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Abstract: Continuous blood pressure (BP) monitoring is important for patients with hypertension.
However, BP measurement with a cuff may be cumbersome for the patient. To overcome this limita-
tion, various studies have suggested cuffless BP estimation models using deep learning algorithms. A
generalized model should be considered to decrease the training time, and the model reproducibility
should be taken into account in multi-day scenarios. In this study, a BP estimation model with a
bidirectional long short-term memory network is proposed. The features are extracted from the
electrocardiogram, photoplethysmogram, and ballistocardiogram. The leave-one-subject-out (LOSO)
method is incorporated to generalize the model and fine-tuning is applied. The model was evaluated
using one-day and multi-day tests. The proposed model achieved a mean absolute error (MAE) of
2.56 and 2.05 mmHg for the systolic and diastolic BP (SBP and DBP), respectively, in the one-day test.
Moreover, the results demonstrated that the LOSO method with fine-tuning was more compatible in
the multi-day test. The MAE values of the model were 5.82 and 5.24 mmHg for the SBP and DBP,
respectively.

Keywords: cuffless blood pressure; ballistocardiogram; long short-term memory; general blood
pressure estimation

1. Introduction

Blood pressure (BP) is one of the most important physiological signals that indicates
fundamental health information of the patient. When the heart beats, the BP varies between
systolic BP (SBP) and diastolic BP (DBP). An estimated 1.13 billion people worldwide have
high blood pressure (hypertension), which is known as a high risk factor for various
diseases such as heart attack, blindness, and brain stroke.

The gold standard for measuring BP is arterial BP (ABP), by means of which the BP is
measured directly from an intravascular cannula needle. ABP is accurate and continuous;
however, this method is usually performed in intensive care units because it is invasive
and requires a clinical setting. Moreover, it is difficult to measure the ABP in daily life.

Several methods have been developed to monitor the BP regularly, because frequent
BP monitoring is important for the diagnosis of hypertension and the prediction of heart
diseases. Although the oscillometric method is an easy-to-use BP monitoring technique, it
does not offer continuous measurement [1]. To overcome this limitation, a continuous BP
monitoring device was developed. However, both of these methods require an inflatable
upper-arm cuff, which may cause the patient discomfort [2].
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To address the above problem, many researchers have investigated cuffless and
continuous BP monitoring methods based on the pulse wave velocity (PWV), which can be
measured with physiological signals. The PWV can be expressed by the Moens–Korteweg
(M–K) Equation (1) and Hughes Equation (2) [3]:

PWV =

√
Eh
ρd

(1)

E = E0eγP, (2)

where E is the elastic modulus at the BP P, ρ denotes the density of the blood, and h and d
are the thickness and radius of the blood vessel, respectively. Furthermore, E0 is the elastic
modulus at zero BP and γ is the coefficient of the blood vessel. When the blood pressure P
increases, the elastic modulus increases, and thus, the PWV also increases.

PWV =
L

PTT
, (3)

PWV is inversely related to the pulse transit time (PTT), as follows: where L denotes
the length from the heart to a certain peripheral site of the body such as the finger. The PTT
is the time taken by the pulse to propagate from two locations. The PTT can be calculated
between the R-peak of the electrocardiogram (ECG) and the characteristic point of the
photoplethysmogram (PPG) that is measured at the finger. The ECG and PPG are measured
using a noninvasive method and can easily be used in long-term monitoring or daily life
without a cuff. The PTT is known to be negatively correlated with the BP [4], and various
models have been developed to estimate the BP with the PTT [5–7]. However, Payne et al.
reported that the PTT method is not a reliable marker for BP estimation [8].

Several studies have suggested the ballistocardiogram (BCG) as a substitute for the
PPG in calculating the PTT. The BCG is a measurement of the forces exerted by the blood
flow ejected from the heart on the body. The BCG can be acquired by force sensors such
as accelerometers, load cells, and film sensors including polyvinylidene fluoride (PVDF)
sensors. Shin et al. proposed a BP measurement system using ECG and BCG on a weighing
scale [9]. The BCG was measured on the weighing scale, and the RJ interval (RJI) between
the R-peak of the ECG and J-peak of the BCG was measured. The results demonstrated
that the RJI had a negative correlation with the BP and the BP was estimated using the
linear regression method. Lee et al. suggested a BP monitoring chair using two-channel
BCGs [10]. Two BCGs were measured at the back of the chair and the cushion on the seat,
and the BP was estimated according to the phase difference of the two BCGs.

In recent studies, deep learning algorithms, including convolutional neural networks
(CNNs), have been applied in biomedical fields such as image classification and signal
pattern extraction [11–13]. Certain researchers have applied deep learning algorithms to
continuous BP estimation using physiological signals such as ECG and PPG. Wu et al.
proposed a deep neural network (DNN) based on combined information using ECG and
PPG [14]. Moreover, Li et al. suggested a real-time BP estimation model with a long
short-term memory (LSTM) network using the features of ECG and PPG [15]. In our
previous study, we investigated an end-to-end BP estimation algorithm using a CNN with
an attention mechanism [16]. The results revealed that the BCG signal with ECG and PPG
exhibited superior performance in BP estimation. However, the algorithm was based on
whole signals, including noise signals, and only a person-specific model was described.

When developing a deep learning model, a generalized model should be considered
for application to real situations because the training time of the network is long. Fur-
thermore, the reproducibility of the model in a multi-day situation is an important factor
for continuous BP estimation. In this study, we developed a feature-based deep learning
algorithm using a bidirectional LSTM network to improve the performance. Furthermore,
a general BP estimation model using multiple measurement data was considered for robust
reproducibility.
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2. Materials and Methods

An overview of our proposed approach is illustrated in Figure 1. The approach
comprises two parts, signal preprocessing and BP estimation using bi-LSTM network. The
methods are detailed in the following subsections.

Figure 1. Overview of proposed approach.

2.1. Data Acquisition

A total of 18 subjects (male: 8, female: 10) with no medical records reported were
recruited for the experiment. Written informed consent was obtained from the subjects, and
the study was approved by the Institutional Review Board of Seoul National University
Hospital (IRB No. 1801-016-912).

Several devices were attached to the subject to measure physiological signals. Three
Ag/AgCl electrodes were attached to the subject according to Einthoven’s triangle, and the
ECG was acquired on lead II with the BIOPAC ECG100C module. The PPG was measured
from the index finger of the subject using a commercial module (PSL-iPPG2C), whereas
the BCG signal was measured from the PVDF sensor (Measurement Specialties, Hampton,
VA, USA) installed on the chair seat. The reference SBP and DBP were measured with a
continuous BP monitoring device (Finometer® PRO, Finapres Medical Systems, Enschede,
The Netherlands). Once the devices were attached, the subject was asked to sit on the
chair with the PVDF sensor and the signal was recorded for 30 min. All of the data were
synchronized and digitized at 1000 Hz using a data acquisition device (BIOPAC MP150).
Furthermore, 15 subjects visited again in one to two weeks and the measurement procedure
was repeated with the same experimental setup.

2.2. Signal Preprocessing and Feature Extraction

A second-order Butterworth filter was applied to the signal to remove baseline wan-
dering, motion artifacts and power-line noise (ECG: 0.5 to 35 Hz; BCG: 4 to 15 Hz; PPG: 0.5
to 8 Hz). The characteristic points from the ECG, BCG, and PPG were used to extract the
features. First, the R-peak of the ECG was detected using the Pan–Tompkins algorithm. The
J-peak of the BCG was detected by identifying the highest peak between 110 and 250 ms
after each R-peak. The PPG was differentiated to obscure motion artifacts and identify the
peak of the first derivative of PPG (dPPG). After the peaks of the signal were detected,
false-positive peaks were manually excluded and the features of each cardiac cycle were
extracted.
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The features are listed in Table 1 and the feature extraction method is depicted in
Figure 2. The interval values (RRI, PTT, RJI, and IPI) between the characteristic points of
the three signals and each amplitude of the peak of the signal (ECGamp, BCGamp, and
PPGamp) were extracted as input features. Thereafter, the features were standardized
with the mean and standard deviation values to be used as input for the neural network
model. The features from 10 successive cardiac cycles were regarded as one sequence.
The number of the cardiac cycles was determined empirically. If a sequence included
undetected peaks, it was excluded. The SBP and DBP values immediately after the last
peak in the sequence were used as reference and labeled for the output of the model. The
SBP and DBP distributions are illustrated in Figure 3. The average values were 111.2 and
67.7 mmHg for the SBP and DBP, respectively.

Figure 2. Feature extraction from characteristic points of three signals: electrocardiogram (ECG),
ballistocardiogram (BCG), and photoplethysmogram (PPG).
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Table 1. List of features used as inputs in our model.

Feature Description

R-R Interval (RRI) ECG R-peak to R-peak interval
Pulse Transit Time (PTT) ECG R-peak to dPPG peak interval

R-J Interval (RJI) ECG R-peak to BCG J-peak interval
I-P Interval (IPI) BCG I notch to dPPG peak interval

ECGamp Amplitude of ECG R-peak
BCGamp Amplitude of BCG J-peak
PPGamp Amplitude of dPPG peak

Figure 3. Blood pressure (BP) distributions of BPs in our data. (left) Systolic BP, (right) Diastolic BP.

2.3. Deep Learning
2.3.1. LSTM Network

Recurrent neural networks (RNNs) have been demonstrated to offer high performance
in time-series data. However, conventional RNNs suffer from the vanishing gradient
problem, especially when handling long time-series data. An LSTM network was proposed
to overcome the limitations of conventional RNNs [17]. The LSTM network replaces the
RNN cells with LSTM cells. The LSTM cell has three gates: a forget gate, an input gate,
and an output gate. The forget gate controls how much information will be forgotten
using the hidden state and input vector. The input gate determines which value will be
updated and subsequently updates the state of the cell. The output gate controls how
much information is outputted. These gates can aid the network in learning long time-
series data or eliminating meaningless data, and thus, learn patterns with a long duration.
Bidirectional LSTM (Bi-LSTM) is an extension of LSTM in which the input sequence is read
forward and backward, and both outputs are concatenated. Bi-LSTM is more powerful
than LSTM because it can learn the pattern in both directions.

2.3.2. Proposed Model Architecture

The proposed network architecture is summarized in Figure 4. The model consisted
of a Bi-LSTM network and two fully connected layers. As the input comprised 10 cardiac
cycles with 7 features, the shape of the input layer was 10 × 7. The number of hidden
nodes of the Bi-LSTM network was empirically set to 128, and 256 features were generated
at each timestep. The tanh function was used as the activation function of the LSTM layer.
The outputs of the forward and backward LSTM cell were concatenated (10 × 256 neurons)
and transformed into a one-dimensional layer (1 × 2560 neurons) with flatten layer for
connecting to the fully connected layer after the LSTM layer. In the case of the general
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model, personal information including gender, age, height, weight, and body mass index
(BMI) was included in the first fully connected layer. The second fully connected layer was
used for the BP regression. ReLU and linear activation function were utilized at the first
and second fully connected layers, respectively. The number of hidden nodes in the first
fully connected layer was set to 64.

Figure 4. Diagram of proposed model architecture.

The deep learning model was implemented in the Keras framework with a TensorFlow
backend. The data were shuffled and randomly selected to train the deep learning model.
In total, 60% of the data was used for training, 20% was used for validation, and 20% was
used for testing. The Adam optimizer was used to optimize the model with a learning rate
of 10−3. The initial value was randomly determined and the mean squared error (MSE)
was selected as the loss function. To address overfitting, a regularization method was
adopted with a dropout mask on 10% of the connections in the LSTM layer. The model
was trained with the early stopping method; patience was set to 10 for maximum of 100
training epochs. The batch size was set to 64.

Following the training process, the test set was used to estimate the SBP and DBP.
The model was trained three times with different random initial values and the regression
result was averaged. The correlation coefficient (CC), mean absolute error (MAE), and root
mean squared error (RMSE) between the estimated and reference BPs, were calculated to
evaluate the performance of the algorithm.

3. Results
3.1. Feature Analysis

The performance of the model with different inputs was evaluated. The features that
were used as inputs are described in Table 2. As indicated in Table 3, the model with all
three signals exhibited better performance than the other models. The MAEs were 2.62 and
2.03 mmHg, whereas the CC values were 0.77 and 0.76, for the SBP and DBP estimations,
respectively. The difference between the models was statistically significant (p < 0.01).
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Table 2. Feature list of different inputs.

Inputs Features

ECG RRI, ECGamp
ECG, BCG RRI, RJI, ECGamp, BCGamp
ECG, PPG RRI, PTT, ECGamp, PPGamp

ECG, PPG, BCG RRI, PTT, RJI, IPI, ECGamp, BCGamp, PPGamp

Table 3. Mean values of mean absolute error (MAE), root mean squared error (RMSE), and correlation
coefficient (CC) for different inputs of personal-specific model.

Inputs SBP DBP

MAE RMSE CC MAE RMSE CC

ECG 3.81 4.75 0.50 2.70 3.40 0.51
ECG, BCG 3.50 4.42 0.59 2.51 3.15 0.62
ECG, PPG 2.84 3.57 0.74 2.29 2.88 0.70

ECG, PPG, BCG 2.62 3.36 0.77 2.03 2.57 0.76

3.2. General Model Analysis

Leave-one-subject-out (LOSO) analysis was performed to create a general model. The
data of one subject were removed from the training set and the data of the other subjects
were used as input to train the model. Moreover, a fine-tuning approach was applied after
each training run. The weight in the Bi-LSTM layer was not trained and the fully connected
layer was trained with 20% of the data of the excluded subject.

The results are summarized in Table 4. The MAE values of the LOSO model were 10.01
and 5.64 mmHg for the SBP and DBP, respectively. The LOSO model exhibited a higher
error than the personal model (p < 0.01). The tuned LOSO model yielded MAE values of
2.56 and 2.06 mmHg for the SBP and DBP, respectively. It exhibited a slightly lower error
than the personal model in the SBP, but a higher error in the DBP. The difference was not
statistically significant.

Table 4. Mean values of MAE, RMSE, and CC for each model.

Model
Systolic Blood Pressure(SBP) Diastolic Blood Pressure (DBP)

MAE RMSE CC MAE RMSE CC

Personal 2.62 3.36 0.77 2.03 2.57 0.76
LOSO 10.01 11.26 0.40 5.64 6.52 0.40

Tuned LOSO 2.56 3.25 0.80 2.05 2.61 0.76

A comparison of the personal and tuned LOSO models is presented in Figure 5.
Although the difference was not statistically significant, the tuned LOSO model exhibited
better performance than the personal model when the reference BP value was extremely
high or low. Moreover, following the model creation, the tuned LOSO model requires
fewer parameters to be trained and the model can be trained with a smaller amount of
data, which requires less time.

Bland–Altman plots of the models are depicted in Figure 6. The bias was not significant
in all three models, and the limits of agreement at a 95% confidence interval of the tuned
LOSO model were [−6.08, 6.26] and [−4.87, 5.00] for the SBP and DBP, respectively.
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Figure 5. Comparison of reference and estimated BPs (black line: reference BP; blue line: personal model; red line: tuned
leave-one-subject-out (LOSO) model).

Figure 6. Bland–Altman plots of models. Black line: mean value; red line: 95% confidence interval.

3.3. Reproducibility Analysis

The model reproducibility had to be investigated to evaluate the model generalization.
A multi-day test was performed using second visit data in addition to a one-day test. The
model was trained with the data of one visit, and the data of the other visit was used as a
test set. The results are presented in Table 5. The error was higher than the test results with
only the first visit in the personal and tuned LOSO models. The MAE values of the tuned
LOSO model were 5.82 and 5.24 mmHg for the SBP and DBP estimations, respectively.
Although the comparison result between the personal and tuned LOSO models presented
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in Section 3.2 was not significant, the reproducibility of the tuned LOSO model was better
than that of the personal model (p < 0.05). This is because the personal model was overfitted
with the one-day condition of the subject.

Table 5. Mean MAE, RMSE, and CC values of inter-visit test analysis.

Train Test Model
SBP DBP

MAE RMSE CC MAE RMSE CC

Visit #1 Visit #2

Personal 7.12 8.99 0.41 6.22 7.61 0.38

LOSO 10.23 11.49 0.41 5.94 6.81 0.41

Tuned LOSO 5.81 6.78 0.53 5.34 6.14 0.51

Visit #2 Visit #1

Personal 6.23 7.60 0.45 5.20 6.27 0.41

LOSO 10.82 11.97 0.45 6.17 7.06 0.41

Tuned LOSO 5.84 6.85 0.52 5.14 5.97 0.49

Total

Personal 6.67 8.29 0.43 5.71 6.94 0.40

LOSO 10.52 11.73 0.43 6.06 6.94 0.41

Tuned LOSO 5.82 6.82 0.53 5.24 6.06 0.50

Scatter plots for the model results are presented in Figure 7, with the coefficient of
determination (R2) indicated. The personal model tended to underestimate the BP, and
the R2 values were 0.51 and 0.4 for the SBP and DBP, respectively. The R2 values of the
tuned LOSO models were 0.63 and 0.49 for the SBP and DBP, respectively. This means that
the model learned more general patterns to estimate the BP than the personal model, with
high reproducibility.

Figure 7. Scatter plots of reproducibility analysis.
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3.4. Evaluation Using International Standard

The proposed model of one-day and multi-day tests was evaluated using two interna-
tional standards of BP estimation: the British Hypertension Society (BHS) standard [18] and
the Association for the Advancement of Medical Instrumentation (AAMI) standard. The
evaluation results are presented in Table 6. The BHS standard evaluates the BP estimation
device based on the cumulative percentage of absolute errors under thresholds of 5, 10,
and 15 mmHg. According to the BHS Standard, the proposed model was consistent, with
grade A in the one-day test and grade B in the multi-day test for the SBP and DBP.

Table 6. Performance evaluation using British Hypertension Society (BHS) standard.

Cumulative Absolute Error Percentage
Grade

≤5 mmHg ≤10 mmHg ≤15 mmHg

BHS standard

60% 85% 95% A
50% 75% 90% B
40% 65% 85% C

Worse than C D

Proposed model
(one-day test)

SBP 89.3% 99.4% 100.0% A
DBP 94.7% 99.8% 100.0% A

Proposed model
(multi-day test)

SBP 51.6% 81.4% 96.3% B
DBP 56.1% 87.9% 98.3% B

The evaluation results using the AAMI standard are described in Table 7. The AAMI
standard requires mean error (ME) values lower than 5 mmHg and standard deviation
(STD) values lower than 8 mmHg. According to the AAMI, the number of populations
should be at least 85. Although this study did not satisfy the population criterion, both
models satisfied the ME and STD values in the SBP and DBP estimation.

Table 7. Performance evaluation using Advancement of Medical Instrumentation (AAMI) standard.

ME (mmHg) STD (mmHg)

AAMI Standard ≤5 ≤8

Proposed model
(one-day test)

SBP −0.09 3.15
DBP −0.07 2.52

Proposed model
(multi-day test)

SBP −0.07 7.30
DBP −0.17 6.4

4. Discussion

To evaluate the performance of the proposed method, the algorithm was compared
with three representative BP estimation methods proposed by Chen et al. [5], Poon et al. [6],
and Ding et al. [7]. Further, our method was also compared against a conventional multiple
linear regression (MLR) method with features that were used in the proposed model.
Comparison results presented in Table 8 suggest that the model based on the pulse intensity
ratio (PIR) exhibits the lowest error among the previous methods. The difference between
the PIR model and MLR model without BCG features was not significant;however, the
performance was markedly improved in the MLR model with the BCG features. The MAE
of the MLR model with BCG features was 4.17 mmHg and 3.12 mmHg for SBP and DBP
respectively. In addition, the MLR model, which utilized the features of previous 10 cardiac
cycles exhibited better performance than the model with only one cardiac cycle. The
proposed model showed the lowest error and provided a nonlinear expression between
the features and the target BP.
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Table 8. Comparison with other methods.

Model Equation
MAE (mmHg)

SBP DBP

Chen et al. [5] SBP = SBP0 − 2
γPTT0

(PTT − PTT0) 4.32 -

Poon et al. [6]
SBP = MBP0 +

2
γ ln

(
PTT0
PTT

)
+ 2

3 ·PP0·
(

PTT0
PTT

)2

DBP = MBP0 +
2
γ ln

(
PTT0
PTT

)
· 1

3 ·PP0·
(

PTT0
PTT

)2
4.70 3.28

Ding et al. [7] SBP = DBP0· PIR0
PIR + PP0·

(
PTT0
PTT

)2

DBP = DBP0· PIR0
PIR

4.47 3.15

MLR model
(w/o BCG features)

SBP = a1 + b1·PTT + c1·RRI
DBP = a2 + b2·PTT + c2·RRI 4.25 3.16

MLR model
(with BCG features)

SBP = a1 + b1·PTT + c1·RRI + d1·RJI + e1·IPI
DBP = a2 + b2·PTT + c2·RRI + d2·RJI + e2·IPI 4.17 3.12

MLR model
(with previous features)

SBP = a1 + ∑N(b1i·PTTi + c1i·RRIi + d1i·RJIi + e1i·IPIi)
DBP = a2 + ∑N(b2i·PTTi + c2i·RRIi + d2i·RJIi + e2i·IPIi)

3.71 2.65

Proposed model Long short-term memory (LSTM) 2.62 2.03

Furthermore, the proposed model was compared with similar works using deep
learning. The comparison results are summarized in Table 9. It was difficult to perform
a fair comparison with other studies because the datasets used in the studies may differ
significantly, and the validation methods also vary. Kachuee et al. [19], Slapničar et al. [20],
and Hsu et al. [21] used an online database named “Medical Information Mart for Intensive
Care unit (MIMIC)” [22]. This database contains a large number of clinical data, including
those of ECG, breathing, PPG, and BP. However, the data may not be compatible for normal
people because they were obtained from patients in intensive care units, and the patients
could have been influenced by drugs that could affect the BP variation.

Kachuee et al. suggested a continuous BP estimation algorithm based on AdaBoost,
but the error was relatively higher than that in other studies [19]. Slapničar et al. imple-
mented a network architecture using a ResNet and spectro-temporal block, and performed
LOSO analysis with the data [20]. Hsu et al. [21] and Wu et al. [14] proposed DNN models,
in which the error was lower than that in other studies; however, they applied 10-fold
cross-validation, which is different from our LOSO analysis. Su et al. proposed a long-term
BP prediction model using a Bi-LSTM network [23]. The multi-day analysis was performed
on the second and fourth days, and at six months, and the MAE values were 5.81 and
5.21 mmHg for the SBP and DBP, respectively. Although the error value was lower than
that of our model, the validation was only performed with a personalized model. The BP
estimation performance was enhanced compared to our previous work using a CNN and
an attention mechanism.

Figure 8 plots the performance of the model and coverage for different sequence
lengths. The MAE value reduced until one sequence was generated with approximately
10 cardiac cycles and saturated until the sequence length was 25. When the sequence
length was greater than 25, the error increased, given the limited data; thus, the deep
learning model was insufficiently trained. The coverage of the data was also reduced as
the sequence length increased. The MAE value of the model with one cardiac cycle was
4.05 and 3.31 mmHg for SBP and DBP, respectively, which is larger than the model with 10
cardiac cycles. However, the coverage at the sequence length of one was 81%, whereas the
model with 10 cardiac cycles covered 59% of the data.
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Table 9. Comparisons with related works.

Author Dataset Model Input Validation Method
SBP Error (mmHg) DBP Error (mmHg)

MAE RMSE MAE RMSE

Kachuee et al. [19]
N = 1000 10 min

(MIMIC III) AdaBoost ECG, PPG features
Personal 8.21 4.31

10-fold cross validation 11.17 5.35

Slapničar et al. [20] 510 subjects 700 h
(MIMIC III) ResNet Raw PPG

LOSO 15.41 12.38
Tuned LOSO 9.43 6.88

Hsu et al. [21] N = 9000
(MIMIC II) DNN PPG features 10-fold cross-validation 3.21 4.63 2.23 3.21

Wu et al. [14] N = 85 DNN ECG, PPG features 10-fold cross-validation 3.31 4.60 2.22 3.15

Su et al. [23] N = 84
10 min

Bi-LSTM ECG, PPG features

Personal
(one-day) 3.73 2.43

Personal
(multi-day) 5.81 5.21

Previous work [16] N = 15
30 min CNN, Bi-GRU, attention Raw ECG, PPG, BCG Personal 4.06 5.42 3.33 4.30

Proposed work N = 18
30 min Bi-LSTM ECG, PPG, BCG

features

Tuned LOSO
(one-day) 2.56 3.25 2.05 2.61

Tuned LOSO
(multi-day) 5.82 6.82 5.24 6.06

LOSO 10.01 11.26 5.60 6.52
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Figure 8. MAE values and coverage with different sequence lengths.

Finally, the limitation of this study is briefly discussed. The data of patients with
hypertension were not included in the study. However, about 8% and 2% of the BP
data were in hypertension stage 1 and stage 2 ranges, though no subject was diagnosed
as a hypertension patient. According to the guidelines for BP classification in adults,
BP can be classified as: Normal, Prehypertension, Stage 1 Hypertension, and Stage 2
Hypertension [24]. The evaluation results of classification performance for hypertension
are shown in Table 10. The total accuracy for hypertension classification was 81% and 89%
for SBP and DBP respectively.

Table 10. Hypertension classification accuracies for SBP and DBP.

BP Class

SBP DBP

Range
(mmHg) Accuracy Range

(mmHg) Accuracy

Normal BP < 120 84%
BP < 80 90%Prehypertension 120 ≤ BP < 130 82%

Stage 1 Hypertension 130 ≤ BP < 140 97% 80 ≤ BP < 90 89%
Stage 2 Hypertension BP ≥140 98% BP ≥ 90 100%

Total 81% 89%

5. Conclusions and Future Work

In this paper, we have proposed a beat-to-beat continuous BP estimation algorithm
with a feature-based LSTM network using the features from ECG, PPG, and BCG. The result
showed that the performance was improved with the BCG signal, and the feature-based
network outperformed the raw signal-based network. In addition, a generalized model was
considered with LOSO analysis, and a multi-day test was performed to evaluate the model
reproducibility. Moreover, the results demonstrated that the LOSO model with fine-tuning
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was better than the personalized model in the multi-day test. In future studies, the data
of comprising subjects diagnosed with hypertension will be incorporated to produce a
more generalized model. In addition, the BCG signal used in this study can be measured
unobtrusively on everyday surfaces like chairs and beds; in our future work, we intend to
pursue the development of unobtrusive BP estimation methods.
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