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Abstract

Analyzing how climate change affects vegetation distribution is one of the central issues of

global change ecology as this has important implications for the carbon budget of terrestrial

vegetation. Mapping vegetation distribution under historical climate scenarios is essential

for understanding the response of vegetation distribution to future climatic changes. The

reconstructions of palaeovegetation based on pollen data provide a useful method to under-

stand the relationship between climate and vegetation distribution. However, this method is

limited in time and space. Here, using species distribution model (SDM) approaches, we

explored the climatic determinants of contemporary vegetation distribution and recon-

structed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM,

18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation

distribution since the LGM reconstructed by SDMs were largely consistent with those based

on pollen data, suggesting that the SDM approach is a useful tool for studying historical veg-

etation dynamics and its response to climate change across time and space. Comparison

between the modeled contemporary potential natural vegetation distribution and the

observed contemporary distribution suggests that temperate deciduous forests, subtropical

evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have

low range fillings and are strongly influenced by human activities. In general, the Tibetan

Plateau, North and Northeast China, and the areas near the 30˚N in Central and Southeast

China appeared to have experienced the highest turnover in vegetation due to climate

change from the LGM to the present.

Introduction

At large spatial scales, distribution of natural vegetation is primarily determined by climate [1,

2]. Studies have shown dramatic alteration of vegetation pattern due to climate change events,

such as the expansion of shrubs in the tundra vegetation [3] and growth retardation of shrub
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and grass species due to changes in precipitation seasonality [4]. Recent GCM simulations sug-

gest that, by the end of the 21st century, the global mean temperature may increase by 2.2˚C

from the mean value during 1986–2005 [5]. Such dramatic climate change will significantly

influence the distribution of terrestrial vegetation in the future. Moreover, recent studies have

shown that tropical forests tend to decrease the local temperature (local cooling) whereas tem-

perate forests tend to increase it [6], which suggests that changes in the distribution of vegeta-

tion could affect the local climate through cooling and warming effects [7] and by altering

carbon and water cycles regionally [8–10].

Understanding the dynamics of vegetation distribution in relation to palaeoclimate change

is essential for a sound forecasting of the response of vegetation to future climate change [11,

12]. Previous long-term studies (spanning more than 1000 years) on the relationship between

climate change and vegetation distribution mainly relied on pollen data. Both global [13] and

regional [14–17] distributions of palaeovegetation during the Mid-Holocene (MH, 6000 yr

BP) and the Last Glacial Maximum (LGM, 18,000 yr BP) have been reconstructed based on

pollen data. Such reconstructions are helpful in understanding the past distribution patterns of

vegetation, although they may be prone to several limitations, including limited spatial cover-

age in pollen surface samples, lack of coverage of small refuges [18], or difficulties in species

identification. Moreover, such maps lack a vegetation-climate response function and are there-

fore not useful in predicting future vegetation distribution.

A suitable empirical model to project vegetation distribution into the past or the future thus

needs to be built on vegetation-climate relationships. The framework of species distribution

modeling (SDM) is a highly suitable method to study the association between species distribu-

tions and climate [19, 20]. SDMs use data of species occurrences and absences and corre-

sponding environmental layers to infer environmental requirements of species and predict the

distributions of species in different regions and period [19–22]. Climate also strongly affects

the structure and distribution of vegetation at large spatial scales [23, 24]. Based on these

strong associations, several systems for vegetation-climate classification have been developed

to study vegetation distributions and their responses to climate change (e.g. [24–28]). Rubel

and Kottek [24] projected the changes in climate from 1901 to 2100 and the corresponding

shifts in vegetation distribution using the Köppen-Geiger climate classification. The similarity

in the determinants of species and vegetation distributions suggests that the framework of

SDMs can be used to predict the association between vegetation distribution and climate, as

has previously been applied [29, 30]. A recent study forecasted the vegetation distribution indi-

rectly by predicting the distribution of dominant species [31]. In another example [32, 33], the

authors explored the responses of forests and savannas to future climate changes using gener-

alized linear models.

China covers a large spectrum of vegetation types, ranging from tropical rain forests and

subtropical evergreen broadleaf forests, through temperate deciduous broadleaf forests to

boreal forests, and temperate and cold steppes and deserts. Based on remote sensing data,

Fang et al. [33] have shown that global warming since 1980s has significantly influenced the

growth and coverage of different vegetation types in China. However, the response of vegeta-

tion distribution to climate change over a longer period (e.g. since the LGM) and into the

future remains poorly understood (but see [17, 34] for MH and LGM reconstruction using

pollen data). One way to assess vegetation change is by means of dynamic global vegetation

models, which simulate the distribution of dominant plant functional types globally based on

physiological and ecosystem processes [35–37]. The advantage of such models is that they give

significant details on carbon and water pools and fluxes in ecosystems, while the disadvantage

is that they only map the most common (usually 6–7) plant functional types and cannot distin-

guish more subtle differences in vegetation.

Vegetation distribution under climate change
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In this study, we develop a vegetation climate model based on the contemporary

1:1,000,000 vegetation map of China and climate data sets by means of two widely-used spe-

cies distribution models. Specifically, 1) we demonstrated the capability of SDMs to study

the association between vegetation distribution and climate; 2) we reconstructed palaeovege-

tation distribution during the LGM and the MH in China and compare these results against

those reconstructed by pollen data; and 3) we calculated the directions of the centroid of

each vegetation type and the transformation among different vegetation since the LGM.

Material and methods

Modern vegetation map of China

The contemporary distribution of major vegetation types in China was derived from the Vege-
tation Atlas of China 1:1,000,000 [38]. Therein, the natural vegetation in China is divided into

47 vegetation types and 573 vegetation formations. For further analysis, we merged 47 natural

vegetation types into 20 major groups according to life-forms of dominant species in the

mapped vegetation (Fig 1A). There were 57,099 polygons in total for natural vegetation, and

the sizes of these polygons ranged from 0.00003 to 288,500 km2. In order to generate a data-

base for modeling, we intersected the polygons with a 10 × 10 km grid, which resulted in

165,614 polygons, each contains a single vegetation type.

Fig 1. Contemporary vegetation distribution in China. (A) Observed (white area are croplands, urban

areas and planted forests); (B) modeled; (C) the proportions of each vegetation type to the terrestrial area of

China (observed: light gray line; modeled: dark gray line) and their range fillings calculated as the ratios

between the observed and modeled distribution ranges (red line). Due to strong human disturbance, veg 5, 6,

and 8 have experienced significant deforestation at the present, and therefore the proportions of observed

vegetation types do not sum up to 100%.

https://doi.org/10.1371/journal.pone.0175742.g001

Vegetation distribution under climate change

PLOS ONE | https://doi.org/10.1371/journal.pone.0175742 April 20, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0175742.g001
https://doi.org/10.1371/journal.pone.0175742


Climate and topographic data

Contemporary climate data were downloaded from the WorldClim database (http://www.

worldclim.org/) [39], and included monthly mean temperature and precipitation for the

period of 1950–2000 and 19 biologically meaningful variables (i.e. Bio1 –Bio19, bioclimatic

variables for short hereafter; see S1 Table for details of these variables). All the layers of con-

temporary climate have spatial resolutions of 2.5 × 2.5 arc minutes (approx. 4.5 × 4.5 km at the

equator).

From the same website (http://www.worldclim.org/), we also downloaded the climate data

for the Mid-Holocene (ca. 6000 yr BP) and the Last Glacial Maximum (LGM, 18,000 14C yr

BP) [39]. The data of past climate were statistically downscaled from the original simulations

of general circulation models (GCMs) [39]. In previous studies, two GCMs have been widely

used to evaluate the effects of the LGM climate on species and vegetation distributions in east-

ern Asia [40–43], including the Model for Interdisciplinary Research on Climate (MIRO-

C-ESM) [44] and Community Climate System Model (CCSM) (v3 and v4) [45, 46]. Several

studies have evaluated the predictions of these two GCMs and suggested that the MIROC-ESM

is more realistic for eastern Asia than CCSM [40–42]. Therefore, we used the simulations of

MIROC-ESM [44] for our analysis. The variables for past climate are the same as those for

contemporary climate, including monthly mean temperature and precipitation and the 19 bio-

climatic variables (i.e. Bio1 –Bio19, see S1 Table for details of these variables). The spatial reso-

lution of past climate data layers is all 2.5 × 2.5 arc minutes (approx. 4.5 × 4.5 km at the

equator).

In our analysis, we also used topography variables, including altitude, slope and aspect. The

slope and aspect of each grid cell were calculated from the altitude data layer using ArcGIS

10.0 and the data for altitude with a spatial resolution of 30 × 30 arc seconds were downloaded

from the WorldClim database (http://www.worldclim.org/).

To fit between climate and vegetation data, the contemporary and past climate data for a

vegetation polygon were calculated as the averages of all cells (2.5 × 2.5 arc minutes) of the cli-

mate layers using the tool of zonal statistics in ArcGIS 10.0.

Pollen data

Pollen data in China for the LGM and the MH were compiled from Yu et al.[17]. There are

seven biomes reconstructed from fossil pollen data, which correspond to our vegetation types.

In total, the dataset included 119 pollen records dated to 6000 14C yr BP (±500 yr) and 37

records dated to 18000 14C yr BP (±2000 yr) representing he MH and the LGM vegetation,

respectively.

Variable selection and statistical analysis

We used two SDMs to simulate the vegetation distributions, including generalized linear mod-

els (GLMs) and Maximum Entropy (MaxEnt). These two models have been widely used for

analyzing ecological relationships [47, 48] and have high predictive power across large sample

sizes [20]. To calibrate the models for a vegetation type, the geographic distribution of the veg-

etation type was used as the response variable with both presence and absence data: the poly-

gon where this vegetation type occurs was set to be 1 and the others to 0.

Previous studies have shown that the distribution of different vegetation types may be

determined by different environmental factors [49]. In a preliminary analysis, all the 19 biocli-

matic variables and the three topographic variables were used to calibrate the models. How-

ever, we found strong multicollinearity between variables (S2 Table). Therefore, we selected

variables based on correlations. Firstly, we calculated the Pearson correlation coefficients
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between all environmental variables (including bioclimatic and topographic variables) (see S2

Table). Secondly, we standardized all environmental variables and used generalized linear

models to calculate the standardized regression coefficients of the 22 variables for each vegeta-

tion type (see S3 Table). These standardized regression coefficients were used to compare the

relative importance of each variable for predicting vegetation distribution. Thirdly, if the cor-

relation coefficient between two variables was greater than 0.7 [50], we kept the one with stron-

ger influences on vegetation distributions based on the regression coefficient. Finally, six

climate variables and two topographic variables were selected: temperature seasonality (TS)

(i.e. Bio4), precipitation seasonality (PS) (i.e. Bio15), mean temperature of warmest quarter

(MTWQ) (i.e. Bio10) and the coldest quarter (MTCQ) (i.e. Bio11), precipitation of the warm-

est quarter (PWQ) (i.e. Bio18) and the coldest quarter (PCQ) (i.e. Bio19), slope and aspect.

The selected variables are biological meaningful and have been widely used in previous studies

on species distribution models [51–53]. TS and PS represent climate seasonality. MTWQ and

MTCQ represent environment energy. PWQ and PCQ represent water availability. Aspect can

reflect the solar radiation and slope reflects habitat heterogeneity [51]. These eight variables

were used for the following model calibration. In order to directly compare the importance of

each variable by means of the absolute coefficient values, the environmental variables were

standardized.

We chose 80% of the present distribution data of each vegetation type randomly for model

calibration and the remaining 20% for model evaluation. The area under the receiver operating

characteristic curve (AUC) [54] was used to evaluate the performances of GLM and MaxEnt

models. In general, the AUC values range from 0 to 1, with values close to 1 indicating near

perfect model performance, values around 0.5 indicating random fit, and values below 0.5

indicating a tendency towards systematically wrong predictions.

The models based on both GLM and MaxEnt were used to predict the modern distribution

of each vegetation type at a spatial resolution of 2.5 × 2.5 arc minutes. In order to account for

the uncertainty caused by different model approaches (GLM, MaxEnt), the suitability of each

vegetation type was calculated as the average of the outputs of the two models weighted by

their AUC values [22, 55]. For each grid cell, the predicted suitability values of all vegetation

types were compared and the vegetation type with the highest suitability was assigned as the

most likely vegetation of that grid cell. In China, croplands, urban areas, planted forests and

azonal vegetation occupy large regions and the natural vegetation in these regions is scarce.

Therefore, our models predicted the potential natural distribution of vegetation in these areas.

We calculated the range filling of each vegetation type as the ratio between the observed and

predicted modern distribution [56], and used it to evaluate the influence of human activities

on vegetation distribution.

Next, we used both the GLM and MaxEnt models to reconstruct vegetation distributions in

the LGM and the MH. All models were fitted to the spatial resolution of 2.5 × 2.5 arc minutes.

Similarly, the suitability map of each vegetation type was calculated as the average of the out-

puts of the two models weighted by their AUC values [22, 55]. For a grid cell, the vegetation

type with the highest suitability was assigned as the most likely vegetation of that grid cell. To

further evaluate the model reconstructions, we compared the modeled vegetation distributions

with the reconstructed biomes based on pollen data. For each vegetation type, we used Kappa

statistics to quantitatively evaluate the extent to which the results based on our models and pol-

len data matched with each other. To demonstrate the size changes of each vegetation type

between different time periods, we calculated the proportional size of each vegetation type esti-

mated as its area proportion to the terrestrial area of China based on modeled modern, the

LGM and the MH vegetation distribution maps. We also estimated the percentage of persis-

tence and changing areas of each vegetation type relatively to their past distributions between

Vegetation distribution under climate change
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the LGM and the MH, and between the MH and the present. To understand how vegetation

dispersed between different time periods due to climate changes, we calculated the centroids

of each vegetation type in different time periods (the LGM, the MH, and the present), and

demonstrated the direction of vegetation dispersal from the LGM to the MH, and from the

MH to the present, and from the LGM to the present respectively.

MaxEnt [57] was conducted within the “dismo” package [58] of R. All other analyses were

conducted in R version 3.1.1 [59].

Results

Most AUC values of both GLM and MaxEnt models are above 0.9 (Table 1), which suggests

that all models have high predictive power for the relationship between vegetation distribution

and the environment as evidenced from an independent test dataset. The AUC values of the

MaxEnt models were generally higher than those of the GLMs (Table 1), which suggests that

the predictive power of MaxEnt is relatively better than that of GLM for most vegetation types.

Compared to the observed modern vegetation distribution (Fig 1A), the modeled modern veg-

etation distribution (Fig 1B) maps potential natural vegetation in areas with heavy human dis-

turbances. Specifically, temperate deciduous forests (veg 5), subtropical evergreen broadleaf

forests (veg 6), alpine steppe (veg 16), grass and forb meadow (veg 17) and armoise and miscel-

laneous alpine meadow (veg 18) were predicted to occupy large proportions of modern urban

areas, managed forest and agricultural areas, and have low range filling (Fig 1C).

The driving factors of vegetation distribution

Our analyses indicated that mean temperature of the coldest quarter (MTCQ) and mean tem-

perature of the warmest quarter (MTWQ) accounts for more variation in vegetation

Table 1. The AUC values of the Generalized Linear Models (GLMs) and MaxEnt for each vegetation

type.

code Vegetation type GLM AUC MaxEnt AUC

veg 1 taiga forest 0.896 0.954

veg 2 temperate coniferous forest 0.878 0.973

veg 3 tropical and subtropical mountain coniferous forest 0.941 0.966

veg 4 temperate coniferous and deciduous broadleaf mixed forest 0.97 0.99

veg 5 temperate deciduous broadleaf forest 0.882 0.902

veg 6 subtropical evergreen broadleaf forest 0.985 0.969

veg 7 tropical rainforest and seasonal rainforest 0.999 0.996

veg 8 temperate deciduous shrubland 0.864 0.923

veg 9 subalpine deciduous broadleaf shruband 0.909 0.926

veg 10 dwarf trees desert 0.939 0.975

veg 11 shrub desert 0.956 0.903

veg 12 alpine desert 0.97 0.978

veg 13 temperate steppe 0.841 0.957

veg 14 temperate bunch grass prairie 0.779 0.911

veg 15 desert steppe 0.815 0.929

veg 16 alpine steppe 0.918 0.921

veg 17 grass and forb meadow 0.787 0.857

veg 18 Alpine Kobresia spp. and forb meadow 0.877 0.889

veg 19 cool and temperate bog 0.926 0.967

veg 20 alpine tundra 0.939 0.934

https://doi.org/10.1371/journal.pone.0175742.t001
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distributions than any other environment variables (S2 and S3 Tables). The vegetation types

determined by MTCQ are mainly distributed in Northeast and Southwest China. In contrast,

MTWQ dominates the distributions of tropical and subtropical coniferous forests in Southeast

China and those of the alpine grassland on the Tibetan Plateau.

Vegetation distribution during the Last Glacial Maximum

The reconstructed vegetation maps of the LGM and MH are shown in Fig 2. Most vegetation

types are hindcasted to have moved from northeast to the southwest from the LGM to the MH

(Fig 3D), and moved back from the southwest to the northeast from the MH to the present

(Fig 3E). Taken together, our results reveal relatively more northward distributions of most

vegetation types in eastern China from the LGM to the present (Fig 3F).

The area proportions of the vegetation located in Southeast and Northwest China show lit-

tle changes from the past to the present (Fig 2C). However, the Tibetan Plateau, North and

Northeast China, and the areas near the 30˚N in Central and Southeast China have experi-

enced the highest turnover in vegetation due to climate change from the LGM to the MH and

to the present (Fig 3). Specifically, in Northeast China, from the LGM to the MH, Grass and

forb meadow (veg 17) expanded in North and Northeast China: 47% of temperate coniferous

forest (veg 2), 44% of temperate steppe (veg 13) and 39% of temperate bunch grass prairie (veg

14) were transformed to grass and forb meadow (Fig 4A). From the LGM to the present, the

coniferous forests shrunk substantially: 17% of temperate coniferous forests (veg 2) and almost

all temperate coniferous and deciduous broadleaf mixed forests (veg 4) were transformed to

temperate deciduous forests (veg 5) (Fig 4C). Compared to the LGM distributions, the south

Fig 2. Hindcasted past distribution of natural vegetation during (A) the Last Glacial Maximum (LGM)

and (B) the Mid-Holocene (MH) and (C) the proportion (%) of each vegetation type (LGM: dark blue

line; MH: orange line; modeled: dark gray line). In (C), the proportion (%) of a vegetation type was

calculated as the ratio of its distribution range relative to the terrestrial area of China.

https://doi.org/10.1371/journal.pone.0175742.g002
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boundaries of taiga forests (veg 1) and temperate coniferous forests (veg 2) are both found

more northward under current climate (see b in S1 Fig).

In North China, the eastern boundary of steppe vegetation types (veg 13 and veg 14) moved

substantially westwards, and grass and forb meadow (veg 17) shrunk with its south boundary

moving much northward from the LGM to the present. In contrast, the range of temperate

deciduous forests (veg 5) expanded both eastward and northward at the cost of coniferous for-

ests and temperate steppe. In Central and eastern China, the area of steppe has been reduced

since the LGM, which are now covered by temperate deciduous forests (veg 5). Temperate

deciduous shrublands (veg 8) occupied much larger area in the present than in the LGM.

On the Tibetan Plateau, the vegetation also shows substantial turnover from the LGM

through the MH to the present. In the LGM, alpine tundra (veg 20) occupied the most area on

the Tibetan Plateau, and was replaced by sagebrush and miscellaneous alpine meadow (veg 18)

in the MH (Fig 2A and 2B). However, sagebrush and miscellaneous alpine meadows shrunk

again towards the present.

Vegetation distribution during the Mid-Holocene

In general, vegetation distributions moved northward from the MH to the present (Fig 3E).

However, vegetation distributions responded to climate changes differently across space. The

areas where the vegetation has been most strongly affected by climate change since the MH is

consistent to those since the LGM (Fig 3B), including the Tibetan Plateau, North and North-

east China, and the areas near the 30˚N in Central and Southeast China.

Fig 3. The regions with vegetation changes (dark green, A, B, C) and the dispersal directions of each vegetation type (D, E, F)

from (A, D)the Last Glacial Maximum (LGM) to the Mid-Holocene (MH), (B, E) from the MH to the present and (C, F) from the

LGM to the present.

https://doi.org/10.1371/journal.pone.0175742.g003
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In North and Northeast China, from the MH to the present, temperate deciduous forests

(veg 5) were shifted northward and expanded at the cost of 28% of the distribution of temper-

ate deciduous shrublands (veg 8) and of 18% of grass and forb meadow (veg 17) (Fig 4B). In

contrast, taiga forests (veg 1) in Northeast China shrunk slightly.

On the Tibetan Plateau, grass meadows and alpine tundra all occur more southward in the

present than during the MH. Alpine steppes (veg 16) expanded from the MH to the present

and replaced Alpine Kobresia spp. and forb meadow (veg 18) in many regions. Alpine tundra

(veg 20) nearly disappeared in the MH, but occupies much larger areas in the present. Over

78% of dwarf tree deserts (veg 10) were replaced by desert shrublands (veg 11) and 50% of

alpine deserts (veg 12) were replaced by steppes (veg 16) from the MH to the present (Fig 4B).

In the mountainous regions in the southeastern Tibetan Plateau, the tropical and subtropi-

cal mountain coniferous forests (veg 3) were greatly fragmented in the MH, but now expand

in Hengduan Mountains (see c in S2 Fig). Besides, in eastern China, temperate coniferous for-

ests (veg 2) disappeared during MH, but is now distributed in whole Shandong Peninsula (see

b in S2 Fig).

Fig 4. Percentage of persistence and changing vegetation distribution (A) from the Last Glacial

Maximum (LGM) to the Mid-Holocene (MH), (B) from the MH to the present, and (C) from the LGM to

the present. Dark blue: percentage of a vegetation type that remained unchanged between two time periods.

Orange: percentage of a vegetation type that was converted to the most abundant new vegetation type

(indicated with the type number in the orange bar). Grey: percentage of a vegetation type that was converted

to all other vegetation types. For example, 40% of the LGM distribution range of veg 1 (taiga forest) remained

unchanged at the present, 49% was converted to veg 17 (grass and forb meadow) in the MH and 11% were

converted to other vegetation types (C).

https://doi.org/10.1371/journal.pone.0175742.g004

Vegetation distribution under climate change

PLOS ONE | https://doi.org/10.1371/journal.pone.0175742 April 20, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0175742.g004
https://doi.org/10.1371/journal.pone.0175742


Model-based vs. pollen-based vegetation reconstruction

To evaluate the performance of SDMs in reconstructing the past vegetation distributions, we

compared the model-based vegetation with those reconstructed from pollen data [17, 34] (Figs

5 and 6) and calculated the Kappa value for each vegetation type (Table 2).

In general, the vegetation reconstructed by pollen data is consistent with our results based

on SDMs. In most cases, the pollen profiles for which a vegetation type is associated are located

within or in very close distance to the modeled distribution range of the vegetation type. Most

Kappa values for the comparison between modeled and pollen-based vegetation distributions

are> 0.4 (Table 2), which suggests that the results of these two methods are in moderate agree-

ment with each other [60]. For example, the distributions of subtropical evergreen forests

reconstructed by our models and pollen data are highly consistent with each other during the

LGM (Kappa = 0.90) and the MH (Kappa = 0.64) (Table 2). The temperate steppe distribution

based on pollen data also generally agree very well with the modeled distribution during the

LGM (Kappa = 0.55) (Table 2; Fig 5E), although it shows slight expansion to more southern

regions than the modeled distribution during the MH (Kappa = 0.25). Similarly, the modeled

distributions of deserts and tundra in the MH are also highly consistent with those based on

pollen reconstructions (Desert: Kappa = 0.73; Tundra: Kappa = 0.50). The distribution of tem-

perate deciduous forests reconstructed by our models (see e in S2 Fig) is moderately in line

with the pollen-based reconstructions. Both methods supports a more southern distribution

for this vegetation type during the LGM than during the MH and today [17, 34].

Although the model-based reconstructions and the pollen data were generally consistent

with each other for most vegetation types tested, differences exist for some vegetation types.

For example, the distribution of taiga forests based on pollen data is much more southward

and westward than that of our prediction (see Figs 5A and 6A). The modeled distribution of

deserts during the LGM differs from the locations of pollen sites [13, 17, 34, 61]. Specifically,

pollen data suggest that temperate deserts had reached the present-day coastline in eastern

China during the LGM [17, 34], while the modeled distribution map reveals much less expan-

sion in desert area (see j-l in S1 Fig). During the MH, pollen data suggest larger desert distribu-

tion than today [17, 34], while the model-based distribution only showed marginal shifts (Fig 6

and S2 Fig).

Fig 5. Comparison between model-based and pollen-based vegetation reconstructions during the Last Glacial Maximum

(LGM). Panels (A) to (E) map the hindcasted climate suitability of the shown vegetation types, while panels (F) to (J) map the

hindcasted binary distribution of each vegetation type. The blue dots in the maps represent the pollen sites for which the same

vegetation type was identified during the LGM.

https://doi.org/10.1371/journal.pone.0175742.g005
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Fig 6. Comparison between model-based and pollen-based vegetation reconstructions during the Mid-Holocene (MH).

Panels (A) to (G) map the hindcasted climatic suitability of the shown vegetation types, while panels (H) to (N) map the hindcasted

binary distribution of each vegetation type. The blue dots in the maps represent the pollen sites for which the same vegetation type

was identified for the MH.

https://doi.org/10.1371/journal.pone.0175742.g006

Table 2. Kappa values between model-based and pollen-based vegetation reconstructions in the

LGM and the MH for seven major vegetation types in both LGM and MH.

Vegetation types Kappa (LGM) Kappa (MH)

Taiga 0.00 0.28

Temperate deciduous forests 0.47 0.46

Subtropical evergreen forests 0.90 0.64

Desert 0.37 0.73

Steppe 0.55 0.25

Rainforest / 0.31

Tundra / 0.50

https://doi.org/10.1371/journal.pone.0175742.t002
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Discussion

Major driving factors of vegetation distribution

Climate varies along elevation and latitudinal gradients, leading to changes in vegetation [62–

64]. Ecologists have paid much attention to the major climatic drivers determining vegetation

distribution for a long time [65, 66]. Fang and Yoda [23] studied the vegetation distribution in

China systematically based on the Kira vegetation-climate classification system and delimited

the range of temperature and precipitation of 29 vegetation types in China. Our study has

revealed that the driving factors of vegetation distribution of vegetation are, to some extent,

different. In general, we found that the influences of temperature on vegetation was stronger

than that of precipitation [67]. Mean temperature of the coldest quarter had the strongest

influence on vegetation distributions of forests in North and Northeast China (e.g. subalpine

deciduous broadleaf shruband, alpine desert, desert steppe and grass and forb meadow, see S4

Table), which is in accordance with previous studies on the explanation of species richness pat-

terns [52] and supports the frost-tolerance hypothesis [68].

It has been shown previously that human activities, such as over grazing, logging and land

use, have strong direct impacts on vegetation and ecosystems [69, 70]. Consistent with previ-

ous findings, our results suggest that the vegetation (e.g. temperate deciduous broadleaf forest

(veg 5), subtropical evergreen broadleaf forest and tropical rainforest (veg 6) and seasonal rain-

forest (veg 7)) in low altitude areas have been affected strongly by human activities (Fig 1C)

[71]. China has a long history of highly-intensive agricultural activities through which the nat-

ural vegetation in low altitude areas, e.g. south-eastern China, has been destroyed and replaced

by agricultural fields, settlements, and secondary vegetation. Our results demonstrate that the

natural vegetation in this area would primarily consist of temperate deciduous forests (veg 5),

subtropical evergreen broadleaf forests (veg 6), temperate deciduous shrublands (veg 8) and

temperate bunch grass steppe vegetation (veg 14).

Differences between vegetation reconstructions based on SDMs and

pollen data

The spatial distributions of deserts, grasslands and shrublands in northern China since the

LGM have been discussed controversially in previous studies. For example, early studies based

on pollen records from the Loess Plateau of China indicated that the Loess Plateau was domi-

nated by temperate steppe in the LGM [72], which is consistent with our findings. In contrast,

studies based on plant functional types (PFT) derived from pollen records [17,34] suggested

that desert expanded further east across the Loess Plateau and reached the eastern part of

northern China during the LGM. A meta-analysis reconstructed an intermediate result and

suggested that northern China was covered by semi-desert at that time [73]. These inconsisten-

cies in the reconstruction of desert distribution in previous and the current studies could be

partly due to differences in the definition of desert. In our analysis, vegetation type was based

on Vegetation Atlas of China [38], in which sparse grasslands and shrublands are not catego-

rized as desert. On the contrary, other studies [17, 34, 72] have considered sparse grassland

and shrubland vegetation as deserts or semi-deserts. Also, since pollen can easily disperse by

wind or water over very large distances, the location where pollen is found may not be the

place of its production [74]. Finally, the precipitation reconstructions are known to be less pre-

cise for LGM and MH than temperature reconstruction, and may be another source of uncer-

tainties in the model-based reconstruction of specifically drought- adapted vegetation types.

Lake sediment cores are the main type of pollen sampling in paleoecological studies in

China. Lakes basins are open to air-borne influx of pollen from large distances, and the water
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is collected from equally large, if not even larger, regions and also from mountain snow [75]. It

is therefore possible that pollen samples of lake sediments at lowlands may, to some extent,

contain pollens from the highlands or from far away. This is especially true for Picea, Pinus
and other needle-leaved tree pollen, which are abundantly found in lowland sediments [76]

although they are normally the dominant species in mountain coniferous forests. This may

explain why the reconstruction of taiga from pollen data was indicated to extend further south

and west in contrast to our model predictions.

Although previous findings and our results suggest that even though the two methods both

have uncertainties, SDMs and pollen data can, nevertheless, complement each other in the

studies on vegetation dynamics under changing climate.

Distribution of temperate forest in eastern Asia in the LGM

The distribution of temperate forests in eastern Asia during the LGM has long been debated.

According to Qian and Ricklefs [77], temperate forests extended in eastern China and across

the continental shelf to link populations in Korea and Japan, whereas Harrison et al. [78],

based on a reconstructed vegetation map of eastern Asia, hypothesized that temperate forests

had only a restricted distribution during the LGM. Our results support the latter view. Based

on our findings, temperate deciduous forests had a smaller spatial extent in China during the

LGM compared to the present distribution of this vegetation type (see e in S1 Fig) and were

replaced by temperate steppe vegetation in several regions (Fig 3A).

Mountain refugia in China

Mountains generally provide relatively more stable climate for organism than lowlands, as

organisms in mountains are able to trace changing climates more easily within short distance

[79]. Therefore, mountains act as refugia during periods of climate change, and offer shelter to

many species, especially to small-ranged and endemic species [80]. Our results showed that

the mountains in South and Central China, such as the Nanling Mountains, the Yunnan-Gui-

zhou Plateau and the Qinling Mountains, encountered much less changes in the distributions

of major vegetation types between the past and the present than other regions, which is consis-

tent with previous findings [81]. Similarly, Qiu et al. [82] demonstrated with a pollen-based

analysis that the vegetation in South China has been relatively stable since the Quaternary,

which suggests that this region has possibly acted as refugia for vascular plants during the Qua-

ternary. Such long stability may be one of the explanations for the extraordinary woody plant

species diversity in this region [52]. In contrast, our results indicate a significant dynamics in

the vegetation distribution in the Hengduan Mountains and Daxue Mountains in southwest-

ern China. Therefore, it is quite likely that the changes in vegetation distribution may have sig-

nificantly influenced the dispersal and hence the phylogeographical structure of plant species

in these regions [83, 84]. Previous findings and our results suggest that biological refugia and

species persistence may not be the dominant factor in shaping the species diversity in the

Hengduan Mountains [85].

Limitations of SDM for the prediction of vegetation distribution

Model-based analyses can complement pollen analyses for studying vegetation-climate rela-

tionships and the dynamics of vegetation distribution, yet the model results should be inter-

preted with caution. The expansion of vegetation in response to climate change is a long-term

process. Recent studies have suggested that the response of vegetation distribution to climate

change may have a time lag [86, 87]. The methods to take the time lag into consideration in

SDM calibrations is challenging, but one way is to integrate SDMs with macroecological
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methods as shown by Araújo et al. [88] and Guisan & Rahbek [89]. The distribution of some

vegetation types may not be in equilibrium with climate, which may also increase uncertainty

in model calibration and prediction [90]. Moreover, recent studies suggest that different SDM

algorithms and climate scenarios could also introduce uncertainties in the predictions of spe-

cies and vegetation distribution [91].

Despite these limitations, the SDM-type approach is a useful tool to study the relationship

between vegetation and climate. Compared to other methods, the vegetation distribution

predicted by SDMs is quantitative and spatially explicit, and it can be applied to any typology

of vegetation classification and is not restricted to major plant functional types as in dynamic

vegetation models. The flexibility in the choice of environmental variables as predictors and

statistical models allows for tuning the analysis to a range of research questions. Optimizing

the statistical modeling in order to include information on relative climate stability and

response lags under changing climate conditions will further improve the robustness of vege-

tation-climate models in projecting the distribution of vegetation under past and future

conditions.

Supporting information

S1 Fig. Distribution changes of each vegetation type from the Late Glacial Maximum

(LGM) to the present. Brown: distributions under both current and the LGM climates; light

red: distributions during LGM; green: present distributions.

(TIF)

S2 Fig. Distribution changes of each vegetation type from the Mid-Holocene (MH) to the

present. Brown: distributions under both current and the MH climates; light red: distributions

during the MH; green: present distributions.

(TIF)

S1 Table. Environmental variables used in the analysis.

(PDF)

S2 Table. The correlation coefficient between all environmental variables.

(PDF)

S3 Table. Standardized regression coefficients of all 22 environmental variables considered

to explain vegetation distribution estimated by generalized linear models. The highest

number in each line indicates the variable that best explains the distribution of that vegetation

type alone. See Table 1 for definition of vegetation and S1 Table for environmental factors.

(PDF)

S4 Table. Standardized regression coefficients of the selected environmental variables in

explaining vegetation distribution estimated by generalized linear models. The highest

number in each line indicates the variable that best explains the distribution of that vegetation

type alone. See Table 1 for definition of vegetation and S1 Table for environmental factors.

(PDF)
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