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Abstract
Groups of distinct but related diseases often share common symptoms, which suggest likely

overlaps in underlying pathogenic mechanisms. Identifying the shared pathways and com-

mon factors among those disorders can be expected to deepen our understanding for them

and help designing new treatment strategies effected on those diseases. Neurodegenera-

tion diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Hunting-

ton's disease (HD), were taken as a case study in this research. Reported susceptibility

genes for AD, PD and HD were collected and human protein-protein interaction network

(hPPIN) was used to identify biological pathways related to neurodegeneration. 81 KEGG

pathways were found to be correlated with neurodegenerative disorders. 36 out of the 81

are human disease pathways, and the remaining ones are involved in miscellaneous

human functional pathways. Cancers and infectious diseases are two major subclasses

within the disease group. Apoptosis is one of the most significant functional pathways. Most

of those pathways found here are actually consistent with prior knowledge of neurodegener-

ative diseases except two cell communication pathways: adherens and tight junctions.

Gene expression analysis showed a high probability that the two pathways were related to

neurodegenerative diseases. A combination of common susceptibility genes and hPPIN is

an effective method to study shared pathways involved in a group of closely related disor-

ders. Common modules, which might play a bridging role in linking neurodegenerative dis-

orders and the enriched pathways, were identified by clustering analysis. The identified

shared pathways and common modules can be expected to yield clues for effective target

discovery efforts on neurodegeneration.

Introduction
Healthcare improvements coupled with low fertility are expected to cause an increasingly
larger proportion of old population, which leads to more chronic illnesses [1]. A representative
type of chronic disease is neurodegenerative disorders, such as Alzheimer’s disease (AD),
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Parkinson’s disease (PD) and Huntington's disease (HD). Neurodegenerative diseases bring
enormous suffering in terms of economical cost and emotional trauma. Unfortunately, the eti-
ologies and pathogeneses of these disorders remain not well understood. Current therapies for
these diseases are palliative rather than curative and their effectiveness is still far from satisfac-
tory [2]. It is thus critical to elucidate factors underlying these disorders for better design of
intervention strategies. However, the traditional strategy of “one disease-one target-one drug”
is no longer effective and challenged in many cases, especially with regard to multi-factorial
diseases [3, 4], which is the case for neurodegenerative disorders. Physiological redundancies
in biological networks could also limit efficacy of administered drugs [5]. For complex diseases,
multiple targets or pathways have to be affected for successful treatment outcomes.

AD, PD and HD share at least two common symptoms: motor and cognitive impairment
[6–8]. Similar phenotypic traits suggest that there are likely overlaps in the pathogenic mecha-
nisms underlying distinct neurodegenerative disorders. Compared to studying individual
diseases separately, identification and analysis of the common dysfunctional proteins or dysre-
gulated modules/pathways of the three diseases can be expected to provide deeper insights into
their pathogenic processes. Understanding the common pathogenic processes could facilitate
efforts to design treatment strategies utilizing optimal drug combinations that could work
effectively for the diseases.

Differentially expression genes (DEG) and genome-wide association studies (GWAS) are
usually applied to study related biological pathways of a specific disease. For multiple diseases,
however, there is lack of effected method to study their shared pathways and common factors.
In this paper, we proposed a simple and effective approach which integrated common suscepti-
bility genes of multiple disorders and the human protein-protein interaction data (Fig 1). AD
and PD susceptibility genes were acquired from public online databases. HD susceptibility
genes were acquired through literature mining and the random walk algorithm [9]. Common
genes of the three susceptibility gene sets and their first neighbors in the human protein-pro-
tein interaction network (hPPIN), called as CFNN, were extracted to perform pathway enrich-
ment analysis, which identified pathways related with neurodegenerative diseases. Gene
expression data sets from NCBI GEO database [10] were applied to evaluate the computed
pathways. Meanwhile, pathway clustering analysis obtained the common modules in CFNN
shared by distinct pathways. Those modules might play a bridging role in linking enriched
pathways and neurodegeneration.

Materials and Methods

Data source
Human protein-protein interaction network (hPPIN) was constructed by integrating four
existing databases, i.e., BioGrid [11], HPRD [12], IntAct [13], and HomoMINT [14]. Protein
identifiers were mapped to the genes coding for the proteins, and redundant interactions were
removed. The comprehensive protein-protein interaction network covers 15,710 human genes
and 143,237 interactions.

AD and PD susceptibility genes were acquired from the GAD [15], CTD [16] and OMIM
[17] database. These public data sources store associations between genes and diseases, but
focus on different aspects of the phenotype-genotype relationship. After integrating all the rec-
ords in the databases, 433 and 188 distinct susceptibility genes were collected for AD and PD,
respectively. The three databases does not have sufficient data for HD, whose susceptibility
genes were collected by text-mining of biomedical literatures from PubMed (http://www.ncbi.
nlm.nih.gov/pubmed/). It produced 20 HD susceptibility genes. Compared with AD and PD,
the number of collected HD susceptibility genes is still rather low, which might be due to the
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much lower prevalence of HD than AD and PD [18–20]. To bring the number of HD's suscep-
tibility genes to the same level as those of AD and PD, a random walk algorithm [9] was applied
to expand the number of HD susceptibility genes through the hPPIN, using manually collected
HD susceptibility genes as seed nodes. The top 400 genes ranked by random walk (including
the seed genes) were selected as the expanded set of HD susceptibility genes.

Random walk with restart (RWR)
RWR is a variant of random walk. It mimics an iterative walker that moves from a current
node to a randomly selected adjacent node, and allows the restart of the walk in every time step
at source nodes with predefined probability γ [9]. RWR is formally defined as follows:

ptþ1 ¼ ð1� gÞWpt þ gp0

WhereW is the column-normalized adjacency matrix of the graph and pt is a vector in which
the ith element holds the probability of being at node i at time step t. p0 is the initial probability
vector where equal probabilities were assign to the source nodes, with the sum of the probabili-
ties equal to 1.

Fig 1. Workflow for identification of shared pathways and commonmodules among AD, PD and HD. In the first step, AD, PD and HD susceptibility
gene (sg) sets were collected and their intersection were defined as common sg. Meanwhile, common sg's first neighbors in the human protein-protein
interaction network (hPPIN) was extracted to construct common gene first neighbor network (CFNN). Then, KEGG pathway enrichment analysis was applied
to the nodes in CFNN to get shared pathways of AD, PD and HD, following by gene expression analysis to evaluate the found pathways. Finally, hierarchal
clustering was applied to cluster the enriched pathways and indentify commonmodules in CFNN. RWR: random walk with restart.

doi:10.1371/journal.pone.0143045.g001
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In this study, RWR was used to prioritize susceptibility genes from among genes that have
not been associated with HD. The set of source nodes consists of genes known to be associated
with HD. The predefined probability γ was set to 0.75, as was done by Kohler et al [21]. All
genes in the network are eventually ranked according to their steady-state probabilities and the
top 400 genes were selected.

Common susceptibility genes and their first neighbor network
construction
We took the intersection of AD, PD and expanded HD susceptibility genes and called it the set
of common susceptibility genes of the three disorders. To check the significance of those com-
mon genes, we randomly generated three gene sets of the same size as that of AD, PD and
expanded HD susceptibility genes from hPPIN and computed the number of common genes
among them. The process was repeated 104 times. A p-value was then computed for the
observed number of common genes.

Nearest neighbors of the common genes were extracted from the hPPIN to construct a net-
work consisting of the common genes and their first neighbors, which was called the Common
gene First Neighbor Network (CFNN).

Pathway enrichment and clustering analysis
CFNN consists of the common susceptibility genes and their direct interaction partner in
hPPIN. Pathways enriched with genes in CFNN are very likely shared pathways of AD, PD and
HD. ClueGO v2.0.7 [22] was used to perform KEGG [23] pathway enrichment for all nodes in
CFNN. ClueGO, an Cytoscape [24] plug-in, can identify biological pathways enriched with a
list of genes. Two-sided (enrichment/depletion) method based on the hypergeometric distribu-
tion was used for statistical test with a multiple testing p-value correction using the Benjamini-
Hochberg method [25]. Pathways with adjusted p-value< 0.05 were regarded as related bio-
logical pathways to CFNN genes and were selected for further analysis.

Hierarchical clustering approach was use for clustering analysis. Genes appearing in both
the CFNN and enriched KEGG pathways were named as associated genes (Fig 2(A)). A binary
associated gene-pathway matrix was created (0: absent, 1: present). Based on this matrix, a
cosine similarity matrix of pathways was built and used to group the pathways into clusters. To
getting meaningful clusters, we manually checked the dendrogram plot of results and chose
clustering distance d = 1.1 as the final cutting point. For each cluster, each member pathway's
associated genes were intersected to obtain their common associated genes. Those common
associated genes were then mapped to CFNN to get their interaction subnetwork, called com-
mon module (Fig 2(B)). The average clustering coefficients of the acquired modules were
computed.

Gene expression analysis
Twenty AD, PD and HD gene expression data sets (March 16, 2014), attached raw data, were
collected from the NCBI GEO database (see S1 File). Among those extracted expression sets,
only GSE7621 [26], GSE8397 [27], GSE20168 and GSE20292 [28, 29] on PD patients and
GSE45596 [30] on AD patients (see Table 1), have significantly differentially expressed genes
(methods were explained below). 4 of the 5 expression sets were on PD vs. Normal. The com-
bine of differentially expressed genes acquired in the 4 expression sets were defined as the
finally differentially expressed gene set on PD.

For Affymetrix HG_U133 (including A chip and B chip) and HG-U133_Plus_2 platform,
the CEL source files were preprocessed by the RMA algorithm with default parameters in the R
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Bioconductor package[31]. For Agilent-014850 platform, preprocessing steps of the TXT
source files included background correction with the “normexp”method to subtract the back-
ground intensity from the foreground intensity for each spot [32], within-array normalization
with the “loess”method to normalize the M-values for each array separately, and between-
array normalization with the “quantile”method to normalize intensities or log-ratios for them
to be comparable across arrays [33]. The package limma [34] in Bioconductor was then used to
perform differential expression analysis for the preprocessed microarray data. Probe sets were
mapped to NCBI entrez genes using R package GEOquery [35]. In cases where there were mul-
tiple probe sets that correspond to the same gene, expression values of those probe sets were
averaged. Genes that were significantly differentially expressed with a Benjamini and Hochberg
adjusted p-value less than 0.05 [25] were picked for later analysis.

Fig 2. Pathway clustering analysis and commonmodule extracting. (A) Diagram of clustering analysis. Hierarchical clustering was applied and only
associated genes in a specific pathways were considered, not the full genes. (B) Extracting commonmodule from a pathway cluster. The commonmodule is
a part of CFNN, and might playing a bridging role in linking enriched pathways and neurodegeneration.

doi:10.1371/journal.pone.0143045.g002
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To evaluate the enriched KEGG pathways, each node of the pathway was considered as a
component. Those components were a mixture of one protein node and multi-protein node.
Multi-protein component, which contains more than one protein, was also regarded as a single
component. That is to say, if any individual protein of the multi-protein component was found
to be significantly differentially expressed in gene expression analysis, the corresponding
multi-protein component was taken as significantly differentially expressed. For example, α-
Catenin, a multi-protein component in adherens junction, is composed of catenin alpha-1,
catenin alpha-2 and catenin alpha-3. If one of the three proteins was shown to be significantly
differentially expressed, α-Catenin was defined as a significantly differentially expressed com-
ponent. Gene symbols of proteins involved in all components were extracted from KEGG. To
check the significance of obtaining those differentially expressed components in an enriched
pathway, we randomly generated gene set of the same size as that of computed differentially
expressed genes from human gene set, and computed the number of components involved in
the enriched pathways. The process was repeated 104 times. A p-value was then computed for
the observed number of differentially expressed components.

Results and Discussion

Common susceptibility genes of AD, PD and HD show high statistical
significance
AD, PD and HD share 10 common susceptibility genes, which were obtained by taking inter-
section of susceptibility gene sets of the three disorders. P-value for finding same or larger size
of common gene set was found to be 1.17×10−6 (Fig 3), showing that the acquired 10 common
genes was statistically significant.

Table 2 showed clinical indications for 5 of the 10 common genes. Interestingly, three of
them had been used to treat cancers, i.e., PARP1, GSK3B and UCHL1. It suggests that cancers
and neurodegenerative disorders could be correlated. GSK3B, UCHL1 and LRRK2 were also
reported to be potential therapeutic targets for neurodegenerative diseases and inhibitors had
been designed against them [36–38]. The remaining 5 common genes showing no indication
yet were all related with key processes in neurodegeneration. CASP3, FAS, SQSTM1 and
YWHAZ participate in cell apoptosis [39, 40], which are activated in neurodegenerative dis-
eases [41]. TFAM, playing a role in organizing and compacting mitochondrial DNA, is related
with the mitochondrial dysfunction in neurodegenerative disorders [42]. The 10 common
genes acquired here might be a good starting point to find overlapped pathogenic mechanisms
underlying the three diseases, facilitating efforts to discover potential drug targets for neurode-
generative diseases.

Table 1. List of selected gene expression data sets.

GEO accession Sample tissue Platform Nr. of Sig. Diff. a

PD vs. Normal

GSE7621 Substantia nigra HG-U133_Plus_2 143

GSE8397 Substantia nigra HG-U133A/B 655

GSE20168 Prefrontal area HG-U133A 169

GSE20292 Substantia nigra HG-U133A 24

AD vs. Normal

GSE45596 Brain microvessel Agilent-014850 2063

a: The number of significantly differentially expressed genes.

doi:10.1371/journal.pone.0143045.t001
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Eighty-one KEGG pathways were enriched with common susceptibility
genes and their nearest neighbors in hPPIN
The CFNN covers 1294 human genes with 21679 interactions. 81 KEGG pathways were
enriched with adjusted p-value< 0.05. 574 genes were found to be associated with CFNN and
enriched KEGG pathways, called the associated genes (see Fig 2). The list of enriched KEGG
pathways and their associated genes can be found in S2 File.

Fig 3. Probability density for obtaining common genes. The observed value is marked with a filled
triangle.

doi:10.1371/journal.pone.0143045.g003

Table 2. Indications of common susceptibility genes of AD, PD and HD.

Gene
symbol

Protein Indicationa

ESR2 Estrogen receptor beta Successful target: Vasomotor symptoms

PARP1 Poly [ADP-ribose] polymerase-1 Successful target: Inflammatory skin conditions; Clinical
trial target: Malignant melanoma, Triple negative breast
cancer, Non small cell lung cancer, Brain cancer, Stroke,
Myocardial infarction

GSK3B Glycogen synthase kinase-3
beta

Clinical trial target: Non Hodgkin lymphoma,
Glioblastoma multiforme, Acute promyelocytic leukemia,
Brain and central nervous system tumors; Research
target: AD, Type II diabetes

UCHL1 Ubiquitin carboxyl-terminal
hydrolase isozyme L1

Research target: Cancer, AD and PD

LRRK2 Leucine-rich repeat serine/
threonine-protein kinase 2

Research target: PD

a: Source from Therapeutic Target Database [43].

doi:10.1371/journal.pone.0143045.t002
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The enriched pathways belonged to two categories: functional pathways and diseases (Fig
4). Thirty six were human disease pathways, which belonged to 5 types of diseases: cancers,
infectious diseases, neurodegenerative diseases, endocrine and metabolic diseases, and sub-
stance dependence. Among those, cancers and infectious diseases were the two largest sub-
classes, which had 17 and 14 disease pathways respectively (Fig 4). The two most significantly
enriched human disease pathways were pathways in cancer and hepatitis B, with adjusted p-
values of 4.97×10−49 and 1.99×10−32 respectively (Fig 4). Pathways in cancer is a KEGG over-
view pathway which integrates all specific KEGG cancer pathways' signaling networks. It is
actually not surprising to see many cancers and infectious diseases related to neurodegenera-
tion. Although neurodegenerative disease and cancer are two distinct pathological disorders,
past epidemiological studies suggest that sufferers of neurodegenerative disorders have reduced
incidence for most cancers [44–46]. Moreover, a growing body of evidence shows that these
two types of diseases share common mechanisms of genetic and molecular abnormalities,
which involve regulation of cell cycle, DNA repair, protein turnover, oxidative stress, and
autophagy [47]. Many studies have also shown that viral and bacterial infections can induce
significant neuronal dysfunction and degeneration of specific neuronal populations [48]. It was
reported that viruses could induce brain dysfunction by either direct cytolytic effects or
bystander inflammatory reactions, especially by neurotropic viruses (for example, measles, her-
pesviridae and influenza) [49]. Recently, Deleidiet al. raised a hypothesis that viral infections

Fig 4. Subclasses of enriched KEGG pathways. The number of pathways belong to each subclass is shown in parentheses. Pathways mentioned in
section 3.2 are labeled. a: Benjamini and Hochberg adjusted p-value; b and c: Number and percentage of associated genes in each pathway. Percentage
represents the proportion of associated genes in all known genes involved in a pathway.

doi:10.1371/journal.pone.0143045.g004
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and inflammation prime neurons and immune cells in the brain, rendering neuronal popula-
tions vulnerable to degeneration in the face of subsequent insults [50].

The remaining 45 were miscellaneous functional pathways, which could be divided into 10
subclasses: signal transduction, immune system, endocrine system, nervous system, cell com-
munication, cell growth and death, excretory system, replication and repair, translation, and
development (Fig 4). Pathway apoptosis was found with an very high p-value of 2.22×10−30

(Fig 4). It is known that neuronal death underlies the symptoms of many neurodegenerative
disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Early research had
shown that apoptosis, involving oxidative stress, perturbed calcium homeostasis, mitochon-
drial dysfunction and activation of cysteine proteases called caspases, is a shared pathway of
AD, PD and HD [51]. The newly discovered immune channel of brain [52] suggests possible
critical role of immune system in etiology of neurodegenerative disorders. In fact, immune sys-
tem was found to be a main subclass of functional pathways enriched with genes of neurode-
generation diseases (Fig 4). Immune system’s role in the initiation of neuronal degeneration
has been documented for HD, and activation of microglia (brain macrophages) is associated
with cognitive dysfunction [53, 54]. Immune activation has also been indicated in the early
phases of AD [55]. Moreover, several studies in rodent models of PD demonstrated that neu-
roinflammation can precipitate PD-like pathology [56–61].

Interestingly, correlation was also found between osteoclast differentiation and neurodegen-
erative disorders. Osteoclast differentiation was the only pathway in development subclass that
was enriched. There were 42 associated genes (nearly one-third of osteoclast differentiation
genes) and the adjusted p-value was 3.33×10−8 (Fig 4). The osteoclasts, multinuclear cells
originating from the hematopoietic monocyte-macrophage lineage, are responsible for bone
resorption. Epidemiological studies showed that patients with AD had an increased risk of
developing osteoporotic hip fractures [62]. Quite recently, it was found that amyloid beta pep-
tide in patients with AD was elevated in osteoporotic bone tissues and enhances osteoclast
function [63]. Our findings, combined with previously published results, suggest that osteoclast
differentiation pathway may be a common factor for both osteoporosis and
neurodegeneration.

Focal adhesion and gap junction, members of the cell communication group, had been
reported to be related to neurodegenerative diseases [64–66]. In the case of the remaining two
pathways in the cell communication group (Fig 4), i.e., adherens junction and tight junction,
little research was found on their relationship with neurodegeneration. Our results, however,
showed adherens junction and tight junction also had significant correlation with neurodegen-
erative disorders. The number of associated genes of adherens junction and tight junction were
30 and 45, with p-values of 9.34×10−9 and 1.61×10−9, respectively (Fig 4).

Gene expression analysis confirmed that adherens and tight junctions
were indeed correlated with neurodegeneration
After gene expression analysis, 927 significantly differentially expressed genes for PD and 2063
for AD were obtained. The list of differentially expressed genes can be found in S3 File.

Each of adherens and tight junctions had 50 pathway components (see S4 File for details
and section 2.5 for the definition of "component"). For the PD differentially expressed gene set,
adherens and tight junction had 10 and 9 differentially expressed components, respectively.
For AD, the numbers of differentially expressed components were 12 and 14. For adherens
junction, p-values for obtaining the number of components in PD and AD were 1.96×10−6 and
1.32×10−4 (Fig 5(A) and 5(B)). For tight junction, the p-values were 3.52×10−3 and 5.82×10−3

(Fig 5(C) and 5(D)). The small p-values imply that the number of differentially expressed
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components is statistically significant for the two junction pathways. Pathway enrichment (sec-
tion 3.2) and gene expression analysis together indicated that adherens and tight junction are
very likely related to neurodegenerative diseases. Actually, adherens and tight junction were
found to be involved in maintaining blood-brain barrier (BBB) integrity [67]. It had been
shown that changes in BBB existed in AD and PD patients [68]. The two junction pathways
may deserve more attention for better understanding of neurodegenerative processes.

Fig 5. Probability density for obtaining the number of components in adherens and tight junction pathways. (A) and (C) for PD, (B) and (D) for AD;
the observed value is marked with a filled triangle.

doi:10.1371/journal.pone.0143045.g005
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Common modules behind the enriched pathways were identified through
clustering analysis
Section 3.2 had shown that the enriched pathways were interconnected, such as infectious dis-
eases and immune system. Seeking out the molecular connections among those pathways
might help to illustrate their relationship with neurodegenerative diseases, lead to deeper sight
into the pathogenic process of neurodegeneration, which could then facilitate designing of
effective synergistic treatment strategies. Clustering analysis was utilized to explore internal
connections of the enriched pathways. Fig 6 shows result of the hierarchical clustering based
on the cosine similarity of associated gene vectors. 14 clusters were finally acquired, which
showed significant differences from the KEGG categories. Some clusters were composed of
functional pathways and diseases, e.g., cluster 1 and cluster 2. For others, pathways belonged to
different subclasses were clustered together, e.g., cluster 3, cluster 4 and cluster 10. The com-
mon associated genes within each cluster and their interaction network, called as common
module, were extracted. The extracted common module was also a part of CFNN, because the
associated genes were obtained by taking intersection of CFNN and the enriched pathways (Fig
2). Those modules were connected denser than CFNN. The mean clustering coefficient of
them was 0.65 (Fig 6), while clustering coefficient of CFNN was only 0.38. The found modules
could thus be the local cores within CFNN and might play a bridging role between pathways in
a cluster and neurodegeneration. Elucidating working mechanisms of the modules, how they
control those related pathways, may provide a fruitful strategy for understanding neurodegen-
erative disorders.

As an example, Fig 7 showed the acquired common module from cluster 2. The module's
relationship with common susceptibility genes of AD, PD and HD was also shown. The com-
mon module, which happens to be a fully connected network, was composed of RELA,

Fig 6. Hierarchical clustering of the enriched pathways. Each cluster is encircled by a rectangle and numbered. Clustering coefficient of commonmodule
in each cluster is shown in parentheses. None: represent the fact that there are no common associated genes within the corresponding cluster.

doi:10.1371/journal.pone.0143045.g006
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NFKB1, IKBKB, TNF, CHUK and IKBKG. Half of the pathways in cluster 2 (Fig 7) had been
found to be directly related to inflammation. Chagas disease and Hepatitis C were involved in
infectious diseases. Inflammation and infectious diseases had been shown to be correlated with
neurodegeneration. Our study also showed that Osteoclast differentiation might be a common
pathway for both osteoporosis and neurodegeneration (section 3.2). The extracted common
module's dysfunction, caused by dysregulation of common susceptibility genes, may be a key
contributing factor for neurodegenerative disorders, inflammation, infectious diseases and
osteoporosis. The found module role in neurodegeneration could thus deserve more in-depth
research. Detailed information about other common modules can be found in S1 Fig.

Conclusion
The traditional drug discovery paradigm of attempting to design precise drugs hitting single
targets has seen itself challenged for treatment of complex diseases. The less than perfect effi-
cacy of the single target, single drug approach is mainly due to drug promiscuity, off-target
effects, and biological pathway redundancy/robustness. Apparent similarities among groups of
closely related disorders hint at possible overlaps in their underlying mechanisms. Figuring out
common factors and network modules shared within a group of distinct but related diseases
may allow us to pinpoint the fundamental factors responsible for the group of disorders. Com-
puted relationship among pathways of related diseases can assist understanding of their etiol-
ogy; correlations between the shared pathways with other biological processes/disorders can
facilitate drug discovery efforts by suggesting possible treatment candidates for drugs already
approved (drug repositioning).

Neurodegenerative disorders including AD, PD and HD were taken as a case study. Their sus-
ceptibility genes were collected to compute biological pathways related with neurodegeneration.
81 KEGG pathways were found to be enriched with neurodegenerative genes. Those pathways
were involved in cancers, infectious diseases, apoptosis, osteoclast differentiation, and immune
system. Sufficient evidences exist for the found correlation between neurodegeneration and the

Fig 7. The commonmodule from cluster 2. Their relationship with common susceptibility genes of AD, PD and HD is depicted. Module inner interactions
are labeled by solid line, its relationship with susceptibility genes by dashed line. Gene names are marked on the nodes. 1: pathways related to inflammation,
2: pathways involved in infectious diseases.

doi:10.1371/journal.pone.0143045.g007
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aforementioned pathways. Our work also showed that adherens and tight junctions, part of the
cell communication process, were also correlated with neurodegeneration. Gene expression anal-
ysis confirmed that the two junction pathways were indeed correlated with neurodegeneration.
The approach applied in this paper can thus be expected to find non-obvious pathways related
with a group of closely related disorders. All of these show that a combination of common sus-
ceptibility genes and hPPIN is an effective method to study shared pathways involved in a group
of related diseases. Not only the functional pathways related with them, but their relationships
with other diseases. Moreover, the computed shared pathways can provide mechanistic hypothe-
ses which can guide confirmatory testing to deepen our understanding of the diseases. Common
modules bridging distinct pathways were identified by clustering analysis. Those bridging
modules may be key points in linking together neurodegeneration and other pathways.
Detailed study of the modules may provide potential targets to treat groups of related disorders
simultaneously.
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