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Abstract Inflammatory bowel disease (IBD) affects 1.5–3.0 million people in the United States.

IBD is genetically determined and many common risk alleles have been identified. Yet, a large

proportion of genetic predisposition remains unexplained. In this study, we report the identification

of an ultra rare missense variant (NM_006998.3:c.230G > A;p.Arg77His) in the SCGN gene causing

Mendelian early-onset ulcerative colitis. SCGN encodes a calcium sensor that is exclusively

expressed in neuroendocrine lineages, including enteroendocrine cells and gut neurons. SCGN

interacts with the SNARE complex, which is required for vesicle fusion with the plasma membrane.

We show that the SCGN mutation identified impacted the localization of the SNARE complex

partner, SNAP25, leading to impaired hormone release. Finally, we show that mouse models of

Scgn deficiency recapitulate impaired hormone release and susceptibility to DSS-induced colitis.

Altogether, these studies demonstrate that functional deficiency in SCGN can result in intestinal

inflammation and implicates the neuroendocrine cellular compartment in IBD.

DOI: https://doi.org/10.7554/eLife.49910.001

Introduction
Inflammatory bowel disease (IBD) is a condition that results from both genetic predisposition and

environmental exposures, which has become increasingly prevalent with the advent of industrializa-

tion around the world (Kaplan, 2015; Kaplan and Ng, 2017). Twin concordance studies were the

first to recognize the contribution of genetic factors to IBD pathogenesis (Brant, 2011). At the pres-

ent time, a series of large genome-wide association studies (GWAS) have identified over 200 variants

associated with genetic risk (Liu et al., 2015). Most of these variants are intergenic and confer only

modest risk (with odds ratios typically below 2). Studies in pediatric populations have focused on
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monogenic Mendelian traits and have identified over 50 genes that can be linked to early-onset IBD

(Uhlig and Schwerd, 2016). Interestingly, the vast majority of these mutations result in complex syn-

dromes of immune dysfunction or developmental alterations that resemble only in part the pheno-

type of adult-onset IBD. In aggregate, the identified loci contribute to about 20–30% of the genetic

risk, highlighting the need for additional gene discovery.

The genes implicated in both GWAS and familial studies are enriched for pathways that are criti-

cal in host-microbiome interactions. This is likely the case because the luminal aspect of the intestine

represents the largest epithelial surface in the body (Furness et al., 2013) and houses the largest

concentration of human-associated microbiota (Li et al., 2014a; Qin et al., 2010). As such, it is not

surprising that the intestine contains the greatest number of immune cells in the body (Castro and

Arntzen, 1993), which must preserve a delicate balance between tolerance and protective immunity

to achieve normal intestinal function. The main mechanisms mediating the physiologic balance

between protective immunity and tolerance are thought to involve the interplay between immune

populations of the intestine and the epithelial barrier. In contrast, much less is known about the role

that specialized cellular compartments of the intestine, such as enteroendocrine cells (EECs) and gut

neurons, may play in intestinal immune homeostasis.

EECs comprise 1% of the intestinal epithelium and in aggregate represent the largest endocrine

cell population in the body (Sternini et al., 2008). These cells secrete peptide hormones in response

to nutrients or other small molecules, which are recognized by specific cell surface receptors often

located on the luminal membrane. Most secreted products produced by EECs are involved in regu-

lating the digestive process, gastrointestinal motility, and the metabolic adaptation to nutrient influx

(Drucker, 2007; Murphy and Bloom, 2006; Rindi et al., 2004). Based on gene expression profiling,

there are more than 10 distinct populations of EECs with distinct hormone secretory characteristics

in the small intestine (Furness et al., 2013). Notably, human mutations impacting NEUROG3, the

transcription factor required for EEC differentiation, have been described in patients with chronic

diarrhea secondary to malabsorption without an inflammatory component (Wang et al., 2006).

Another related cellular compartment is comprised of gut neurons, which are aggregated in two dis-

tinct locations in the intestinal wall: the submucosal plexus and the myenteric plexus. Derived from

neural crest progenitors, these cells are integral to the motility function of the gut, and their partici-

pation in other intestinal functions is increasingly recognized. In fact, recently, gut neurons were

demonstrated to interconnect with EECs and form a neuro-epithelial circuit that is ultimately con-

nected to the central nervous system (Kaelberer et al., 2018). However, our understanding of this

circuit’s activity in immune regulation is limited and a role for these cells in IBD pathogenesis has not

received significant attention.

In this study, we identified a homozygous recessive mutation in the SCGN gene causing early-

onset ulcerative colitis. SCGN encodes Secretagogin, a calcium sensing protein that interacts with

the SNARE complex (Bauer et al., 2011; Rogstam et al., 2007; Wagner et al., 2000). The SNARE

complex is required for secretory vesicle docking with target membranes (Jahn and Scheller, 2006).

We show that the disease-causing mutation results in loss of SCGN function and that Scgn-deficient

mice are predisposed to colitis, highlighting the role of this gene, and more broadly the role of the

neuroendocrine intestinal compartment, in intestinal immune homeostasis.

Results

A very rare variant in SCGN causes inherited early-onset ulcerative
colitis
We identified a consanguineous Hispanic family with three of five children affected by an aggressive

form of early onset ulcerative colitis (Figure 1a). All three probands were diagnosed by standard

clinical, endoscopic, and histologic criteria (Levine et al., 2014). Two siblings (P1 and P2) were diag-

nosed at age eight while the third (P3) was diagnosed at age 6. Siblings P1 and P2 had a severe dis-

ease phenotype characterized by pancolonic involvement, anti-TNF treatment failure, ultimately

requiring procto-colectomy 9 years and 9 months after diagnosis, respectively (Figure 1b and Fig-

ure 1—figure supplement 1). Sibling P3 had a milder phenotype with exclusive rectal involvement,

controlled on oral mesalamine up until last point of follow up.
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Figure 1. A mutation in SCGN is linked to early-onset ulcerative colitis. (a) Pedigree of index family. Probands (P1,

P2, and P3) and their siblings (S1 and S2) are indicated. SCGN genotypes are noted (+ = WT allele, - = R77H

allele) (b) Representative endoscopic images of the rectum from affected individuals. (c) Multispecies alignment of

SCGN protein sequences is shown; the residue affected in the rare coding variant found in affected patients (R77)

is indicated. (d) Frequencies of allele variants of SCGN found in ExAC are plotted along the SCGN protein

sequence, with the location of the six EF-hands also indicated. R77 is noted by an arrow.

Figure 1 continued on next page
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The consanguineous nature of the family pedigree suggested an autosomal recessive trait, where

each of the affected individuals inherited a recessive allele from one of their parents. Multiple geno-

mic approaches were used to identify candidate recessive gene variants. Genome-wide microarray

genotyping of all siblings was utilized to identify segments of loss-of-heterozygosity (LOH) and copy

number variants (Supplementary file 1). Next, we sorted these finding along the genome to identify

segments of shared changes in the three probands (P1, P2, P3) that were not shared by their unaf-

fected siblings (S1, S2). Through this analysis, we identified large segments of LOH on chromosomes

6 and 12 that were shared between all three affected probands and not present in the unaffected

siblings (Table 1). Whole genome sequencing of two of the probands confirmed these areas of LOH

and indicated that they have more continuity than suggested by the SNP array analysis (Figure 1—

figure supplement 2). Next, we performed whole-exome sequencing (WES) of all five siblings, and

we filtered for rare homozygous nonsynonymous variants present among all the three probands and

not their unaffected siblings. WES analysis identified a single rare (MAF <1%) homozygous missense

variant in the SCGN gene (rs376721140; NM_006998.3:c.230G > A; p.Arg77His) that was shared by

the three probands and not their unaffected siblings. This variant mapped to one of the segments of

shared LOH on chromosome 6. To ensure additional candidate variants were not missed in areas of

low WES coverage within the proband-shared LOH regions, we performed whole-genome sequenc-

ing (WGS) of two of the affected probands (P1 and P2). WGS confirmed that the SCGN variant is the

only rare homozygous nonsynonymous candidate variant in the segments of shared LOH among

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.49910.002

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for Figure 1D.

DOI: https://doi.org/10.7554/eLife.49910.005

Figure supplement 1. Clinical course of affected probands.

DOI: https://doi.org/10.7554/eLife.49910.003

Figure supplement 2. Areas of shared LOH in P1 and P2 as analyzed by WGS.

DOI: https://doi.org/10.7554/eLife.49910.004

Table 1. Areas of shared loss-of-heterozygosity (LOH) among affected probands as defined by SNP

array.

Start End

Chr 12 71,016,157 72,070,710

72,320,251 73,669,855

73,671,276 75,891,939

77,249,400 79,204,389

79,302,419 82,139,004

82,147,487 83,157,896

83,541,966 88,441,286

88,594,159 89,910,070

89,915,484 91,765,486

91,766,720 93,152,115

93,251,750 95,410,845

Chr 6 16,893,011 18,222,277

18,262,607 19,682,599

19,686,123 19,803,768

19,804,188 21,778,105

23,584,375 26,148,311

DOI: https://doi.org/10.7554/eLife.49910.006
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these probands. Finally, familial segregation of the SCGN p.R77H mutation was confirmed by Sanger

sequencing, showing that both parents were heterozygote carriers, and the unaffected siblings were

either a heterozygote carrier or had reference alleles, as per WES results (Figure 1a).

The allelic frequency for the variant found in affected individuals in this family is very rare (all

ExAC = 0.014%; Hispanics only = 0.017%). As Hispanics are generally underrepresented among pub-

lic genomic databases, we genotyped 2,000 Hispanic individuals (mostly of Mexican origin) from the

Dallas Heart study (Victor et al., 2004). The mutation frequency among Hispanics in the Dallas Heart

Study was 0.025%. Furthermore, in agreement with the rarity of this allele, no homozygous individual

were identified within the Dallas Heart Study nor reported in public genomic databases (ExAC;

Lek et al., 2016), 1000 Genomes Project (1000 Genomes Project Consortium et al., 2015), dbSNP

(National Center for Biotechnology Information, 2019) or IBD exomes browser

(Inflammatory Bowel Disease Exomes Browser, 2016).

Further screening of different databases (ExAC, ClinVar) indicates that there are no individuals

identified thus far with predicted homozygous essential loss of function variant (stop codon/frame-

shift). The only potentially deleterious homozygous variant found was a nucleotide deletion (c.83-

1delG) predicted to affect a splice acceptor site 5’ upstream of exon 2 (rs60502981). This allele is

enriched among individuals of African descent, with an allele frequency of 2.8% in this population:

four homozygous individuals (all of African descent) are reported in ExAC (0.08% prevalence). Impor-

tantly, ClinVar does not include this variant and validation of its predicted effect on splicing or gene

function is currently lacking. In fact, all variants of SCGN reported in ClinVar are large copy number

variants involving dozens to hundreds of genes, with phenotypes associated with congenital anoma-

lies and intellectual disabilities (Accession numbers VCV000608768, VCV000608767, VCV000608764,

VCV000443497, VCV000443496, VCV000155430, VCV000150044, VCV000149747).

Secretagogin, the protein encoded by the SCGN gene, is a calcium sensing protein predicted to

have 6 EF–hand domains (Wagner et al., 2000). The identified variant (p.R77H) maps to a highly

conserved Arginine in the predicted second EF hand of the protein, which is substituted for Histidine

(Figure 1c). While this change may be a conservative amino acid substitution, the rarity of this partic-

ular allele suggested that it may have functional consequences. To further understand the potential

functional importance of the amino acid in question, we considered the mutational burden of the

affected site. We collected allele frequencies for all coding variants in SCGN noted in ExAC, and

mapped them along the length of the encoded protein and its EF hands (Figure 1d). We observed

only a few residues with significant allelic heterogeneity, typically outside the EF hands. Arginine 77

exhibited limited coding variation, consistent with a potentially important functional role for this

residue.

SCGN is expressed in EECs and intestinal neurons
To gain insight into any possible mechanism connecting SCGN to IBD pathogenesis, we first sought

to characterize the expression pattern of SCGN in the intestine. We performed immunohistochemis-

try of rectal biopsies from healthy individuals and observed strong expression among scattered trian-

gularly-shaped epithelial cells, morphologically compatible with EECs (Figure 2a). When colonic

tissues from the probands (P1, P2 and P3) were stained, the pattern and morphology of these cells

was not affected (Figure 2b and Figure 2—figure supplement 1). We next examined in more detail

the pattern of SCGN protein expression in the intestine of normal mice. We observed that SCGN

was confined to rare cells that co-stained in some instances for Chromogranin A (CGA), a marker of

certain EEC populations (Figure 2c), with the degree of costaining being greater in the mouse colon,

and minimal in the mouse small bowel (Figure 2d). Similar findings were made in human colonic tis-

sues, where in a subpopulation of cells, SCGN co-localized with other EEC markers such as Chro-

mogranin B (CGB), Serotonin (5-HT) and glucagon (GCG) (Figure 2—figure supplement 2). These

findings suggested that SCGN marks a unique sub-population of EECs, in agreement with recent sin-

gle-cell expression profiling of the murine small intestinal epithelium, which identified Scgn as a

marker of a specific small intestinal EEC population (Haber et al., 2017). In addition, distinct clusters

of SCGN positive cells in the submucosal and muscle layers of the murine intestine also co-stained

for the neuronal markers TUJ1, SNAP25 and synaptophysin (SYP), consistent with SCGN expression

in subpopulations of gut neurons (Figure 2e, Figure 2—figure supplement 3). In contrast with the

partial overlap seen in intestinal tissues between SCGN and EEC or neuronal markers, SCGN protein

expression was uniform in murine pancreatic islets where it colocalized with CGA (Figure 2f).
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Figure 2. SCGN is expressed neuroendocrine cells. (a) Immunohistochemistry (IHC) staining for SCGN in rectal biopsies obtained from a healthy

individual. 40x magnification. (b) IHC staining for SCGN in rectal biopsies obtained from P2, one of the probands in the index family. 40x magnification.

(c) SCGN and chromogranin A (CGA) immunofluorescence staining of murine colonic epithelium (scale bar 200 mm – inset 20 mm). (d) Morphometric

quantification of SCGN and CGA staining patterns in epithelial cells of three sites of the murine gut. Cell population percentages are shown. SB: Small

Figure 2 continued on next page
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SCGNR77H is functionally impaired
EECs secrete peptide hormones upon nutrient stimulation in a process akin to neurotransmitter

release. Both nutrient stimulation and neurotransmitter release activities require components of the

SNARE complex (Li et al., 2014b; Wheeler et al., 2017), which mediates membrane fusion events.

Previous studies have identified that SCGN interacts with the SNARE complex components SNAP23

and SNAP25, suggesting that this factor regulates neurotransmitter and hormone release in cells

that express SCGN (Bauer et al., 2011; Rogstam et al., 2007). To assess SCGN function in exocytic

release, we developed a cellular model of stimulated hormone release using the SCGN-expressing

murine enteroendocrine cell line STC-1, which secretes GLP-1 in response to nutrient stimuli

(Hirasawa et al., 2005; McCarthy et al., 2015; McLaughlin et al., 1998). Using CRISPR/Cas9 tech-

nology to target the first exon of murine Scgn, we generated two independent Scgn knockout (KO)

clones that displayed loss of protein expression (Figure 3—figure supplement 1). Next, we mea-

sured GLP-1 release in response to docosahexaenoic acid (DHA) exposure, a fatty acid known to

stimulate GLP-1 secretion in these cells (Hirasawa et al., 2005). Lack of SCGN expression led to a

significant decline in GLP-1 secretion when compared to parental cell lines, indicating that SCGN is

required for optimal DHA-stimulated GLP-1 secretion from cultured EECs (Figure 3a). SCGN expres-

sion in KO cell lines was restored using lentiviral vectors encoding human SCGN, including the wild-

type (WT) or the p.R77H variant (Figure 3—figure supplement 1). DHA stimulated GLP-1 secretion

was significantly impaired in cells expressing SCGNR77H compared to the isogenic wild-type control

cells (Figure 3b), suggesting that the disease-associated variant is a hypomorphic allele that leads to

altered secretion dynamics in EECs.

To understand the mechanisms that result in dysfunction of hormone secretion, we investigated

whether SCGNR77H had impaired binding to SNAP25, its partner in the SNARE complex. Immuno-

precipitation of SCGN from STC-1 cells expressing either WT or the R77H variants led to compara-

ble co-precipitation of endogenous SNAP25 from these cells (Figure 3—figure supplement 2).

Next, we examined whether SCGNR77H might display dysfunctional regulation of SNAP25 subcellular

localization. SNAP25 localization in STC-1 cells expressing WT or SCGNR77H proteins was examined

by immunofluorescence staining. In parental STC-1 cells, both SCGN and SNAP25 displayed vesicu-

lar and plasma membrane localization (Figure 3c, left column). This is in agreement with the obser-

vation that membrane association of SNARE proteins is required for their biological activity in

secretory processes (Gonelle-Gispert et al., 2000). Interestingly, the membranous localization of

SNAP25 was lost in Scgn KO cells (Figure 3c, EV lane), and this was restored upon re-expression of

SCGNWT (Figure 3c), indicating that normal cellular localization of SNAP25 is dependent on the

expression of its partner SCGN. In contrast, SCGNR77H failed to restore SNAP25 plasma membrane

localization (Figure 3c, right column), and these distribution changes were highly significant after

image quantification (Figure 3d). Consistent with its role in directing membrane localization of

SNAP25, SCGNR77H itself also failed to localize to the plasma membrane. In aggregate, these obser-

vations indicate that SCGNR77H displays abnormal subcellular localization which also impact its part-

ner, SNAP25, ultimately resulting in altered SNARE function and vesicular secretion.

Figure 2 continued

bowel (e) SCGN and synaptophysin (SYP) immunofluorescence staining in subepithelial cells of the murine large intestine (scale bar 200 mm – inset 20

mm). (f) SCGN and CGA immunofluorescence staining in murine pancreatic islets (scale bar 200 mm - inset 100 mm).

DOI: https://doi.org/10.7554/eLife.49910.007

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for Figure 2D.

DOI: https://doi.org/10.7554/eLife.49910.011

Figure supplement 1. Immunohistochemistry (IHC) staining for SCGN in colonic biopsies obtained from probands P1, P2, and P3. 40x magnification.

DOI: https://doi.org/10.7554/eLife.49910.008

Figure supplement 2. Immunofluorescence staining for markers of EEC lineage in healthy human colon (scale bar 200m - inset 40 mm).

DOI: https://doi.org/10.7554/eLife.49910.009

Figure supplement 3. Immunofluorescence staining for neuronal markers in murine colon of C57BL/6 mice (scale bar 200 mm - inset 50 mm).

DOI: https://doi.org/10.7554/eLife.49910.010
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Figure 3. SCGN p.R77H is a hypomorphic allele. (a) Basal and DHA fatty acid induced GLP-1 release from

parental and Scgn deleted (KO) clones. GLP-1 values are normalized to total protein content. (b) Basal and DHA

stimulated GLP-1 secretion from rescue clones expressing human SCGNWT or SCGNR77H. (c) Immunofluorescence

images showing subcellular localization of SNAP25 and SCGN in parental STC-1 cells and the indicated SCGN KO

Figure 3 continued on next page
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To determine whether SCGN p.R77H also behaved as a loss of function allele in vivo, we investi-

gated the function of SCGN in zebrafish, whose ortholog is 73% identical to the human protein. The

most notable phenotype of SCGN loss in this animal model is abnormal midbrain development

resulting in significant reduction in the size of this organ (Deciphering Developmental Disorders

Study, 2015). SCGN suppression using a translation blocking morpholino (MO) targeting the ATG

start codon led to the expected developmental phenotype of reduced midbrain size (Figure 3e, Fig-

ure 3—figure supplement 3), visualized using in situ hybridization for HuC (elavl3), an early pan-

neuronal marker (Kim et al., 1996). Importantly, this phenotype was rescued when human SCGNWT

mRNA was co-injected, whereas co-injection of mRNA encoding the R77H mutant failed to rescue

the phenotype. Taken together, these findings are consistent with SCGNR77H being devoid of normal

activity in cellular and in vivo developmental models.

Scgn-deficient mice are prone to colitis
Given the identification of SCGN p.R77H in a pedigree with early onset ulcerative colitis, we next

wished to address the role of this gene in colitis development. To that end, we engineered a Scgn

knockout (Scgn-/-) mouse model by targeting the third exon of murine Scgn using CRISPR/Cas9 tech-

nology. Multiple pronuclear injections of Cas9 mRNA and custom synthetic gRNA led to numerous

independent C57BL/6J Scgn targeted founder mice harboring different indels within the third exon

of Scgn. Two independent founder lineages were selected (Secret1 and Secret2), each with Scgn

deletions that could be easily detected by PCR-based genotyping (Figure 4—figure supplement

1a,b). Founders were backcrossed to wild-type C57BL/6J mice for at least three generations to

dilute any possible off-target effects. Homozygous Secret1 and Secret2 mice expressed a truncated

transcript skipping exon 3 of the gene (Figure 4—figure supplement 1c,d). Immunofluorescence

staining and imaging of pancreatic islets using an antibody to an epitope not affected by the

observed exon skipping demonstrated loss of SCGN protein expression in these two mouse lines

(Figure 4—figure supplement 1e).

Through heterozygote mating, littermate wild-type (WT) and Scgn deficient mice were generated

and cohoused in a specific-pathogen-free (SPF) environment. At baseline, Scgn deficient mice

(Secret1 and Secret2) did not develop any overt phenotype, including no obvious architectural

abnormality in the colonic epithelium as seen in HE or alcian blue staining (Figure 4a), and no colitis

Figure 3 continued

and rescue cell lines. Scale bar 15 mm. (d) For the experiment depicted in (c), SNAP25 staining intensity ratio

between the membranous compartment and the total cellular signal was plotted in the indicated cell lines. Dots

indicate individual cells, horizontal bars correspond to the mean within each group. (e) Midbrain size of zebrafish

after scgn targeting with morpholinos or rescue with human SCGNWT or SCGNR77H. Dots indicate individual

embryos, horizontal bars correspond to the mean within each group. The zebrafish experiments were performed

in triplicate. *p<0.05, **p<0.01, ****p<0.0001 unpaired student t test in (a), (b) and (d). ****p<0.0001 multiple

comparison ANOVA in (e). Error bars in (a) and (b) represent the S.E.M.

DOI: https://doi.org/10.7554/eLife.49910.012

The following source data and figure supplements are available for figure 3:

Source data 1. Source data for Figure 3A.

DOI: https://doi.org/10.7554/eLife.49910.016

Source data 2. Source data for Figure 3B.

DOI: https://doi.org/10.7554/eLife.49910.017

Source data 3. Source data for Figure 3D.

DOI: https://doi.org/10.7554/eLife.49910.018

Source data 4. Source data for Figure 3E.

DOI: https://doi.org/10.7554/eLife.49910.019

Figure supplement 1. Scgn deficient clones of STC-1 cells were generated by CRISPR/Cas9 technology.

DOI: https://doi.org/10.7554/eLife.49910.013

Figure supplement 2. SNAP25 co-precipitation from SCGN rescue cell lines.

DOI: https://doi.org/10.7554/eLife.49910.014

Figure supplement 3. Bright-field images of zebrafish after morpholino injections (MO).

DOI: https://doi.org/10.7554/eLife.49910.015
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Figure 4. Scgn deficient mice display intact mucosal architecture and microbiota at baseline. (a) Representative colon histologic images from Secret1

and WT animals under untreated conditions. HE is shown on the left, alcian blue staining on the right. Scale bar 100 mm. (b) Baseline expression of

prototypical intestinal epithelial cell lineage-specific markers from small bowel in Secret1 and WT mice was determined by qRT-PCR (n = 3 in each

group). (c) Microbiome alpha diversity as measured by observed OTU mean counts of fecal 16 s rRNA sequencing. (d) Beta diversity by unweighted

Figure 4 continued on next page
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was noted clinically or histologically even in mice as old as 330 days. Gene expression analyses indi-

cated that key markers of specialized epithelial populations remained intact in these mice

(Figure 4b). Furthermore, bacterial diversity and microbiota composition were not significantly dif-

ferent between WT and homozygous Secret1 mice (Figure 4c–e).

Next, we examined the susceptibility of Scgn-deficient mice to DSS-induced colitis, a widely used

model of acute colitis in mice. Importantly, most genetic defects thought to lead to increased IBD

susceptibility in humans also display colitis sensitivity in this model (Perše and Cerar, 2012). Upon

administration of DSS, homozygous Secret1 male mice experienced worse weight loss (Figure 5a),

elevated disease activity index (Figure 5b), greater mortality (Figure 5c), and increased tissue dam-

age by histopathology (Figure 5d,e). Greater weight loss was also recapitulated when performing

these experiments without gender selection (Figure 5—figure supplement 1a) and was also seen in

the Secret2 line (Figure 5—figure supplement 1b). In agreement with the more severe colitis in

Scgn knockout mice, loss of Scgn led to increased expression of pro-inflammatory genes in colonic

tissues in Secret1 (Figure 5f) and Secret2 (Figure 5—figure supplement 1c) homozygous mice. In

aggregate, the data indicate that loss of Scgn in mice results in increased susceptibility to colitis.

We examined whether loss of Scgn led to appreciable colonic lamina propria leukocyte abnormal-

ities at baseline that could account for the susceptibility of this model to colitis. Flow cytometric

analysis of colonic and small bowel lamina propria leukocyte populations from WT and Secret1 ani-

mals showed no differences in populations of cell types examined (Figure 5—figure supplement 2).

Colonic EECs do not modulate DSS sensitivity
Next, we sought to determine if disrupted colonic EEC function or dysfunction of the neuronal com-

partment was responsible for the effects of SCGN deficiency on intestinal inflammation. To that end,

we used a genetic strategy to ablate colonic EECs through deletion of Neurog3, a transcription fac-

tor required for lineage differentiation (Mellitzer et al., 2010). Neurog3 deletion in the colonic epi-

thelium was accomplished using a colonocyte-specific transgene (Hinoi et al., 2007), CDX2-Cre

(Figure 6a). The resulting mice lost all CGA positive cells in the colonic epithelium, while showing no

changes in the small intestine (Figure 6b). Gene expression of EEC-specific genes such as Neurog3

and Gcg was lost from colonocytes, while goblet cell markers were unaffected (Figure 6c). Impor-

tantly, ablation of EECs in the colon led to loss of Scgn expression in this compartment as would be

expected (Figure 6c). Moreover, RNA sequencing analysis from colonocyte isolates also indicated

that colonic Neurog3 deficiency was associated with loss of predicted or known EEC transcripts,

including Scgn (Figure 6d). Functionally, colons from these animals exhibited drastic loss of hormone

secretion at baseline, as measured by ex-vivo colonic GLP-1 and GLP-2 secretion in organ cultures.

Furthermore, DHA stimulation led to GLP-1 and GLP-2 release from EEC sufficient (Neurog3f/f) colon

explants, but not from colons of EEC ablated (Neurog3DCol) littermates. In addition, GLP-1 and GLP-

2 release in response to DHA was completely blunted in colon explants from Secret1 homozygous

animals, consistent with the role of SCGN in this response (Figure 6e). Importantly, EEC deficient

mice did not have increased susceptibility to DSS-induced colitis (Figure 6f,g) suggesting that

colonic EECs do not mediate the immunomodulatory effects of SCGN and raising the possibility that

SCGN-expressing enteric neurons may modulate intestinal immune homeostasis.

Figure 4 continued

UNIFRAC principal coordinate analysis (PCoA) of fecal 16 s rRNA sequencing. (e) Class level taxonomic composition for stool 16 s sequencing. WT

n = 16 Secret1 n = 20. S.E.M. was used for error bars in (b).

DOI: https://doi.org/10.7554/eLife.49910.020

The following source data and figure supplement are available for figure 4:

Source data 1. Source data for Figure 4B.

DOI: https://doi.org/10.7554/eLife.49910.022

Source data 2. Source data for Figure 4C.

DOI: https://doi.org/10.7554/eLife.49910.023

Source data 3. Source data for Figure 4E.

DOI: https://doi.org/10.7554/eLife.49910.024

Figure supplement 1. Engineering Scgn deficient animals.

DOI: https://doi.org/10.7554/eLife.49910.021
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Figure 5. SCGN loss leads to increased sensitivity to DSS colitis. (a–c) Body weight, disease activity index (DAI), and survival of male WT (n = 13) and

Secret1 (n = 13) mice treated for 6 days with 2% DSS in their drinking water. (d) Histologic score of male and female WT (n = 11) and Secret1 (n = 13)

animals treated for 6 days with 2% DSS. (e) Representative microphotographs (20x) of colonic epithelium of DSS-treated mice. (f) Inflammatory gene

expression measured by qRT-PCR from ceca of DSS-treated mice. Data in (a), (b) and (c) are representative of 2 experiments. *p<0.05. **p<0.01, two

tailed unpaired t test in (a), (b) and (f). *p<0.05. one tailed unpaired t test in (d). S.E.M. was used for error bars in (a), (b), (d), (f). Log rank test was used

in (c).

DOI: https://doi.org/10.7554/eLife.49910.025

The following source data and figure supplements are available for figure 5:

Source data 1. Source data for Figure 5A.

DOI: https://doi.org/10.7554/eLife.49910.032

Source data 2. Source data for Figure 5B.

DOI: https://doi.org/10.7554/eLife.49910.033

Source data 3. Source data for Figure 5C.

Figure 5 continued on next page

Sifuentes-Dominguez et al. eLife 2019;8:e49910. DOI: https://doi.org/10.7554/eLife.49910 12 of 25

Research article Genetics and Genomics Immunology and Inflammation

https://doi.org/10.7554/eLife.49910.025
https://doi.org/10.7554/eLife.49910.032
https://doi.org/10.7554/eLife.49910.033
https://doi.org/10.7554/eLife.49910


Discussion
In this study, we identified a consanguineous family with recessive early-onset ulcerative colitis

caused by a homozygous mutation in the SCGN gene. Various studies presented here confirm that

the R77H substitution associated with the disease trait leads to loss of function for the encoded pro-

tein. Importantly, the p.R77H mutation identified in this family resulted in decrease hormone secre-

tion and altered cellular localization of SCGN and its partner SNAP25 in vitro. In agreement with the

notion that decreased function of SCGN can alter immune regulation in the intestine, we demon-

strate that Scgn-deficient mice are more susceptible to DSS-induced colitis. Interestingly, targeting

the colonic EEC compartment did not recapitulate the phenotype, suggesting that gut or central

neurons are the likely relevant compartments that SCGN regulates. In aggregate, the genetic, cellu-

lar and mouse model results from this study implicate SCGN as a novel susceptibility gene for mono-

genic early-onset IBD.

In contrast to other forms of monogenic IBD, which frequently involve other significant pheno-

types in addition to intestinal inflammation (e.g., immunodeficiency, gut developmental problems,

etc.), our patients did not display any other clinically overt phenotypes outside of colitis. Interest-

ingly, mutations in other regulators of the SNARE complex, namely STXBP2, can lead to altered NK

cell degranulation, hemophagocytic lymphohistiocytosis and colitis (Meeths et al., 2010). Intrigu-

ingly, despite the restricted expression of SCGN in neuroendocrine lineages, there were no overt

endocrinopathies or neurologic phenotypes. For example, in contrast to the age-dependent onset

of diabetes mellitus previously reported in Scgn-deficient mice (Malenczyk et al., 2017), the fasting

glycemia of these patients has been normal, which is remarkable considering that they have been

exposed, at times, to glucocorticoids. Whether this reflects an intrinsic difference in the function of

SCGN in mouse and human or is simply indicative of an age-related phenotype that is yet to mani-

fest in these subjects remains to be seen. Similarly, the patients do not display any overt neurocogni-

tive phenotypes, again in contrast with data from zebrafish and murine models of Scgn deficiency

(Deciphering Developmental Disorders Study, 2015; Hanics et al., 2017). While the data from

Zebrafish presented here indicate that SCGNR77H cannot rescue the developmental brain phenotype

of deficient fish, it is still possible that the lack of overt neuroendocrine phenotypes may be attribut-

able to SCGN p.R77H retaining some function compared to complete loss of SCGN expression, or

may be indicative of species-specific phenotypes not evident in humans.

Unlike STXBP2, SCGN protein is absent from the immune system, pointing specifically to neuro-

endocrine cells as the likely source of pathology in these patients. It is important to note that both

the EEC and neuronal compartments have been shown to be highly interconnected, with inputs

reaching the central nervous system (Kaelberer et al., 2018). EECs play crucial roles in the hormonal

control of satiety, digestion, energy metabolism and motility. A potential role for these cells in

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.49910.034

Source data 4. Source data for Figure 5D.

DOI: https://doi.org/10.7554/eLife.49910.035

Source data 5. Source data for Figure 5F.

DOI: https://doi.org/10.7554/eLife.49910.036

Figure supplement 1. Increased sensitivity to DSS in Scgn deficient animals.

DOI: https://doi.org/10.7554/eLife.49910.026

Figure supplement 1—source data 1. Source data for Figure 5—figure supplement 1A.

DOI: https://doi.org/10.7554/eLife.49910.027

Figure supplement 1—source data 2. Source data for Figure 5—figure supplement 1B.

DOI: https://doi.org/10.7554/eLife.49910.028

Figure supplement 1—source data 3. Source data for Figure 5—figure supplement 1C.

DOI: https://doi.org/10.7554/eLife.49910.029

Figure supplement 2. Immunophenotying of WT and Secret1 mice.

DOI: https://doi.org/10.7554/eLife.49910.030

Figure supplement 2—source data 1. Source data for Figure 5—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.49910.031
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Figure 6. Loss of colonic EECs does not confer DSS susceptibility. (a) Diagram depicting the mating strategy used to generate colonic EEC

(Neurog3DCol) deficient mice. (b) CGA immunofluorescent staining of colon and small bowel from wild-type (Neurog3f/f) and colonic EEC deficient

(Neurog3DCol) mice (c) qRT-PCR of epithelial lineage makers from colonic epithelium from Neurog3f/f and Neurog3DCol mice (n = 3 in each group). (d)

Heat map presentation of top differentially expressed genes from RNA-seq of colonic epithelia of Neurog3f/f and Neurog3DCol mice. (e) Ex-vivo basal

Figure 6 continued on next page
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immune regulation has been suggested by the fact that these cells express Toll-like receptors and

other receptors for microbially-derived metabolites, which can stimulate hormone secretion by these

cells (Bogunovic et al., 2007; Lebrun et al., 2017; Palazzo et al., 2007; Selleri et al., 2008). None-

theless, our studies in mice with ablation of colonic EECs indicate that this is not the likely cellular

compartment responsible for the observed intestinal pathology, and point to dysfunction of gut neu-

rons or central nervous system neurons as possible culprits of the pro-inflammatory phenotype. In

fact, a role for gut neurons in immune regulation has been previously demonstrated. For example,

murine models of gut neuron and glial cell defects have been shown to predispose to experimental

colitis (Bush et al., 1998; Cheng et al., 2010; Fujimoto et al., 1988), and gut neuron deficiency in

humans, such as in Hirschsprung’s disease, can be associated with perinatal severe colitis

(Demehri et al., 2013; Gosain, 2016; Gosain and Brinkman, 2015). Future studies to dissect the

contribution of specific cellular compartments will delineate additional mechanistic details for the

immune dysregulation and pathology resulting from SCGN deficiency.

Materials and methods

DNA extraction, SNP arrays and linkage analysis
DNA was extracted from 5 mL of whole blood collected in EDTA coated tubes using an automated

QIAGEN AUTOPURE LS – large sample nucleic acid purification instrument. DNA concentration and

quality was assessed on a nanodrop instrument. DNA was aliquoted and stored at �20˚C until use.

DNA samples from probands and their unaffected siblings were genotyped for common variants

along the genome using the Infinium HumanCoreExome Beadchip SNP array (Illumina), which

includes 264,909 tag SNP markers (244,593 in exons). Genotyping was performed by the McDermott

Center for Human Genetics according to the manufacturer’s standard procedures. Areas of loss of

heterozygosity that were shared by probands and not their unaffected siblings were identified as

potential regions harboring a recessive allele responsible for disease linkage.

Whole exome and whole genome sequencing
Three micrograms of genomic DNA isolated from peripheral blood were used for whole-exome

sequencing. The exome was captured using the Agilent SureSelectXT Human All Exon V4 Kit and

sequenced on the Illumina HiSeq 2500 generating 100 bp paired-end reads. Variant calls were fil-

tered to only include exonic, non-synonymous changes with minor allele frequencies < 1% in ExAC,

1000 genomes and TOPMED. We filtered further to include variants that were exclusively shared by

all probands in a homozygous manner and present at most in a heterozygote manner in unaffected

siblings. The analysis was conducted both at the genome-wide level and subsequently, the variants

were reanalyzed focusing on areas of LOH identified by genome-wide SNP arrays as noted above.

Figure 6 continued

and DHA-stimulated GLP-1 and GLP-2 secretion from colonic explants of Secret1 and EEC deficient mice. (GLP-1: Neurog3f/f n = 7, Neurog3DCol n = 6,

WT n = 6, Secret1 n = 6) (GLP2: Neurog3f/f n = 5, Neurog3DCol n = 5, WT n = 6, Secret1 n = 4). Bars represent the mean and error bars the S.E.M. (f–g)

Body weight and DAI of conventionally raised Neurog3f/f and Neurog3DCol mice treated for 6 days with 3% DSS (n = 15 in each group). Scale bar in (b)

50 mm. *p<0.05, **p<0.01, ***p<0.001 ****p<0.0001 two tailed unpaired t test in (c) and (e). S.E.M. was used for error bars in (c), (e), (f) and (g).

DOI: https://doi.org/10.7554/eLife.49910.037

The following source data is available for figure 6:

Source data 1. Source data for Figure 6C.

DOI: https://doi.org/10.7554/eLife.49910.038

Source data 2. Source data for Figure 6D.

DOI: https://doi.org/10.7554/eLife.49910.039

Source data 3. Source data for Figure 6E.

DOI: https://doi.org/10.7554/eLife.49910.040

Source data 4. Source data for Figure 6F.

DOI: https://doi.org/10.7554/eLife.49910.041

Source data 5. Source data for Figure 6G.

DOI: https://doi.org/10.7554/eLife.49910.042
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Because of gaps in WES capture affecting the areas of LOH, DNA samples from two probands were

subsequently subjected to whole genome sequencing (Complete Genomics) and repeat analysis for

rare variants (MAF <1%) in the segments of LOH that were shared between the two probands was

performed. Furthermore, using WGS data, we remapped LOH segments. Heterozygous and homo-

zygous variants were identified and assigned into 100 kb windows throughout the 6 p and 12q chro-

mosome arms. Average heterozygosity was calculated for each window and plotted along the

chromosome arm.

Allelic discrimination assay
Samples from 2000 Hispanic individuals enrolled in the Dallas Heart study were used for direct geno-

typing for rs376721140 using TaqMan probes flanking the area of interest. The assays were per-

formed by the McDermott Center for Human Genetics using an Applied Biosystems 7900HT real

time PCR instrument.

Plasmids
A plasmid containing a full-length copy of human SCGN cDNA was purchased from Open Biosys-

tems (MHS6278-202826064). Forward and reverse primers containing sites for BamHI and NotI

restriction enzymes respectively, were used to PCR amplify the coding sequence for SCGN. The

product was digested with BamHI and NotI and ligated into the multicloning site of the pEBB vector.

The inserted sequence (SCGN) was validated by Sanger sequencing. SCGN R77H was generated

using a site-directed mutagenesis kit (Agilent), and the mutation was confirmed by Sanger sequenc-

ing. The coding sequences for SCGN (WT or R77H) were subcloned into the FG9 lentiviral expres-

sion system containing a N-terminus 2xHA tag, as described before (Li et al., 2012).

Immunoblotting and immunoprecipitation studies
Cellular lysate preparation, protein electrophoresis, immunoblotting and immunoprecipitation was

performed as previously described (Burstein et al., 2004). The antibodies used in our studies

include SNAP25 (Abcam ab5666), SCGN (Santa Cruz biotechnology sc-374355), P84 (Genetex

GTX70220), Actin (Sigma A5441), and anti-HA affinity matrix (Roche 11815016001).

Cell culture and cell line generation
STC-1 cells were obtained from ATCC (Cat No. CRL-3254) and grown in culture using DMEM sup-

plemented with 10% FBS. Identity testing was not performed as these cells were directly obtained

from the vendor. Cells were tested and found to be Mycoplasma-free at time of experiments. To tar-

get the Scgn locus (exon 1), lentiviral CRISPR constructs (Lenti CRISPR system) were generated, as

previously reported (Shalem et al., 2014). STC-1 cells were transduced with lentiviral particles and

subjected to puromycin selection. Single clone isolation was carried out by limiting dilution, and

clones were screened for loss of SCGN protein expression by western blot. Two independent clones

were subsequently used for studies. SCGN protein expression was restored into these clones using

lentiviral particles designed to express HA tagged WT or p.R77H human SCGN. Lentiviruses were

generated using the FG9 system, with hygromycin resistance as a selection marker. Protein re-

expression was confirmed by western blot.

Cellular immunofluorescence staining and analysis
Immunofluorescence staining of STC-1 cells was carried out as previously described (Phillips-

Krawczak et al., 2015). Briefly, cells were grown onto circular cover slips in 6-well plates. Once cells

reached 70% confluency, cover slips were retrieved and cells were fixed with ice-cold fixing solution

(4% paraformaldehyde in PBS) for 30 min. Cells were then permeabilized for 3 min using 0.15% Sur-

fact-Amps (ThermoFisher) in PBS. The coverslips were then blocked for 30 min with blocking buffer

(PBS and 3% goat serum – vector labs) and afterwards incubated overnight in primary antibody

diluted in blocking buffer. Primary antibodies used for immunostaining included the following: Secre-

tagogin (Santa Cruz biotechnology, sc-374355), SNAP25 (Abcam ab5666). After three washing steps

in PBS, cells were incubated in secondary antibodies and respective fluorophores: goat anti-mouse

alexa fluor 488 (Invitrogen) and goat anti-rabbit alexa fluor 555 (invitrogen). Images were obtained

using a Nikon A1R confocal laser microscope system. The membranous and total cellular area plus
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fluorescence intensity of individual cells was measured using the ImageJ software. Approximately 40

cells per cell-type were analyzed. A membranous to total cellular fluorescence intensity ratio was

calculated.

In-vitro GLP-1 release assay
All cells were counted and seeded on 6-well plates at equal density. Once cells were confluent they

were placed in serum free media for a 2 hr period and washed twice with HEPES buffer (140 mM

NaCl, 4.5 mM KCL, 20 mM HEPES, 1.2 mM CaCl2, 1.2 mM MgCl2, 20 mM Dextrose) before adding

400 mL of DHA-containing media. To prepare DHA-containing media, stock DHA (nu-chek U-84-A)

solutions were prepared in 100% ethanol at a concentration of 10 mg/mL and frozen at �20˚C until

used. DHA-containing media at a concentration of 100 mM was prepared on the day of experiment

by addition to a HEPES buffer, which was sonicated for 5 min prior to addition to cells. Cell superna-

tants were collected after 15 min and GLP-1 concentrations were determined using an ELISA kit

(Millipore, EZGLPHS-35K). To account for possible differences in cellular density, ELISA results were

normalized to total protein content (measured by Bradford assay) after cellular lysis of the corre-

sponding wells.

Zebrafish models
All zebrafish were kept in a standard aquatic facility, and raised at 28.5˚C. Knockdown of scgn was

achieved by injecting 5 ng of morpholino (GENE TOOLS) into 1 cell stage blastocysts, together with

a tp53 MO to avoid the non-specific effects from injection (Robu et al., 2007). Morpholino efficiency

was confirmed by RT-PCR and western blot analysis. For rescue experiments scgn MO was coin-

jected with mRNAs encoding either human SCGN wild-type or R77H into blastocysts of one-cell

stage. Protein re-expression was confirmed by western blot (data not shown). In situ hybridization

was carried out as previously described (Luo et al., 2016). Images were acquired using

an OLYMPUS (SZX16) microscope. The midbrain was measured from a lateral view.

Mouse strains
Mice were kept in a specific pathogen free (SPF) barrier facility, in a standard 12 hour day cycle and

fed standard irradiated chow. Scgn deficient animals were generated at the UT Southwestern trans-

genic core by multiple zygote injection of custom synthetic sgRNA (Dharmacon) and Cas9 mRNA

(Sigma). Mice were generated on a C57BL/6 background and resulting progeny was characterized

for potential targeting of the Scgn allele by PCR amplification of a 214 bp region flanking the site of

sgRNA cleavage. The amplified product was subjected to Sanger sequencing. Two founder mice

with Scgn mutations resulting in significant deletions at this site, referred to here as Secret1 and

Secret2 (Figure 4—figure supplement 1a), were selected for future studies. Genotyping of these

mice was performed by amplification of this region and gel electrophoresis to detect the genomic

deletions (Figure 4—figure supplement 1b).

Colonic EEC deficient animals were generated by mating the CDX2 Cre driver line (Jax 009350)

against Neurog3 floxed mice, a kind gift from Andrew Leiter with authorization from Gérard

Gradwohl.

DSS experiments
Acute colitis was induced by providing a 6 day course of DSS (Alfa aesar J63606-22) in drinking

water at a concentration of 1%, 2% or 3% (g/dL, weight per volume). DSS solution was replaced

every three days. On 10 day long DSS experiments, drinking water was replaced with autoclaved

water as indicated on experimental figures. Mice of different genotypes were cohoused at the time

of DSS experiments. Weight was recorded on a daily basis. Disease activity index (DAI) was calcu-

lated on day seven in a blinded fashion by adding individual scores from stool consistency, presence

of blood in stool and weight change, as previously described (Supplementary file 3) (Cooper et al.,

1993).

Tissue staining
Tissue analysis from patient samples involved archived intestinal biopsy tissue blocks from control

and affected individuals. Tissues from experimental animals were freshly isolated after euthanasia
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and fixed overnight in freshly prepared 4% PFA, to be later embedded in paraffin. For all staining, 4

mm sections were utilized. Hematoxylin and eosin (HE) staining was performed by standard methods.

For immunostaining, patient slides were stained using the Dako Omnis automated system, whereas

slides obtained from experimental animals were manually stained. Briefly, the sections were first

deparaffinized and rehydrated by serial xylene and decreasing alcohol concentration immersion.

Antigen retrieval was performed by heat-induced epitope retrieval and citrate solution. Slides were

incubated in blocking buffer for 45 min (PBS and 3% goat serum – vector labs), and then incubated

overnight at 4˚C in primary antibodies diluted in blocking buffer. Primary antibodies used for tissue

immunostaining included the following: Secretagogin (Santa Cruz biotechnology sc-374355), chro-

mogranin A (Abcam ab15160), chromogranin B (Abcam ab12242), 5-HT (Immunostar 20080),

SNAP25 (Abcam ac5666), GCG (Santa Cruz biotechnology sc-514592), Tuj1 (Biolegend 801213) and

synaptophysin (Abcam ab32127). Slides were washed in PBS three times (5 min each), and then incu-

bated for 30 min in secondary antibodies in blocking buffer. Secondary antibodies used included

goat anti-mouse alexa fluor 488 (Invitrogen) and goat anti-rabbit alexa fluor 555 (invitrogen). Slides

were then washed in PBS on two occasions and then incubated for 10 min in PBS and Hoechst at

1:10,000 dilution. Slides were washed in PBS on three additional occasions prior to mounting using

gold antifade reagent (Invitrogen).

Tissue histological analysis
For DSS colitis histological severity scoring, HE slides were reviewed by a GI pathologist in a blinded

fashion. Tissues were scored using a modified scoring system (Supplementary file 2) generated

from combining the total score calculated from Neurath’s DSS score (Wirtz et al., 2017) and multi-

plying it by involvement score as suggested by Cooper (Cooper et al., 1993). Morphometric analy-

sis of SCGN and CGA intestinal expression in the mouse was performed by staining tissues from

four adult wild-type animals. Images (at least 13 per mouse and per region) were obtained using an

epifluorescence microscope (Zeiss AxioObserver epifluorescence microscope). Images were scored

for SCGN and CGA positivity by two independent observers and an average calculated from both

quantifications.

Tissue mRNA expression
For DSS experiments, cecal tissue was collected at the end of the experiments and immediately

stored in RNA later solution (QIAGEN), following the manufacturer’s instructions. RNA stabilized tis-

sue was later thawed and 20 mg of tissue was disrupted using a glass tissue douncer and homoge-

nized using QIAshredder columns prior to RNA extraction using RNeasy spin columns (QIAGEN).

For preparation of small bowel and colonic epithelial isolates, the entire small bowel or colon were

carefully excised and intestinal contents rinsed with KRB buffer (10 mM D-glucose, 0.5 mM MgCl2,

4.6 mM KCl, 120 mM NaCl, 0.7 mM Na2HPO4, 1.5 mM NaH2PO4, 15 mM NaHCO3). The intestinal

segments were then filled with 1 mL KRB buffer containing 10 mM EDTA and 1 mM DTT and tied off

on either end. These segments were placed in a sealed 50 mL conical tube containing 30 mL of KRB

buffer and placed in a rocking deck incubator at 220 RPM for 40 min at 37˚C. The luminal contents

were collected into 1.5 mL microfuge tubes and washed three times with KRB buffer prior to storing

in RNAlater solution at �80˚C. RNA was then extracted following instructions by the manufacturer.

We performed reverse transcription using 3–5 mg of RNA and the superscript III system (Invitro-

gen). We carried out quantitative real time PCR using SYBR green mix. Primers used for Il6, Il1b,

Il33, Tnf, Lyz, Neurog3, Muc2, Retnlb, Tff3, Spdef and Scgn are provided in Supplementary file 4.

Relative transcript levels were calculated using the DDCt method.

RNA sequencing
RNA Seq was performed as previously reported (Starokadomskyy et al., 2016). Briefly, RNA was

extracted from epithelial preparations with RNeasy columns (QIAGEN) as per instructions from the

manufacturer. RNA integrity was determined using a bioanalyzer. Library preparation was performed

at the UTSW microarray core using the TruSeq RNA sample preparation kit. Sequencing was per-

formed on an Illumina platform HiSeq2500 sequencer. Sequencing data were analyzed using a cus-

tom workflow designed by the UTSW high performance computing cluster (BioHPC). Briefly, after

adapter trimming, sequences were aligned to reference genome, GRCm38, using Hisat2. Duplicate
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reads were marked and removed using SAMBAMBA. Features were then counted using feature-

counts. Differential expression analysis was performed using edgeR with cutoffs of 2 and 0.05 for FC

and FDR respectively.

Colonic GLP-1 and GLP-2 release assay
Adult animals (WT or Secret1) were euthanized and the colon was immediately excised. Intestinal

contents rinsed with ice-cold incubation buffer (138 mM NaCl, 5.6 mM KCl, 2.6 mM CaCl2, 1.2 mM

MgCl2, 4.2 mM NaHCO3, 1.2 mM NaH2PO4, 10 mM HEPES), as previously described (Lebrun et al.,

2017). The colon was opened along the mesenteric axis, and rolled open. Colons from individual

mice were placed in a 6-well plate containing 3000 mL of dextrose-free and DHA-free incubation

buffer. They were incubated for 10 min at room temperature and then at 37˚C, 5% CO2 for an addi-

tional 10 min. A total of 200 mL of incubation buffer was collected for baseline GLP-1 secretion analy-

sis. The colon was then gently tapped dry and re-placed in a new well with 3 mL of incubation buffer

with 10 mM dextrose and 100 mM DHA (this solution was prepared fresh and sonicated for 3 min

prior to use). At 60 min, 200 mL of buffer was collected for analysis. PMSF was added at a concentra-

tion of 100 mM (as DPP IV inhibitor) to each timed collection. A GLP-1 (Millipore EZGLPHS-35K) or

GLP-2 (Crystal Chem 81514) ELISA kit was used for quantitative GLP-1 analysis according to manu-

facturer’s instructions.

Microbiota analysis by 16S sequencing
Morning fecal pellets were collected from co-housed WT and Secret1 adult animals aged 10–12

weeks. Fecal pellets were immediately frozen in liquid nitrogen and stored until use. DNA was

extracted using QIAGEN power fecal kit according to manufacturer’s instructions. DNA purity and

concentration were measured on a nanodrop device. Paired-end 16 s sequencing was carried out by

a commercial vendor (SeqMatic) using an Illumina MiSeq platform. Sequencing data were then sub-

jected to standard QIIME2 pipeline workflow (Bokulich et al., 2018; Caporaso et al., 2010), consist-

ing of pre-processing quality preparation (trimming, demultiplexing, DADA2 quality filtering),

phylogenetic profiling, alpha and beta diversity analysis, sequence alignment, taxonomic assignment

and distribution analysis; and differential abundance testing using ANCOM.

Flow cytometry
Lamina propria (LP) cells were isolated as described before (Kathania et al., 2016). In brief, colons

were flushed to wash off fecal content and opened longitudinally. Colons were then cut into 0.5 cm

pieces, transferred to flasks and shaken for 25 min at 37˚C in HBSS containing 5 mM EDTA and 10

mM HEPES supplemented with 10% FBS. Cell suspensions were passed through a cell strainer. The

remaining colonic tissue was washed with cold PBS, minced, transferred to conical flasks, and shaken

for 25 min at 37˚C in DMEM containing 0.25 mg/ml VII collagenase, 0.125 U/ml LiberaseTM, 10 mM

HEPES pH 8, 0.1 M CaCl2, 0.05% DNase1, and 10% FBS. Cell suspensions were collected and

passed through a strainer before staining and analysis. Cells were washed and then incubated with

Fc block (553142, BD Bioscience). Subsequently, cells were stained with combinations of antibodies.

Antibodies used were Lin-V450 (51–9006958, BD Biosciences), CD45.2-APC (17-0454-81, eBio-

science), NK-p46- FITC (11-3351-82, eBioscience) IL-23R-PE (FAB16861P- R and D), CD4-FITC

(100406, Biolegend), CD11c-PE-Cy7 (558079, BD Biosciences), Ly6G-eFlour-450 (48-5931-82, eBio-

science), CD19-V450 (560375, BD Biosciences), NK1.1 FITC (553164, BD Biosciences), CD11b-FITC

(553310, BD Biosciences) and CD25-PE (12-0251-81, eBioscience). Viability staining was done by 7-

AAD (420404, Biolegend). Data were acquired with a FACSCanto II (BD) and analyzed with FlowJo

software (Tree Star).

Statistical analysis
The unpaired Student’s t test was utilized to parametric variables between two groups. The log rank

test was calculated for statistical analysis of survival rates. Statistical analysis of 16S sequencing was

performed as described above. For zebrafish experiments statistical analyses were performed using

one-way ANOVA, Tukey’s multiple comparisons test incorporated in Prism 7 (GraphPad Software).
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Study approval
All human studies were carried out in accordance with UT Southwestern Medical Center institutional

review board guidelines under an approved protocol (STU 112010–130). All subjects agreed to par-

ticipation and written informed consent was obtained from all participants or legal guardians. Assent

was obtained from individuals older than 10 years of age at time of enrollment. Murine studies were

approved by the UT Southwestern Institutional Animal Care and Use Committee under study num-

ber APN 102011. All zebrafish (Danio rerio) experiments were performed according to standard pro-

cedures, and were performed in accordance with the guidelines of the animal ethical committee of

Sichuan University.
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