 0.10 ± 0.02

SRT 0.14 ± 0.04 0.13 ± 0.04 0.12 ± 0.04 0.14 ± 0.06 0.12 ± 0.04 0.12 ± 0.05

Position (cm)

CRT 1.15 ± 0.53 1.07 ± 0.43 0.92 ± 0.34 0.93 ± 0.50 0.65 ± 0.32 0.51 ± 0.22

SRT 0.86 ± 0.48 0.88 ± 0.52 0.78 ± 0.41 1.01 ± 0.60 0.82 ± 0.46 0.79 ± 0.46

Decoding error of ZLDS* corresponds to that of the NDF.

LKF, the post hoc test showed lower error with ZDCV than neural
representations (ps < 0.01). When using LSTM-RNN, it showed
lower error with ZDCV than other neural representations except
for ZLCV (p = 0.53). For the dataset SRT, the Friedman test
revealed the main effect of the neural representation on the
position error when using LKF (χ2 = 33.1, p < 0.01) or when
using LSTM-RNN (χ2 = 13.6, p < 0.01). When using LKF, the
post hoc test showed lower error with ZDCV than other neural
representations except for ZLDS (p = 0.06). When using LSTM-
RNN, it showed lower error with ZDCV than ZLDS (p < 0.01),
whereas there was no difference between ZDCV and others.

Moreover, we evaluated the possible interaction effects of
neural representations and decoder types using a two-way
Friedman test (Figure 9). For the dataset CRT, the two-way
Friedman test revealed the main effects of decoder [χ2(1) = 116.9,
p < 0.01] and neural representation [χ2(2) = 261.9, p < 0.01]
on the velocity decoding error (Figure 9A). The post hoc test
with Bonferroni correction showed lower error using LSTM-
RNN than using LKF for all neural representations (p < 0.01).
For all decoders, the decoding error of velocity with ZDCV was
smaller than any other neural representations (ps< 0.01). For the
dataset SRT, the two-way Friedman test revealed the main effect
of decoder [χ2(1) = 175.4, p < 0.01] and neural representation
[χ2(2) = 59.0, p < 0.01]. The post hoc test showed lower error
using LSTM-RNN than using LKF (p < 0.01). For all decoders,
the decoding error of velocity with ZDCV was smaller than ZE-FR
and ZPCA (ps< 0.01).

Figure 9B depicts the same two-way statistical analysis on the
error between true and reconstructed hand positions. For the
dataset CRT, the two-way Friedman test revealed the main effects
of decoder [χ2(1) = 4.4, p < 0.05] and neural representation
[χ2(2) = 143.1, p < 0.01] on the position error. The post hoc
test showed no difference between decoders (p = 0.3). For all
decoders, the position error with ZDCV was smaller than any
other neural representations (ps < 0.01). For the dataset SRT,
it showed the main effects of decoder [χ2(1) = 14.3, p < 0.01]
and neural representation [χ2(2) = 28.2, p < 0.01]. The post hoc

test showed no difference between decoders (p = 0.1). For all
decoders, the position error with ZDCV was smaller than any
other neural representations (ps< 0.05).

DISCUSSION

In this study, we proposed a method to identify low-dimensional
representations of M1 neuronal FR activities using canonical
correlation analyses. Furthermore, we applied those canonical
variables to the decoding models to predict the arm movements
of non-human primates and compared the effect of the
neural representations in terms of decoding performance. As
expected, we confirmed that the canonical variables found by
DCCA were well tuned to the hand velocity. Decoding arm
movement information using canonical variables estimated by
DCCA resulted in a superior performance to either cases using
LCCA-estimated canonical variables or using the other neural
representations regardless of the decoder type, i.e., LKF or LSTM-
RNN. In particular, the performance of LKF was significantly
more improved using DCCA than decoding FRs using LSTM-
RNN. These findings suggest that we can design a simple linear
decoder (LKF) with DCCA while achieving performance as good
as using relatively complex DNNs.

The improvement of decoding M1 activities using LCCA
or DCCA may be partly because canonical variables found
by them showed superior tuning to velocity over the other
neural representations, including individual neuronal FRs
(Figure 3). Therefore, the LKF, drawing heavily on the quality
of observation models, can benefit from the extracted canonical
variables even when LCCA greatly reduced the number of
neural variables. Particularly, DCCA-estimated neural canonical
variables showed better tuning indices (r2) than LCCA-estimated
neural canonical variables, which subsequently led to a better
decoding performance of DCCA. Meanwhile, training error that
directly reflects the learning quality of the decoding model
revealed superior over the other neural representations along
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FIGURE 7 | Reconstructed position trajectory in the dataset CRT (testing
data). Each panel denotes the reconstructed position trajectories according to
the predictors: ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV. Solid gray lines
denote the true position trajectories, red lines denote the position trajectories
reconstructed from the output of linear model, and blue lines denote the
position trajectories from the output of LSTM-RNN. For linear model, LKF was
used for ZE-FR, ZPCA, ZFA, ZLCV, and ZDCV, whereas NDF (linear filter) was
used for ZLDS. The filled yellow circle denotes the home position (0, 0) from
which non-human primates started to move their hands. Solid lines denote
the averaged position trajectories across the trials, and shaded lines denote
the standard errors across 44 trials with respect to each direction.

with r2. This finding indicates that non-linear projections may be
more suitable to extract joint canonical variables between high-
dimensional neural activities and low-dimensional kinematic
parameters. However, DCCA cannot provide direct links between
canonical variables and individual neurons, which LCCA can do.

Besides better characteristics of the canonical variables, there
could be another reason why DCCA improved decoding using
LKF while the other neural representations did not. PCA
is known to have difficulty distinguishing between changes
in the underlying neural state, which becomes limitations to

decoding kinematic information from noisy firing activity (Yu
et al., 2009). Although FA also is a useful frame to extract
independent and shared variability across neurons, it follows
the assumption that the noise variance of an individual neuron
is fixed over time (Yu et al., 2009). Above all, since these
approaches (including LDS) aim to extract the latent states of
population activity without kinematic information, it is difficult
to extract elaborate components related to complex movement.
This could be a reasonable reason why DCCA yielded a better
performance on decoding models than the neural representations
via unsupervised learning methods.

As for decoding methods, a DNN, represented by LSTM-
RNN here, efficiently decoded neuronal population firing
patterns because it can effectively process neuronal temporal
dynamics through memory cells in a relatively concise network
architecture. Furthermore, a state-space model, such as LKF,
shows an advantage of representing temporal dynamics of
kinematics in its system model, but its first-order linear system
model may not be sufficient to elucidate the kinematic dynamics
of arm movements. In addition, a direct decoding model, such
as LSTM-RNN, can be free from any statistical assumption on
data, which is often necessary in a generative model, such as
LKF. Our results showing the superior performance of LSTM-
RNN over LKF are in line with those of previous reports
(e.g., Ahmadi et al., 2019).

In addition to direct mapping to velocity through the
decoders, a more straightforward linear mapping could be
taken into account; for example, we can simply reconstruct
velocity from the canonical kinematic representations (XLCV or
XDCV), which were estimated from the corresponding neural
representations (ZLCV or ZDCV). To test whether how this simple
mapping worked, we attempted to reconstruct velocity only
through LCCA and DCCA without explicit decoders as follows.
First, we estimated XLCV (or XDCV) from ZLCV (or ZDCV) by
linear regression such as

Xk = α0 + α1Zk + e (18)

where Xk and Zk represent the k-th canonical variable,
respectively, e represents residual error and α0 and α1 are
canonical coefficients. Second, we reconstructed velocity from
the estimated XLCV (or XDCV) during testing. For LCCA,
the reconstruction of velocity was straightforward simply by
inverting linear mapping between XLCV and velocity. For DCCA,
velocity was reconstructed by the inverse of activation function
(here, a logit function) and the linear model between the layers,
which was expressed as:

− log
((

βl,l−1XW
−1
l − 1

)−1
)

(19)

where βl,l−1 represents coefficients between the outputs of layer
l and l−1, and W l is a matrix of the weight in l-th layer. We
observed that the reconstructed velocity with this procedure
exhibited lower performance than directly decoding Z (ZLCV or
ZDCV) into velocity using LKF by 9.9% on average (11.4% for
LCCA, and 8.3% for DCCA). Apparently, this analysis verified
that direct reconstruction of velocity through mappings built
by CCA was poorer than those from the proposed decoding
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FIGURE 8 | Comparison of the decoding error for the velocity between the neural representations for each decoder. The mean error of decoding the hand velocity
(A) and reconstructing the hand position (B) from decoded velocity [from six different neural representations (i.e., ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV)] (see the
text for the descriptions of neural representations) using decoders [linear model (orange), and LSTM-RNN (purple)]. For linear model, LKF was used for ZE-FR, ZPCA,
ZFA, ZLCV, and ZDCV, whereas NDF (linear filter) was used for ZLDS. The vertical lines indicate the standard error, and the asterisks denote the significantly different
relationship [∗p < 0.05, ∗∗p < 0.01, Friedman test with the multiple comparisons (with Bonferroni correction)]. The left and right columns correspond to the dataset
CRT and SRT, respectively.

methods to predict velocity from neural representations using
LKF or LSTM-RNN.

We can expect that the dimensionality of neuronal
populations will increase further as the neurotechnology of
large-scale neuronal recordings advances in the near future.
Such a development will raise an issue of how efficiently we
should design a decoder for intracortical BMIs. Our results
suggest that DCCA, along with other dimensionality reduction
techniques, can provide advantages to construct a compact
but informative feature space for effective decoding. Unlike
unsupervised dimensionality reduction techniques without
kinematic information, DCCA can find a low-dimensional space
to maximize correlations with target kinematic parameters,
increasing a chance to improve predicting kinematic parameters
such as velocity from neural activities. It has been well known
that decoding velocity information of a prosthetic device from

neural activity can be useful for BMIs in clinical environments
(Kim et al., 2008; Wodlinger et al., 2015). Therefore, we suggest
that our proposal method can be preferred if one considers the
efficiency and performance of BMIs.

Although this study shows the feasibility of the improvement
of decoding for BMIs using the proposed method, we have
not validated it in an online BMI control paradigm, which
should be conducted in future work. When applying the current
decoding method to online BMIs in humans with tetraplegia,
where the kinematic information of limbs is not available, we
should consider how to extract kinematics of a target prosthetic
device. To address this issue, many previous human BMI studies
employed a training paradigm in which participants imagined
limb movements following the instructed motion of an object
shown on the screen. Then, a decoding algorithm could be
built by associating M1 activities elicited during movement
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FIGURE 9 | Comparison of the decoding error for the velocity and reconstructed position between neural representations for all decoders. The mean error (open
squares) of decoding the hand (A) velocity and (B) position from the six different neural representations (i.e., ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV) (see the text for
descriptions of neural representations) using decoders [linear model (red), and LSTM-RNN (blue)]. For linear model, LKF was used for ZE-FR, ZPCA, ZFA, ZLCV, and
ZDCV, whereas NDF (linear filter) was used for ZLDS. The vertical lines indicate the standard error, and the asterisks denote the significantly different relationship
[∗p < 0.05, ∗∗p < 0.01, a two-way Friedman test with the multiple comparisons (with Bonferroni correction)]. The left and right columns correspond to the dataset
CRT and SRT, respectively.

imagination with the kinematics of the object (Hochberg et al.,
2006; Kim et al., 2008; Aflalo et al., 2015; Jarosiewicz et al., 2015;
Wodlinger et al., 2015). Although there could exist a substantial
gap between the true kinematics and the output of the decoding
algorithm initially built in this way, the BMI performance could
be further increased by repeatedly updating the same decoding
algorithm through “closed-loop” training. Importantly, most
decoding algorithms used in human BMIs have been initially
developed in the preliminary non-human primate studies.
Therefore, we believe that our decoding algorithm based on deep
CCA in non-human primates can benefit human BMIs in a
similar fashion.
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