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Background and Objective: Ventricle volume is closely related to hydrocephalus, brain

atrophy, Alzheimer’s, Parkinson’s syndrome, and other diseases. To accurately measure

the volume of the ventricles for elderly patients, we use deep learning to establish a

systematic and comprehensive automated ventricle segmentation framework.

Methods: The study participation included 20 normal elderly people, 20 patients with

cerebral atrophy, 64 patients with normal pressure hydrocephalus, and 51 patients

with acquired hydrocephalus. Second, get their imaging data through the picture

archiving and communication systems (PACS) system. Then use ITK software to

manually label participants’ ventricular structures. Finally, extract imaging features

through machine learning.

Results: This automated ventricle segmentation method can be applied not only to

CT and MRI images but also to images with different scan slice thicknesses. More

importantly, it produces excellent segmentation results (Dice > 0.9).

Conclusion: This automated ventricle segmentation method has wide applicability

and clinical practicability. It can help clinicians find early disease, diagnose disease,

understand the patient’s disease progression, and evaluate the patient’s treatment effect.

Keywords: deep learning, neuroimage, magnetic resonance imaging, ventricular segmentation, image

segmentation, convolutional neural network (CNN), computer tomography (CT)

INTRODUCTION

The volume of the ventricle has always been closely related to degenerative brain diseases and
traumatic brain injury. Researchers have also described that enlargement of the ventricles is
an important characteristic of medical conditions such as schizophrenia, Parkinson’s disease,
Alzheimer’s disease, hydrocephalus, and trauma to the brain (Silbert et al., 2003; Thompson et al.,
2004; Chou et al., 2009; Liu et al., 2010; Cavedo et al., 2012; Khan et al., 2012; Anandh et al.,
2016; Del et al., 2016; Owen et al., 2018; Kocaman et al., 2019; Lundervold et al., 2019). In some

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2020.618538
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2020.618538&domain=pdf&date_stamp=2020-12-16
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiajun@email.szu.edu.cn
mailto:g.yang@imperial.ac.uk
https://doi.org/10.3389/fnagi.2020.618538
https://www.frontiersin.org/articles/10.3389/fnagi.2020.618538/full


Zhou et al. Automated Ventricle Segmentation for Elderly

disease diagnosis guidelines, EI > 0.3 is often defined as
ventricular enlargement (Relkin et al., 2005; Mori et al., 2012).
However, some studies have shown that the correlation between
EI and ventricle volume is only 0.619 (Toma et al., 2011).
The measurement of EI is affected by different scan baselines
and different measurement planes, which only reflects the local
conditions of the ventricle at the selected level, and cannot
fully assess the size of the ventricle (Ambarki et al., 2010).
Moreover, EI is sensitive to the expansion of the ventricle to
both sides, and the effect is not good when evaluating patients
whose ventricle expands to the long axis (He et al., 2020). At the
same time, in the normal elderly, the range of EI is relatively
wide. Taking EI = 0.3 as the cut-off value, it is difficult to
effectively distinguish between normal and enlarged ventricles
(Brix et al., 2017). Therefore, when we need the volume of the
ventricle, and the volume of the ventricle is measurable, then we
should use it (Ambarki et al., 2010). Because of this, research
on ventricle segmentation methods has brought much attention,
and researchers have continuously optimized algorithms to make
better and more accurate estimation (Chen et al., 2009; Coupe
et al., 2011; Kempton et al., 2011; Poh et al., 2012; Qiu et al., 2015;
Tang et al., 2015, 2018; Qian et al., 2017; Cherukuri et al., 2018;
Shao et al., 2019; Dubost et al., 2020).

Volumetric measurement is the only method to directly
determine the ventricular size. It is realized by segmentation,
which can be roughly categorized into automated segmentation
and manual segmentation (Huff et al., 2019). The manual
segmentation technique is the gold standard for volumetric
quantification of regional brain structures (Kocaman et al., 2019),
but when dealing with more data, manual segmentation of the
ventricles is time-consuming, subjective, and less reproducible
(Chou et al., 2008; Liu et al., 2009; Poh et al., 2012). Therefore,
it is highly in demand for an automated ventricle segmentation
method to be developed and machine and deep learning based
methods have emerged as the new era.

In the previous automated ventricle segmentation methods,
researchers often conducted single-mode studies, i.e., segment
either on CT images (Liu et al., 2010; Poh et al., 2012; Qian et al.,
2017; Cherukuri et al., 2018) or MRI images (Qiu et al., 2015;
Tang et al., 2015, 2018). Therefore, the developed automated
ventricle segmentation methods were rarely interchangeable.
Moreover, various algorithms might perform differently in
segmenting different sections of the ventricles (Chen et al.,
2009; Coupe et al., 2011; Shao et al., 2019; Dubost et al., 2020).
Most previous machine learning (including deep learning) based
studies were developed using images with a slice thickness of
<3mm, because at the same scanning distance, the smaller of
the image thickness, the more images could be obtained, which
could be more conducive for machine/deep learning algorithms
to extract more image features (Xia et al., 2004; Coupe et al.,
2011; Kempton et al., 2011). However, in clinical practice, due
to time constraints, images with larger slice thicknesses are
more common. Therefore, the clinical usage of these methods is
relatively limited.

The reproducibility of machine/deep learning based
algorithms across different scanners and pulse sequences
had not always been comprehensively examined (Kempton et al.,

2011). Moreover, their accuracy in different clinical populations
and sensitivity to real changes in brain volume could still be
improved. A larger slice thickness would increase the partial
volume effect, which could have a significant negative impact
on the algorithm accuracy. For example, the intraventricular
calcified area located at the border of the ventricle may not be
recognized. Some cerebellar ventricle areas (anterior, posterior,
and inferior horns of the lateral ventricle) may not be recognized
because they are not connected to the core of the lateral ventricle
(Liu et al., 2010). In some automated ventricle segmentation
methods, pathological ventricles were not included (Huff et al.,
2019), but pathological ventricles are common in the elderly,
especially in patients with acquired hydrocephalus, because they
may have brain trauma, brain tumors, subarachnoid hemorrhage,
and it becomes extremely difficult to delineate the ventricle from
these patients. Previous literature also reported the segmentation
of the ventricle of idiopathic Normal Pressure Hydrocephalus
(iNPH) patients (Shao et al., 2019). These patients are prone to
segmentation failure due to the enlarged ventricle. Therefore, our
purpose is not only to optimize the algorithm and obtain more
accurate results but more importantly, to make this automated
ventricle segmentation method be more widely used and be
trustworthy for clinical practice.

In summary, the goal of this study is to establish a deep
learning based automated ventricle segmentation method that
can be generally used for both CT and MRI images, and is
versatile for both thin-layer and thick-layer images.

METHODS

Participants
First, we selected the images of patients over 60 years old who
underwent brain CT or MRI examinations at Shenzhen Second
People’s Hospital from January 1, 2016 to December 31, 2019.
Second, as we aimed to delineate the ventricle and perform a
comprehensive analysis, we chose the normal elderly, the elderly
with brain atrophy, the elderly with idiopathic normal pressure
hydrocephalus, and the elderly with acquired hydrocephalus
people. Because the shape and size of the ventricles of these
four types of patients are very representative, showing a trend
from normal to severe, which can help us systematically and
comprehensively analyze the ventricular system. Third, the
diagnostic results of these patients were agreed upon by two
radiologists with more than 10 years of work experience and
strictly followed the disease diagnosis guidelines. Last but not
least, due to a large number of normal elderly people and
patients with brain atrophy, a large number of manual labeling
would be infeasible. However, there is no obvious deformation
of their ventricle structure, and it is easier for the automatic
ventricle segmentation of the normal elderly and the elderly
with brain atrophy. Therefore, we arranged the normal elderly
and the elderly with brain atrophy in the order of the time of
head imaging examination and numbered them, and made the
numbers into small pieces of paper, and placed them in a large
carton. Using a simple random sampling method, let 20 doctors
in the radiology department randomly sample small pieces of
paper. In the end, we randomly selected 20 normal elderly people
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and elderly people with brain atrophy for manual marking. The
flowchart of the admission and exclusion of patients is shown
in Figure 1, and the basic study population description is shown
in Table 1.

Ethics Statement
This study was carried out in accordance with the
recommendations of the Ethics Committee of The First
Affiliated Hospital of Shenzhen University and Shenzhen Second
People’s hospital. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Imaging Protocol and Label
First, a CT scan of the head was performed on two CT
instruments, one of which was SOMATOM Definition Flash
from Siemens, Germany, and the other was SOMATOMEmotion
16 from Siemens, Germany. Secondly, MRI examinations were
conducted using a 1.5T MR scanner (Avanto, Siemens, Erlangen,
Germany), and a 3.0T MRI scanner (Prisma, Siemens, Erlangen,
Germany). All images were stored in the picture archiving and
communication systems (PACS).

Then manually delineation of the ventricle was conducted.
For MRI images, we chose T1WI for manual labeling. The
specific manual labeling process is as follows: (1) two radiologists
with 10 years of clinical experience used ITK software to label
the ventricles; (2) a senior radiologist with 20 years of clinical
experience evaluated the delineation results of the ventricles and
made adjustment if inaccurate manual labeling was found; and
(3) for the controversial annotated cases, we invited a neurology
expert and a neurosurgery expert to discuss, and modifications
and the final annotation results were approved by them.

We defined the thick layer image when the scan layer thickness
was>3mm, and otherwise, it was defined as the thin layer image.
Therefore, all images were classified into four groups, i.e., thin-
slice CT images, thick-slice CT images, thin-slice MRI images,
and thick-slice MRI images.

The Proposed Deep Learning Framework
In real-world scenarios, the thick-slice images are more easily
obtained, while thin-slices images are rare, and it is more difficult
for clinicians to annotate them. Moreover, the distribution of
different image thicknesses can result in the domain shift problem
that can confuse the deep learning models (Yan et al., 2019).
Therefore, we proposed a thickness agnostic image segmentation
model, which only required the annotation of thick-slice images
for the model training.

Our goal is to utilize the unlabeled thin-slice images to
minimize the performance gap between thick-slice and thin-slice
images. In our model, the thick-slice images are denoted as DS =
{(

xs, ys
)∣

∣ xs ∈ RH×W×3, ys ∈ RH×W}, and the thin-slices images
are represented as DT = {xt|xt ∈ RH×W× 3}.

With the increased development and application of deep
learning methods, encoder-decoder based architectures
(Milletari et al., 2016; Zhou et al., 2018) are widely used in
medical image segmentation. The workflow of our proposed
deep learning based framework is presented in Figure 2.
For image feature extraction and reconstruction, we adopted

ResNet-34, which was pre-trained on ImageNet datasets
as the encoder of input images. For the decoder, sub-pixel
convolution was used for constructing segmentation results
since the deconvolution operation was computationally heavy
and interpolation-based methods could not bring additional
information to improve the segmentation. The sub-pixel
convolution can be then represented as

FL = SP
(

WL∗FL−1 + bL
)

, (1)

where SP(·) operator transforms and arranges a tensor with the
shape of H ×W × C × r2 into a tensor shaped in rH × rW × C,
FL−1 and FL are the input feature and output feature,WL and bL
are the parameters of the sub-pixel convolution operator.

We took both thick-slice and thin-slice images as the input
and optimized our model with the following objective function

L (xs, xt) = LS
(

ps, ys
)

+ λLT(pt), (2)

where λ is a hyper-parameter for weighting the impact of Ls and
LT , ps and pt are the model’s predictions of the segmentation
probability shaped of H × W × C. LS is the cross-entropy loss
defined as follows

LS = −
1

HW

HW
∑

n=1

C
∑

c=1

yn,cs log pn,ct . (3)

Since we expect our model to learn an accurate segmentation
paradigm for both thick-slice images and thin-slice images, the
LT can be regarded as the distance between the probability
distribution of the target domain (thin-slice domain) pt and
the uniform distribution U = 1

C . Therefore, minimizing the
distance between the two distributions enables classes to be more
separable. Because it implicitly pushes the image features away
from the decision boundary and makes alignment between two
distributions. Mathematically, the objective function of thin-slice
images is formulated as

LT = −Df (p
n,c
t | |U) = −

1

C

C
∑

c=1

f
(

Cpn,ct

)

. (4)

Most existing methods (Vu et al., 2019) would choose f (x) =
x log x, which is alternatively named as the KL-divergence.
However, one of the main obstacles is that when adopting
KL-divergence for LT as the objective function, the gradient
of LT would be extremely imbalanced between easy and hard
samples. Taking the binary case as an example, the gradient can
be computed as

∂LT

∂pn,it

= log
(

1− pn,it

)

− log pn,it , (5)

of which the increasing speed is faster as pn,it becomes larger.
Therefore, to mitigate the unbalancing problem represented

above, instead of choosing f (x) = x log x, we select Pearson χ2
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FIGURE 1 | Study flow chart for the inclusion of participants.

divergence [i.e., f (x) = x2 − 1] for LT . Therefore, the gradient of
LT can be noted as

∂LT

∂pn,it

= 2− 4pn,it , (6)

which balances the gradient between easy and hard samples.
During model training, the above loss functions were optimized
iteratively. For testing, we fed each slice of images as the input
and get the predicted segmentation.

RESULT

Diagnostic Efficiency
For experiments, we collected thick-slice and thin-slice samples
from iNPH patients with different modalities (MRI and CT) as
Table 2 shows. It is of note that we only used the annotations
from thick-slice images for our supervised deep learning. We
investigated the performance of U-Net (Ronneberger et al.,
2015) and U-Net++ (Zhou et al., 2018) on thin-slice and
thick-slice images. Both U-Net and U-Net++ adopted encoders
and decoders structure while using the middle features to
maintain the information of images. As shown in Table 3,

compared to conventional and state-of-the-art models, our
method achieved significant improvement on both thick-
slice and thin-slice images. To further illustrate, our method
outperformed U-Net and U-Net++, which are commonly used
inmedical segmentation, by a largemargin. Besides, with the help
of a pre-trained ResNet-34 encoder, our model could gain at most
0.1 Dice coefficient on thick-slice images.

Component Analysis
To examine the influence of each component in our method,
we conducted ablation studies to verify the effectiveness of our
method, and the results are summarized in Table 4. We can
observe that if our model only trained on thick-slice images,
we can get comparable results on thick slices but the model
cannot perform well on thin-slice images as shown in the
first row of Table 4. However, without the annotation from
images, the prediction results would be extremely unreliable since
the objective function reached the global minimum when the
probability of each class was assigned the same value. Moreover,
when incorporating both thick-slice and thin-slice images into
the training under the proposed semi-supervised paradigm, our
method could result in better performance on thin-slice images
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TABLE 1 | Demographic information of subjects used in this study.

Normal elderly Brain atrophy Normal pressure hydrocephalus Acquired hydrocephalus

(n = 20) (n = 20) (n = 64) (n = 51)

Age* (years) 64.81 ± 3.19 70.95 ± 5.55 70.77 ± 6.81 67.01 ± 5.41

Sex (male:female) 11:9 12:8 37:27 31:20

Scanning status of imaging equipment#

CT-1 4 3 19 24

CT-2 6 7 28 16

MRI-1 5 4 23 18

MRI-2 5 6 31 20

*Age reported as mean ± standard deviation.
#CT-1 represents the CT instrument of SOMATOM Definition Flash from Siemens, Germany. CT-2 represents the CT instrument of SOMATOM Emotion 16 from Siemens, Germany.

MRI-1 represents the 1.5T MR scanner (Avanto, Siemens, Erlangen, Germany). MRI-2 represents the 3.0T MRI scanner (Prisma, Siemens, Erlangen, Germany). The slice thickness of

CT image includes: 0.5, 1.0, 1.5, 2.0, 4.8, 5.0mm. The slice thickness of MRI image includes: 1.0, 7.8, 8.0 mm.

FIGURE 2 | The workflow of proposed methods.

TABLE 2 | The number of thick-slice and thin-slice images used for our study.

Modality The number of the training set The number of the testing set

Thick-slice Thin-slice Thick-slice Thin-slice

MRI 1,013 1,629 189 982

CT 2,611 2,595 309 492

For CT and MRI datasets, each dataset is divided into two groups. The training set is

only used for model training and optimization, while the testing set is used to validate the

effectiveness of the trained model.

by at least 3.5% improvement on the Dice coefficient compared
to the model in Exp 1, while it only sacrificed little performance
on thick images. The rationale behind this is that our model
can learn a shared feature representation for both thick-slice and
thin-slice images, which can be beneficial for handling different
types of images.

Qualitative Analysis
Figure 3 shows the example segmentation results on randomly
selected thin-slice images from the testing set for both MRI
and CT modalities. In the second column of each modality, it
can be observed that U-Net performed poorly on MRI images.

Meanwhile, U-Net++, which is the updated version of U-Net,
showed better predictions compared to the U-Net while they
were still not accurate. Compared with the U-Net and U-Net++,
our method achieved accurate results and could segment both
MRI and CT images with high precision. Particularly, in the
last row of the CT example, although the original image had
low contrast, our method was still able to recognize each part
and segmented the data accurately, which has demonstrated
the robustness of our method. Divide patients with acquired
hydrocephalus into Subarachnoid hemorrhage group, brain
trauma group, and brain tumor group according to the cause
of the disease. Using our method to automatically segment the
images of the three groups of patients, the results of CT images
show that the Dice of the three groups are 0.94, 0.95, and 0.94,
respectively. The results of the MRI image showed that the Dice
of the three groups were 0.91, 0.89, 0.92, respectively (Table 5).

DISCUSSION

Through Figures 2, 3 and Tables 2–4, we can observe that our
automated ventricle segmentation method can be successfully
applied CT and MRI images with different thicknesses. More
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TABLE 3 | Comparison results (Dice) of our method vs. other state-of-the-art methods.

Method MRI CT

Thick Thin Mixed Thick Thin Mixed

U-Net (Ronneberger et al., 2015) 0.9226 0.7665 0.8353 0.9351 0.7987 0.8513

U-Net++ (Zhou et al., 2018) 0.9159 0.8495 0.8602 0.9421 0.7797 0.8424

Ours 0.9323 0.9056 0.9099 0.9365 0.8697 0.8954

For each trained model, we tested it on thick-slice data only, thin-slice data only, and the combination of these two data. We can see that our method outperforms the other two

state-of-the-art methods by a large margin, especially on the thin-slice images. Bold values indicate the best performance.

TABLE 4 | Dice coefficient comparison for our ablation studies.

Exp. Thick Thin MRI CT

Thick Thin Mixed Thick Thin Mixed

1
√

0.9390 0.8199 0.8391 0.9438 0.8345 0.8767

2
√

0.0034 0.0108 0.0110 0.0109 0.0006 0.0069

3
√ √

0.9323 0.9056 0.9099 0.9365 0.8697 0.8954

Trained our model with different thickness images. “Thick” represents our model is trained with labeled thick-slice images, and “Thin” means the model is trained with thin-slice images

without annotations. We can see with the help of the semi-supervised training technique we proposed, our method can gain a significant improvement on thin-slice images. Bold values

indicate the best performance.

FIGURE 3 | The visualization of segmentation results for thin-slice with MRI images and CT images. (A) The completeness of segmentation indicates the performance

of each model on MRI images in which our method achieves the best. (B) Our method is superior to other competing approaches on CT images, specifically for low

contrast images (The last row).

importantly, the segmentation results obtained are better (Dice
> 0.9) compared to widely used U-Net and its advanced version
U-Net++. There is no doubt that the proposed method is
promising for different clinical scenarios.

Clinical Significance of the Automated
Ventricle Segmentation
Changes in the shape and size of the ventricles are associated
with many diseases, and relevance ventricular enlargement is

a crucial marker of brain atrophy associated with normal
or pathological aging processes (Schoemaker et al., 2019).

Ventricular enlargement also represents a feasible short-term

marker of disease progression in mild cognitive impairment
and Alzheimer’s disease (Nestor et al., 2008). Ventricular

enlargement can occur early in the course of Parkinson’s disease

and is associated with cognitive decline (Apostolova et al.,
2012). New/enlarging T2w lesions adjacent to the ventricle
wall and thalamic atrophy are independently associated with
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TABLE 5 | Thick-slice image segmentation results(Dice) of acquired hydrocephalus.

Method CT MRI

Subarachnoid hemorrhage Trauma Tumor Subarachnoid hemorrhage Trauma Tumor

(n = 24) (n = 13) (n = 3) (n = 24) (n = 10) (n = 4)

U-Net 0.9091 0.9143 0.9387 0.9085 0.8729 0.92

U-Net++ 0.8903 0.8835 0.9219 0.9004 0.8649 0.9274

Ours 0.9407 0.9454 0.9364 0.9105 0.8919 0.9231

Divide patients with acquired hydrocephalus into cerebral hemorrhage group, brain trauma group, and brain tumor group according to the cause of the disease. Using our method to

automatically segment the images of the three groups of patients, the results of CT images show that the Dice of the three groups are 0.94, 0.95, and 0.94, respectively. The results of

the MRI image showed that the Dice of the three groups were 0.91, 0.89, 0.92, respectively. Bold values indicate the best performance.

lateral ventricular enlargement in multiple sclerosis (Sinnecker
et al., 2020). Ventricular enlargement is also arguably the most
consistent neuroanatomical biomarker present in schizophrenia
(Sayo et al., 2012). Whether it is to detect early disease (Dalaker
et al., 2011), evaluate the condition of the patient (Ferrarini et al.,
2008), diagnose the disease (Relkin et al., 2005), evaluate the
effect of surgery (Neikter et al., 2020) or other aspects, accurate
measurement of the size of the ventricles has very important
clinical significance (Shi et al., 2015).

When following patients with hydrocephalus, the timing for
intervention is difficult to decide for clinicians. Therefore, by
providing clinicians with an accurate measure of increased
ventricle volume, automated ventricular segmentation
techniques would give them more information to make
their decisions (Qiu et al., 2015). The segmentation of ventricles
provides quantitative measures on the changes of ventricles in the
brain that form vital diagnostics information (Chen et al., 2009).
The automated segmentation of ventricles can assist in making
a differential diagnosis of ischemic stroke. The quantitative
measurement of the ventricles can be helpful in a treatment,
recovery, and follow-up process. The segmented ventricles
can also serve as the reference in determining the spatial
position of the infarct, which can provide useful information for
treatment planning (Poh et al., 2012). Accurate and automated
segmentation and labeling tools enable more sophisticated
evaluations of the ventricular system in neurodegenerative
diseases, cerebrospinal fluid disorders, as well as in normal
aging (Shao et al., 2019). Various diseases affect the size and
morphology of the ventricles, and knowledge of the normal and
abnormal ventricular system is essential in understanding various
pathological states. For these reasons, it is critical to extract the
ventricular system to ascertain its morphology and volume
(Xia et al., 2004). By manually labeling the ventricles, the time
required to measure the volume and relative ventricle volume
of each subject is about 30min, which is acceptable in research,
but obviously not feasible in clinical practice (Ambarki et al.,
2010). Using the automatic ventricle segmentation method can
save time significantly. Besides, the unsupervised segmentation
method can leverage the dependency of labeled data which is
more practical for a real-world scenario. For instance, Liu et al.
(2019) utilized the quality of merged segmentation results to
update the ensemble weights of different segmentation results
in order to achieve accurate segmentation results. Meanwhile,

Ganaye et al. (2018) took advantage of the invariant nature
of the anatomical structure to improve the robustness of the
segmentation results by applying semantic constraints.

Comparison Studies and the Advantages
of Our Proposed Method
Huff et al. mentioned the limitations of their research for an
automated ventricle segmentation method that all the studies
were performed on similar CT scanners with similar acquisition
parameters and identical slice thicknesses. No pathological
ventricles were included in this study other than simply enlarged
ventricles (Huff et al., 2019). In our research, we can see that data
acquired from different scanners were validated, the thickness
of the scan layer was also different, and pathological ventricles
were also included. Qiu et al. (2015) outlined the limitations of
their study as validated on a limited number of images since
MR images of preterm neonates were usually not performed
at our center unless a severe disease was suspected. Because
of this, we did not deliberately make requests when selecting
patients. As our goal is to automatically segment the ventricles,
the image we chose must be systematic and comprehensive.
The shape and size of the ventricles of the four groups of
patients can represent the ventricles of the elderly cohort.
Kocaman et al. (2019) performed a study on a small number
of individuals. The actual sample size of our four groups of
patients is large, and in clinical practice, these patients are
relatively common. As the sample size increased, the results
of our automated ventricle segmentation method were also
gradually stabilized.

Xia et al. pointed out the limitations of their research on
automated extraction of the ventricular system: When the slice
thickness, especially in coronal and axial directions, is too high,
the algorithm could not work satisfactorily. Most of the subjects
tested did not have any pathology or major distortion of the
ventricles (Xia et al., 2004). In our research, the thickness
of the scan slice was no longer a confounding factor. Both
thick-slice and thin-slice images could be processed with better
ventricle segmentation results. At the same time, our patients
included not only normal elderly people but also brain atrophy
elderly people with slight changes in the ventricle shape and
size. Besides, our proposed framework also performed well for
iNPH patients with significant changes in the shape and size
of the ventricles. More importantly, the elderly with acquired
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hydrocephalus with obvious changes in intracranial structures
caused by trauma, tumor, hemorrhage, and other conditions were
also included. Shao et al. mentioned in their brain ventricle
parcellation work that the proposed network was also robust
to white matter hyperintensities (WMH), which were often
associated withNPH and located adjacent to the lateral ventricles.
WMH can sometimes negatively affect the outcome of automated
segmentation algorithms (Shao et al., 2019). Similarly, some of
our patients were also NPH patients, and they had white matter
hyperintensities around their lateral ventricles. Some patients
with brain atrophy had a similar situation, but our ventricle
segmentation framework could handle it.

Influence of Examination Type and Slice
Thickness on Ventricle Segmentation
In clinical work, we often choose CT or MRI for head
imaging examination. Both methods have their advantages and
disadvantages. For CT, it is relatively convenient to operate, no
need to worry about metal implantation, and the inspection
speed is fast. But it has ionizing radiation to the human body,
and it has a low signal to noise ratio and relatively low contrast.
For MRI, it does not produce ionizing radiation and can provide
better soft-tissue resolution, but its inspection time is long and
may have considerable issues such as metal implantation and
claustrophobia and other related problems (Chen et al., 2009;
Liu et al., 2010; Coupe et al., 2011; Poh et al., 2012; Qian et al.,
2017; Huff et al., 2019). It is well known that in medical images
partial volume effect is inevitable. Reducing the slice thickness
can reduce the partial volume effect. But for CT examinations,
this means that patients have to receive more ionizing radiation,
and for MRI examinations, the examination time will be longer.
For deep learning, more content means more information, so
thin-layer images are naturally the best choice. However, in
clinical practice, because of the heavy burden for a large patient
population, thick-slice scanning is still the most used acquisition
method. But for the segmentation of the ventricles from thick-
slice images, the number of images per patient is small, and the
information that can be extracted is also limited. Coupled with
the influence of the partial volume effect, it is often difficult
to segment the boundaries of the ventricles from thick-slice
images (Xia et al., 2004). The stroke area on the CT image
is often adjacent or connected to the ventricle area, and the
grayscale is similar, which increases the difficulty of accurately
segmenting the ventricle (Qian et al., 2017). In addition, on the
CT image, due to the noise and low contrast between the soft
tissues, there is no obvious peak in the cerebrospinal fluid in
the whole brain intensity histogram. This makes it difficult to
find a suitable threshold for cerebrospinal fluid using traditional
histogram-based segmentation methods (Liu et al., 2010). Part of
the volume effect will affect the segmentation of the ventricle,
especially on MR images with limited resolution (Coupe et al.,
2011). Due to the partial volume effect, there exist transition
regions between the Cerebrospinal fluid and gray matter, if
these transition regions are completely excluded, the ventricular
system is under-segmented, and some ventricular components,
for example, the lateral ventricles, may be broken into several
disconnected parts (Liu et al., 2009). The temporal horns and
occipital poles of the ventricle can be separated from the main

body. When the shape-based ventricle segmentation method and
the ventricle segmentation method based on the regional growth
technology are used, the results will be affected. In addition, the
signal intensity of the choroidal plexus is similar to that of gray
matter. When a simple threshold technique is used to segment
the ventricle, the result will also be affected (Coupe et al., 2011).
All in all, different imaging data and slice thickness have their
advantages and disadvantages, and they also have a different
impact on automated segmentation methods.

Limitations of Our Automated Ventricle
Segmentation Framework
Because our current work was a retrospective study based on
the elderly to establish a new systematic automated ventricle
segmentation method. Therefore, our research might still have
some limitations. First of all, because this study selected elderly
patients, our methodmight have insufficient capacity to deal with
pediatric patients. Secondly, because this was multi-center and
multi-modal research, in terms of results, our goal was to perform
well as a whole, so the expression of results in some respects was
bound to be relatively weakened.When processing cross-hospital
data, we need to handle extensive re-training of the model to
ensure the accuracy of the running results. As a deep learning
based model, the training data collected at one site are often
unavailable to others due to privacy and legal issues (Wang et al.,
2020a,b).

In future research, we will focus on extracting different
imaging and biological features through deep learning of
images, laboratory test results, and clinical information of
patients with abnormal ventricles. We will achieve a systematic
and comprehensive analysis of patients with ventricular
abnormalities, and determine whether the patient has a certain
disease that can cause ventricular abnormalities.

CONCLUSION

In order to systematically and comprehensively assess the
size of the ventricle of elderly patients, we have established
an automated ventricle segmentation method. This automated
ventricle segmentation method can not only be applied to
both CT and MRI images but can be also applied to
images with different slice thicknesses. More importantly,
it produces superior segmentation results. Deploying this
automated ventricle segmentation method in the clinical
scenarios can help doctors to find and diagnose early disease,
evaluate the progress of the patient’s condition, and inform the
treatment planning for the patients. At the same time, themedical
image scanning method and the slice thickness are no longer
limitations for automated ventricle segmentation. There is no
doubt that the proposed method will have a wide application in
clinical studies.
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