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Purpose: This study aimed to explore the roles of cell-in-cell (CIC)-related genes in glioblastoma (GBM) using bioinformatics and 
experimental strategies.
Patients and Methods: The ssGSEA algorithm was used to calculate the CIC score for each patient. Subsequently, differentially 
expressed genes (DEGs) between the CIClow and CIChigh groups and between the tumor and control samples were screened using the 
limma R package. Key CIC-related genes (CICRGs) were further filtered using univariate Cox and LASSO analyses, followed by the 
construction of a CIC-related risk score model. The performance of the risk score model in predicting GBM prognosis was evaluated 
using ROC curves and an external validation cohort. Moreover, their location and differentiation trajectory in GBM were analyzed at 
the single-cell level using the Seurat R package. Finally, the expression of key CICRGs in clinical samples was examined by qPCR.
Results: In the current study, we found that CIC scorelow group had a significantly better survival in the TCGA-GBM cohort, 
supporting the important role of CICRGs in GBM. Using univariate Cox and LASSO analyses, PTX3, TIMP1, IGFBP2, SNCAIP, 
LOXL1, SLC47A2, and LGALS3 were identified as key CICRGs. Based on this data, a CIC-related prognostic risk score model was 
built using the TCGA-GBM cohort and validated in the CGGA-GBM cohort. Further mechanistic analyses showed that the CIC- 
related risk score is closely related to immune and inflammatory responses. Interestingly, at the single-cell level, key CICRGs were 
expressed in the neurons and myeloids of tumor tissues and exhibited unique temporal dynamics of expression changes. Finally, the 
expression of key CICRGs was validated by qPCR using clinical samples from GBM patients.
Conclusion: We identified novel CIC-related genes and built a reliable prognostic prediction model for GBM, which will provide 
further basic clues for studying the exact molecular mechanisms of GBM pathogenesis from a CIC perspective.
Keywords: glioblastoma, bioinformatics, cell-in-cell, prognosis

Introduction
Glioblastoma (GBM) is a primary intracranial malignancy in adults.1 The standard clinical approach for newly diagnosed 
GBM patients involves surgical intervention followed by postoperative chemo- and radio-therapy.2 Despite recent 
progress in surgical techniques and clinical treatments for glioma,3–5 the survival rate for GBM patients over 5 years 
is less than 5%, with a median survival of approximately 15 months after diagnosis.6 The heterogeneity and complex 
neuro-cancer interactions in GBM pose a significant challenge in managing GBM patients. Therefore, identifying new 
molecular markers that can impact the onset and progression of GBM has become a key focus in the current study, 
aiming to lay the groundwork for personalized and precise treatment of GBM patients.

Cell-in-cell structures (CICs) are characterized by one or more cells found in the cytoplasm of other cells.7 CICs have 
multiple effects on cell behaviors and functions of both external and internal cells, such as cell death, cell proliferation, 
and immune regulation.8,9 These structures have been observed in multiple human cancers as reviewed by Fais and 
Overholtzer.10 Su et al found that in-cell killing mediated by CIC could offer a promising approach for immunotherapy 
by altering CD44 signaling.11 Furthermore, studies have highlighted the prognostic value of CIC and CIC-related genes 
in breast cancer and pancreatic cancer.12,13 Nevertheless, the specific role and potential mechanisms of CIC-related genes 
in determining the prognosis of GBM patients are still unknown.
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Therefore, the primary objective of this study was to pinpoint the core CIC genes that impact the survival of GBM 
patients through a thorough analysis involving bioinformatics and experimental validation. The illustrative workflow of 
this process is outlined in Figure 1. We aim to provide insightful findings that could be instrumental in enhancing the 
diagnosis, treatment, and prognosis prediction of GBM.

Materials and Methods
Data Source
Level 3 gene expression profiles of GBM and corresponding control samples were sourced from TCGA (http://xena.ucsc. 
edu/) and CGGA database (http://www.cgga.org.cn/), respectively. Both datasets are second-generation high-throughput 
sequencing data using the Illumina HiSeq 2000 sequencing platform. Also, same processing pipeline was applied to these 
two datasets, and finally the read count matrix in two datasets were converted into FPKM matrix as detailed described in 
the previous study.14 Specifically, 157 GBM samples having both expression data and overall survival information from 
TCGA were used to identify prognostic CIC genes and to construct the risk model to predict GBM prognosis, and 85 
GBM samples from CGGA having both expression data and overall survival information were used to validate the 
accuracy of the prognosis risk model. To show the expression patterns of differentially expressed transcription factors, 
expression data of GBM (N = 167) and control samples (N = 5) in TCGA and GBM (N = 325) and control samples (N = 
85) in CGGA were utilized. In addition, 101 CIC genes were obtained from the published literature.13

CIC Score of GBM Patients
In the TCGA-GBM dataset, the CIC scores of GBM patients were calculated based on CIC genes by single-sample gene 
set enrichment analysis (ssGSEA) using the GSVA package.15,16 Then, the difference in CIC score between GBM and 
normal samples was compared by rank sum test, and the box diagram was drawn by R package “ggPlot2”. Then, 
R package “survminer” was used to calculate the optimal threshold of CIC score, and GBM patients were assigned into 
CIChigh and CIClow groups according to the optimal threshold. The optimal threshold was obtained by using surv_cut-
point function with specific parameters: time = “time”, event = “event”, variables, minprop = 0.1, progressbar = TRUE. 

Figure 1 The schematic workflow of the current study. 
Abbreviations: CIC, cell-in-cell; GBM, glioblastoma; GSEA, gene set enrichment analysis; ssGSEA, single-sample gene set enrichment analysis; DEG, differentially expressed 
gene; TF, transcription factor.
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The survival probabilities of the two groups were compared using the Kaplan-Meier survival” R package and a Kaplan- 
Meier (K-M) curve was drawn.

Identification of Differentially Expressed CIC Related Genes (DECGs) in GBM 
Patients
In the TCGA-GBM dataset, to obtain more CIC-related candidate genes, differentially expressed genes (DEGs) between 
CIChigh and CIClow were screened by limma R package using |log2FC| > 0.5 and p-value < 0.05 as criteria. Given that the 
original significance threshold did not undergo multiple testing correction, the result may contain some error due to the 
contingency. Thus, the DEGs between control and GBM samples in the TCGA-GBM dataset were obtained by limma 
R package using |log2FC| > 1 and adjusted p-value < 0.05 by Benjamini & Hochberg method to avoid false positives. The 
results are shown in the volcano diagram and heatmap plotted using R package ggplot2 and heatmap, respectively. 
Finally, to obtain CIC-related DEGs involved in the development of GBM, DEGs between between CIChigh and CIClow 

group were overlapped with DEGs between GBM and control group using the R language VennDiagram package. Those 
overlapped DEGs were defined as DECGs in the current study. Furthermore, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functions of DECGs using 
the clusterProfiler package of R software. Bar charts generated by the R language “Enrichplot” were displayed to show 
the results. GO terms and KEGG pathways with a p-value <0.05 were considered as significantly enriched.

Constitution of the Prognostic Model
In the TCGA-GBM dataset (N = 157), univariate Cox analysis was applied first to detect the survival related genes from 
DECGs with the “survival” R package using p-value <0.05. Then, the survival related genes were further screened by the 
least absolute shrinkage and selection operator (LASSO) regression through the “glmnet” R package to build the risk model 
of GBM patients. The random seed was determined by firstly calculating the analysis results of 2000 random seeds 
separately to ensure the stability of the model performance, and then subsequently determining the value of the random 
seed. The parameter in the LASSO regression analysis was set to Cox, and 10-fold cross-validation was performed to verify 
the LASSO regression model. Patients with GBM were assigned to two risk groups (low and high) according to the median 
risk score. Overall survival (OS) curves were drawn using the “survminer” R package, and the survival differences between 
the two risk groups were compared. Through the “survivalROC” R package, the ROC curves were plotted to assess the 
efficacy of the risk model. The risk model was validated using the external CGGA-GBM (N = 85) set.

Establishment and Assessment of the Nomogram
In both TCGA-GBM and CGGA-GBM datasets, clinical factors, such as MGMT status, age, IDH status, sex, and Chr19/ 
20 were included in the univariate Cox analysis together with the risk score. Factors with p-value <0.05, were selected as 
key prognostic factors of GBM. The key factors were analyzed by multivariate Cox analysis, and factors with p-value 
<0.05 were selected as independent prognostic factors in GBM. In the TCGA-GBM dataset, based on independent 
prognostic factors, were drawn with R language “rms”, and the accuracy of the nomogram was assessed by calibration 
curves.

The Gene Set Enrichment Analysis (GSEA)
In the TCGA-GBM dataset, the expression of genes between the two risk groups was analyzed using the limma 
R package. Then, based on reference gene sets of Hallmarks and KEGG pathways, GSEA analysis was performed 
using R language “clusterProfiler” and org.Hs.eg.db.

Evaluation of Immune Cell Infiltration
In the TCGA-GBM dataset, we evaluated the levels of 24 types of immune cells in each TCGA-GBM sample by 
ssGSEA and compared the differences in immune cells between the two risk groups using the rank sum test and plotted 
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violin charts using the R package vioplot to show the results. Spearman correlation analysis was performed between 
prognostic DECGs and immune cells.

Single-Cell RNA Sequencing (scRNA-Seq) Data Analysis
The scRNA-seq data of GBM was obtained from GSE84465 using Illumina NextSeq 500 GPL18573 platform, and then the 
data was filtered using the Seurat package CreateSeuratObject function, and the genes with expression data in at least 100 
cells and the cells with more than 100 detected genes were retained (min.cells =100, min.features = 100), because it might be 
cellular fragmentation if the count of cells and features were too low. The PercentageFeatureSet function was used to retain 
cells with a mitochondrial gene ratio of less than 10% and an erythrocyte gene ratio of 0, because high expression levels of 
mitochondrial genes and erythrocyte genes may be indicative of poor sample quality, resulting in large numbers of apoptotic, 
lysed or contaminated cells. NormalizeData was used to standardize the scRNA-seq data, and the FindVariableFeatures 
function was used to identify highly variable genes. The default parameter, namely “vst” method, was used to select 2000 
highly variable genes. Next, ScaleData was used to normalize the scRNA-seq data, and then principal component analysis 
(PCA) was performed. JackStraw and ScoreJackStraw were used for the linear dimension reduction. Additionally, we used 
the JackStrawPlot function to compare the distribution of p-values for each principal component. Combined with JackStraw 
function, the significance p-value of the top 30 principal components ranked by variance percentage of principal components 
were calculated, and the principal components whose p-value was less than 0.05 were selected. Unsupervised cluster analysis 
was carried out on 3586 cells by using FindNeighbors and FindClusters functions of Seurat package, and the resolution was 
determined. The UMAP and t-SNE algorithms were applied to visualize clustering. We then used FindAllMarkers and set the 
following parameters: min.pct = 0.2, only.pos = TRUE, logfc.threshold = 0.1, and performed the Wilcoxon test for 
differential analysis to identify the differential marker genes of various groups. The marker genes of each cluster were 
aligned with each cell type in the CellMarker database to annotate the GBM cell types. In addition, the SingleR algorithm 
was used to verify the identified cell types. The expression of prognostic DECGs in each cell subgroup was shown by UMAP, 
followed by pseudotime analysis of different cells and prognostic DECGs using a single-cell model. FindAllMarkers 
function was used to identify differential genes between cell subsets as characteristic genes for pseudotime developmental 
trajectories in different cell subpopulations. Furthermore, the plot_genes_in_pseudotime functions were used to view the 
dynamic expressions of prognostic DECGs along the pseudotime differentiation trajectory of all cells based on the sorting 
pseudotime values of each cell.

Construction of a Transcription Factors (TFs)-mRNA Network
NetworkAnalyst (https://www.networkanalyst.ca/) is a powerful web-based visual analytics platform for comprehensive 
analysis, including the prediction of TFs.17 Specifically, it utilized ChEA to predict TF-target interactions. In ChEA, TF- 
target gene set libraries are assembled by integrating ChIP-seq experiments from ENCODE, ReMap and individual 
publications. And site-specific DNA-binding TFs are included, while non-specific transcription factors, cofactors, and 
chromatin modifiers are excluded in ChEA. When uploading the query gene lists, those genes are compared to ChEA 
libraries of TF-target gene sets. Then Fisher’s Exact Test with a background size of 20,000 is used to compare the input 
gene sets to the TF-target gene sets to determine which TFs are most closely associated with the input gene lists.18 The 
above-mentioned integrating TF targets information from across libraries and associated TF rankings may improve the 
predictive performance. In the current study, the TFs of prognostic related DECGs were predicted through Network 
Analyst, and then the TFs obtained from the database were intersected with the DEGs to obtain the differentially 
expressed TFs. The expressions of differentially expressed TFs in GBM and normal samples were analyzed. A TF- 
prognostic-related DECGs network was constructed using Cytoscape. The expression of key differentially expressed TFs 
in each cell subgroup was displayed using a dot plot, followed by pseudotime analysis, which in GSE84465 was 
conducted as above to gain insights into the temporal regulation of these TFs.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
Five normal human brain tissues and seven brain tissues from GBM patients were collected from Tongji Hospital. Total 
RNA was isolated using the TRIzol reagent (Ambion) according to the manufacturer’s instructions. Then, the total RNA 
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was used for cDNA synthesis by the SureScript First strand cDNA synthesis kit according to the instructions 
(Servicebio). Primers were synthesized by Tsingke Biotechnology Co., Ltd. Primers used are listed in Supplementary 
Table 1. Next, qRT-PCR was carried out using the BIO-RAD RT-PCR system. Results were normalized to the GAPDH 
expression and calculated based on the 2−∆∆Ct method. For each sample, the experiments were repeated three times. To 
avoid variability caused by operations, all experiments were performed in strict accordance with standard experimental 
practice by the same person. All experiments have been approved by the ethical committee of Tongji Hospital affiliated 
with Tongji University (Shanghai, China), and individuals involved have signed the consent forms for the use of their 
tissues in the study.

Statistical Analysis
Statistical analysis and visualization were performed using R (version 3.6.3) and Graphpad Prism 9 software (version 
9.4.1). Wilcoxon test was employed to compare the difference of CIC score between GBM and control group, immune 
cell infiltration between low and high risk group and the expressions of TFs between GBM and control group. Log rank 
test was performed to compare the difference of overall survival between two groups. Student’s t-test was applied to 
compare the expression difference of prognostic genes between GBM and control samples. A p-value <0.05 was 
considered as statistically significant unless specified.

Results
CIC Score Was Associated with the Prognosis of GBM Patients
In the TCGA-GBM dataset, the CIC score of each sample was calculated using ssGSEA, and the CIC score of GBM 
samples was found to be significantly lower than that of normal samples (Figure 2A), indicating the importance of CIC in 
GBM development. Furthermore, according to the CIC score, GBM patients were divided into CIChigh and CIClow 

groups, and the K-M analysis showed that the survival probability of the CIChigh group decreased significantly 
(Figure 2B), further supporting the role of CIC in GBM prognosis.
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Figure 2 Cell-in-cell (CIC) genes were involved in glioblastoma (GBM). (A) Comparison of CIC score between normal and GBM group based on the expressions of CIC 
genes by single-sample gene set enrichment analysis (ssGSEA) algorithm. **p-value <0.01. (B) Kaplan-Meier curves of overall survival (OS) in CIChigh and CIClow score group 
from TCGA-GBM cohort. Log rank test was performed to detect the OS difference between two groups.
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DECGs Were Identified Between GBM and Normal Samples
In the TCGA-GBM dataset, through differential analysis, we identified 325 DEGs between the CIChigh and CIClow 

groups as CIC-related genes in GBM patients, of which 129 genes were upregulated and 196 genes were downregulated 
in the CIChigh group (Figure 3A). The expression of the top 50 CIC-related genes in the CIChigh and CIClow groups is 
presented in a heatmap (Figure 3B). Meanwhile, 5593 DEGs between GBM and normal samples were obtained, of which 
2686 genes were upregulated and 2907 genes were downregulated in GBM samples (Figure 3C), indicating that those 
genes may be involved in the development of GBM. We also displayed the expression of the top 50 DEGs in the GBM 
and normal samples (Figure 3D). By overlapping those DEGs, a total of 136 DECGs were identified (Figure 3E) for 
subsequent analysis.

DECGs Were Mainly Involved in Immune and Inflammation and ECM
Next, we investigated the function of DECGs. Interestingly, these DECGs were found to mainly participate in GO terms 
related to ECM, such as ECM organization, regulation of membrane potential, collagen-containing ECM, receptor ligand 
activity, and signaling receptor activator activity (Figure 4A). In addition, DECGs were significantly enriched in 
cytokine-cytokine receptor interactions, leukocyte transendothelial migration, protein digestion and absorption, 

Figure 3 Identification of 136 differentially expressed cell-in-cell (CIC) genes (DECGs). (A) Volcano plot of differentially expressed genes (DEGs) between CIChigh and 
CIClow score groups. The red and blue dots represent genes significantly up-regulated and down-regulated genes in CIChigh group, respectively. (B) Heatmap showing the 
expressions of top 50 DEGs between CIChigh and CIClow groups. Rows indicate genes with significant expression differences between two groups, and columns represent 
individual samples from two groups. High expression in CIChigh group is indicated in red color, and low expression is indicated in blue. (C) Volcano plot of DEGs between 
normal and glioblastoma (GBM) groups. The red and blue dots represent genes significantly up-regulated and down-regulated genes in GBM group, respectively. (D) 
Heatmap showing the expressions of top 50 DEGs in the normal and GBM groups. Rows indicate genes with significant expression differences between two groups, and 
columns represent individual samples from two groups. High expression in GBM group is indicated in red color, and low expression is indicated in blue. (E) Venn plot 
showing 136 overlapping genes of DEGs between GBM and controls and DEGs between CIChigh and CIClow groups.
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Figure 4 Functional analysis of differentially expressed cell-in-cell genes (DECGs). (A) Gene ontology (GO) enrichment of DECGs. CC: cellular component; BP: biological 
process; MF: molecular function. (B) Kyoto encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DECGs. The y-axis indicates the name of GO terms and 
KEGG pathways, and the x-axis indicates the gene counts enriched in the GO terms and KEGG pathways. The color bar indicates the p-value, the blue represents higher 
value, the red represents lower value.
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glycosaminoglycan biosynthesis-heparan sulfate/ heparin and various of N-glycan biosynthesis (Figure 4B). These results 
indicate that ECM, inflammation and glycan biosynthesis may be involved in CIC-mediated progression of GBM.

The CIC-Related Prognostic Model for GBM Patients Was Built and Validated
Thereafter, the value of DECGs in GBM prognosis was explored using TCGA-GBM dataset. First, 136 DECGs were 
screened using univariate Cox regression analysis, and 14 survival-related genes were identified (p < 0.05) (Figure 5A), 
including LOXL1, PTX3, TIMP1, IGFBP2, SLC47A2, PHLDA2, SNCAIP, POSTN, SLC22A18, ARSJ, RAB34, 
COL5A1, LGALS3, and CHST9. Among these, SNCAIP and CHST9 were protective factors, whereas the other genes 
were risk factors. LASSO regression analysis of 14 survival-related genes showed that the prognostic model was 
obtained when the lambda min was 0.01385, and seven prognosis-related DECGs of GBM were screened, including 
PTX3, TIMP1, IGFBP2, SLC47A2, SNCAIP, LGALS3, and LOXL1 (Figure 5B, C and Table 1). According to the 
median risk score value of 0.98 (Supplementary Table 2), GBM patients were divided into high-risk and low-risk groups, 
and the risk curve showed that GBM patients in the high-risk group had a worse survival (Figure 5D), and seven 
prognostic-related DECGs were highly expressed in the high-risk group (Supplementary Figure 1A). The OS curve of 
patients with GBM showed that the survival probability of patients in the high-risk group decreased significantly (p-value 
= 0.0012) (Figure 5E). Moreover, the AUC of the ROC curves for predicting the 1–5 year survival of GBM patients was 
greater than 0.65, indicating that the prediction efficiency of the risk model was good (Figure 5F). To validate the model, 
we used a different cohort from the CGGA-GBM and performed the same analyses. In addition, patients with GBM were 
divided into high- and low-risk groups, according to a median risk score of 0.057 (Supplementary Table 3). The results of 
the risk (Figure 5G) and OS curves (Figure 5H) also showed that the survival of patients in the high-risk group was worse 
(p-value = 0.024), and various prognostic related DECGs were highly expressed in the high-risk group (Supplementary 
Figure 1B). Moreover, the AUC of ROC curves in predicting 1–5 year survival of GBM patients were all greater than 0.6 
(Figure 5I). These results were consistent with those of the training cohort, suggesting the reliability of the model.

CIC-Related Risk Score Was an Independent Risk Factor for GBM Patients
To investigate the independent factors in GBM prognosis, we first included the CIC-related risk score and clinical 
features, such as age, sex, IDH status, MGMT status, and Chr19/20, of the TCGA-GBM cohort in the univariate Cox 
analysis. The results showed that the risk score, age, IDH status, and MGMT status were key factors affecting the 
prognosis of patients with GBM (p-value < 0.05) (Table 2). Furthermore, multivariate Cox independent prognostic 
analysis revealed that the risk score, age, and MGMT were independent prognostic factors of GBM patients with GBM 
(p-value < 0.05) (Table 3). Similarly, in the validation set CGGA-GBM, the risk score and clinical features of GBM 
patients were included in the univariate Cox analysis, and it was found that the risk score and age were key factors 
affecting the prognosis of GBM patients (p-value < 0.05) (Supplementary Table 4). Multivariate Cox analysis of the risk 
score and age of GBM patients showed that the risk score was an independent prognostic factor for GBM patients 
(p-value <0.05) (Supplementary Table 5). Thereafter, in the TCGA-GBM dataset, a nomogram with a C-index value of 
0.6708 was established based on the risk score and age of GBM patients, indicating that the nomogram model was 
effective in predicting the 1–3 to year survival probability of GBM patients (Figure 6A). The calibration curves showed 
that the nomogram had high prediction accuracy for the 1–3 to year survival probability of patients with GBM, indicating 
that the nomogram we constructed can be used as an effective model (Figure 6B). In addition, CGGA-GBM database was 
applied to test the performance of nomogram (Supplementary Figure 2A), and we found that the nomogram also had high 
accuracy in predicting OS as evidenced by calibration curves (Figure 2B).

Immune and Inflammation-Related Pathways Were Enriched in High Risk Group 
Samples
To further investigate how DECGs regulate GBM prognosis, we performed GSEA in the TCGA-GBM cohort using 
reference gene sets of hallmarks and KEGG pathways. The top 10 hallmarks, including allograft rejection, IL2/STAT5 
signaling, coagulation, complement, hypoxia, epithelial mesenchymal transition, inflammatory response, IL6/JAK/ 
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STAT3 signaling, TNF-alpha signaling via NFκB, and KRAS signaling, were significantly enriched in the high-risk 
groups (Figure 7A). The top 10 KEGG pathways, including complement and coagulation cascades, Staphylococcus 
aureus infection, focal adhesion, rheumatoid arthritis, hematopoietic cell lineage, cytokine-cytokine receptor interaction, 

Cutoff: 0.98

Cutoff: 0.057

Figure 5 The cell-in-cell (CIC) related risk model was constructed and validated. (A) Forest plot showing the univariate Cox regression analysis of differentially expressed 
cell-in-cell genes (DECGs) associated with overall survival. Hazard ratios were estimated in a Cox proportional hazards regression model. (B) LASSO coefficient profiles of 
prognosis-related genes. Each curve represents a coefficient, and the x-axis represents the regularization penalty parameter. As lambda (λ) changes, a coefficient that 
becomes non-zero enters the LASSO regression model. (C) Cross-validation to select the optimal tuning parameter lambda in the LASSO model used 10-fold cross 
validation. The partial likelihood deviance curve was plotted versus log (λ). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 
l standard error (1se) of the minimum criteria. (D) The distribution of risk score and survival status and the expressions of prognostic CIC genes in the glioblastoma (GBM) 
cohort from The Cancer Genome Atlas (TCGA). (E) Kaplan-Meier curves showing the overall survival (OS) of low and high risk group from TCGA-GBM cohort. Log rank 
test was applied to compare the OS difference between two groups. (F) The 1-, 2-, 3-, 4- and 5-year receiver operating characteristic (ROC) curves of the risk model in 
TCGA-GBM cohort. AUC: area under the ROC curve. (G) The distribution of risk score and survival status and the expressions of prognostic CIC genes in GBM cohort 
from Chinese Glioma Genome Atlas (CGGA). (H) Kaplan-Meier curves showing the overall survival (OS) of low and high risk group from CGGA-GBM cohort. Log rank 
test was applied to compare the OS difference between two groups. (I) The 1-, 2-, 3-, 4- and 5-year ROC curves of the risk model in CGGA-GBM cohort. 
Abbreviation: AUC, area under the ROC curve.
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IL-17 signaling pathway, viral protein interaction with cytokine and cytokine receptor, TNF signaling pathway, and 
tuberculosis, were also significantly enriched in the high-risk group (Figure 7B). These hallmarks and KEGG pathways 
have direct and/or indirect relationships with immunity and inflammation, which may contribute to the significant 
differences in survival between the two risk groups.

Table 1 The Coefficient of Each 
Prognostic Gene Signature in LASSO

Gene Name Coef

PTX3 0.12944

TIMP1 0.13296

IGFBP2 0.34351

SLC47A2 0.17984

SNCAIP −0.06281

LGALS3 −0.28558

LOXL1 0.23465

Table 2 Univariate Cox Regression Analyses on Risk Score and Clinical Parameters 
in TCGA-GBM Cohort

Clinical Characteristics HR HR.95L HR.95H p-value

Age 1.027544038 1.012488329 1.042823625 0.00030863

Gender 0.953727809 0.648693505 1.402197997 0.809612603

IDH 4.319928648 1.731896179 10.77534771 0.00170299

MGMT status 1.900775413 1.217642334 2.967166194 0.004704611

ATRX 3.181759283 1.166793084 8.67642453 0.023737644

Chr19/20 1.397342986 0.808803457 2.414143268 0.230406598

Chr.7.gain.Chr.10.loss 0.731549786 0.490906802 1.090156191 0.12457658

Risk Score 1.34476027 1.217721725 1.485052082 0.0000000049

Table 3 Multivariate Cox Regression Analyses on Risk Score and Clinical Parameters in TCGA- 
GBM Cohort

Clinical Characteristics Reference HR HR.95L HR.95H p-value

Age ~ 1.032347718 1.011537645 1.053585911 0.002183496

IDH Mutant 2.67960639 0.159176172 45.10907837 0.49382698

ATRX Mutant 0.577709867 0.034643402 9.633831271 0.702338677

MGMT status Methylated 1.725461463 1.098531891 2.71017827 0.017889832

Risk score ~ 1.553335725 1.240158631 1.94559939 0.00012632
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Prognostic DECGs May Be Potential Regulators of the Tumor Microenvironment
Given the above results, we wondered whether prognostic DECGs would affect the tumor microenvironment of GBM 
TME. In the TCGA-GBM dataset, immune cell infiltration analysis revealed four immune cells with significant 
differences between the high- and low-risk groups, namely DC, Th1 cells, T cells, and neutrophils (Figure 8A). 
Furthermore, correlation analysis showed that IGFBP2 was positively correlated with mast cells, LGALS3 was 
negatively correlated with NK CD56bright cells, LOXL1 was positively correlated with Th1 cells and DCs, PTX3 and 
TIMP1 were positively correlated with iDCs and DCs, SLC47A2 was negatively correlated with iDCs and macrophages, 
and SNCAIP was negatively correlated with iDCs and Th2 cells (|Cor| > 0.1 and p-value < 0.05) (Figure 8B-8H).

Prognostic DECGs Were Expressed in Neurons and Myeloids
In the GSE84465 dataset, the quality control was performed as shown in Figure 9A. After normalizing the scRNA-seq 
data, 2000 highly variable genes were identified (Figure 9B). After PCA, the top 30 principal components were selected 
for subsequent analysis (p-value < 0.05) (Figure 9C). Unsupervised clustering analysis revealed that the best clustering 
was achieved at a resolution of 0.06, and the cells were divided into seven clusters (Figure 9D, Supplementary Figure 3). 
After annotation, these seven cell clusters were identified as myeloid cells, neurons, oligodendrocyte precursor cells 
(OPCs), NKT (Natural Killer T) cells, neoplastic cells, oligodendrocytes, and astrocytes (Figure 9E). Myeloid cells 
accounted for the highest proportion of cells, followed by neurons (Figure 9F). We also identified feature genes for 
myeloid cells (C1QA, C1QB, TYROBP, LAPTM5), neurons (CSRP2, PLS3), OPCs (SOX8, SOX10, OLIG2, LPPR1), 
neoplastic cells (KCNE1L, IL13RA2, HES1, and SOX11), NKT cells (OS9, TMBIM4, TSPAN31, LLPH), 
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Figure 6 The cell-in-cell (CIC) related risk score were an independent prognostic factor in GBM. (A) Construction of the nomogram based on risk score and age using 
TCGA-GBM dataset. (B) Calibration curves of the nomogram for predicting 1-, 2-, 3-year overall survival (OS) using TCGA-GBM database.
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oligodendrocytes (MOG, ERMN, CNTN2, C11orf9, ENPP2, SH3GL3), and astrocytes (PPP1R1B, AGXT2L1, 
RANBP3L, GABRA2) (Figure 9G and Table 4).

Next, we found that prognosis-related DECGs were mainly expressed in myeloid cells (TIMP1 and LGALS3) 
and neurons (TIMP1, PTX3, IGFBP2, SLC47A2, SNCAIP, LGALS3, and LOXL1) (Figure 10A). Based on the 
pseudotime developmental trajectories of the identified cell subpopulations (Supplementary Figure 4), it was shown 
that with the development of cell differentiation, LGALS3 and TIMP1 continued to be expressed in the cells, 
whereas the expression of other prognostic-related DECGs gradually decreased (Figure 10B).

A TFs-mRNA Network Based on Prognostic Related DECGs Was Constructed
We predicted 44 TFs from the Network Analyst database that targeted the expression of prognostic-related 
DECGs. Then, 44 TFs were intersected with DEGs to obtain 9 differentially expressed TFs (Figure 11A). The 
box plot for TFs expression in TCGA-GBM and CGGA-GBM cohorts is shown in Figure 11B, where the 
upregulation of EZH2, SMAD5, and TFDP1, and the downregulation of ZNF382, INSM2, and BCL11A was 
observed in both cohorts. Furthermore, a TF-mRNA network containing nine TFs and five prognostic-related 
DECGs was constructed (Figure 11C). In the network, we identified 11 TF gene regulatory pairs, including 
TFDP1-PTX3, GLIS2-SLC47A2, TBX21/EZH2-IGFBP2, ZNF501/SMAD5/GLIS2-TIMP1, and ZNF501/INSM2/ 
BCL11A/ZNF382-LOX1. Furthermore, for scRNA-seq analysis, key TFs were mainly expressed in NKT 
(SMAD5, EZH2, and TFDP1), neoplastic cells (SMAD5, EZH2, and TFDP1), and neurons (SMAD5) 
(Figure 11D). Pseudotime analysis indicated that with the development of cell differentiation, the expression 
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level of SMAD5 exhibited a fluctuating pattern, initially decreasing, followed by a sharp increase and subsequent 
decrease. The expression of other TFs was upregulated in these cells (Figure 11E). However, ChIP-qPCR using 
specific primers in future are needed to validate those TF-target interactions.
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Figure 8 Prognostic CIC genes had close relationship with immune microenvironment. (A) The fractions of immune cells in each sample were calculated by single-sample 
gene set enrichment analysis (ssGSEA). The difference of immune infiltration between two groups were detected by rank sum test. (B-H) Spearman correlation analysis of 
insulin like growth factor binding protein 2 (IGFBP2), galectin 3 (LGALS3), lysyl oxidase like 1 (LOXL1), pentraxin 3 (PTX3), solute carrier family 47 member 2 (SLC47A2), 
synuclein alpha interacting protein (SNCAIP), TIMP metallopeptidase inhibitor 1 (TIMP1) with immune cells.
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Five Prognostic Related DECGs Were Validated in Clinical Samples
Finally, we validated the expression of prognostic-related DECGs in the clinical samples using qPCR. We found that the 
expression levels of PTX3, TIMP1, IGFBP2, SNCAIP, and LOXL1 were significantly higher in GBM samples, which 
was consistent with the sequencing results from the TCGA-GBM dataset (p<0.05) (Figure 12A–E). In contrast, the 
abundance of SLC47A2 was remarkably lower in GBM samples (Figure 12F), and no significant difference in LGALS3 
expression was detected between control and GBM samples (Figure 12G).

Discussion
So far, multi-omics data and bioinformatics methods have helped us a lot to study the underlying mechanisms of a variety 
of cancers. Tran et al utilized data from RNA, protein and DNA methylation and found that lower expression of ALDH2 
and corresponding deficit of stemness signalings were associated with prognosis of lung adenocarcinoma (LUAD).19 

Dang et al employed multiple databases and bioinformatic methods and unveiled the important role of GPSM2 and 
GPSM3 in breast cancer.20 Xu et al used transcriptome data and identified prognostic ferroptosis related genes associated 
with immune microenvironment in breast cancer patients.21 Through reviewing multi-omics technologies including 
genomics, transcriptomics, epigenomics, proteomics, and metabolomics, analyses of brain tumor-related epilepsy 
(BTRE), Du et al presented biomarkers associated with BTRE, such as D2H2, FOXO4 and SV2A.22 Utilizing of multi- 
omics data also contributes to better understanding the pathogenesis and therapies of GBM. For example, Yoshimura et al 
successfully created a prognostic model that could reduce cost and time for image scanning for GBM using radiomics.23 

Another study analyzed genome-wide DNA methylation of GBM and disclosed critical role of aberrant lncRNA 
methylation in the regulation of autophagy.24 Migliozzi et al integrated transcriptome, genome, proteome, metabolome 
data, and identified biomarkers and potential therapeutic targets for GBM subtypes.25 Those multiomics and bioinfor-
matic studies provide fundamental information and further guidance for in vivo, in vitro and clinical trials.

In the current study, we utilized transcriptome data and multiple bioinformatic methods to study the role of CIC- 
related genes in GBM. The ssGSEA is an extension of GSEA method,15 compared with other gene set enrichment 
methods, ssGSEA works at the level of a single sample rather than a sample population.16 The score derived from 
ssGSEA reflects the degree to which the input gene signature is coordinately up- or downregulated within a sample. 
Thus, in the current study, based on the expression data of 101 existing CIC gene signatures, ssGSEA method was 
applied to quantify the CIC gene signature level in each sample. We found that the level of CIC gene signature is lower in 
GBM group and patients with lower CIC gene signature level had better, suggesting that CIC-related genes contribute to 
the outcome of GBM patients. Differential expression and functional analyses revealed that DECGs are mainly 
associated with ECM-related biological processes and pathways of inflammation and glycan biosynthesis. It has been 
reported that ECM has a close relationship with the response of GBM patients to immuno- and chemotherapy.26,27 Also, 
ECM remodeling could promote GBM progression via enhancing infiltration of GBM cells, and ECM proteins affect 
migration of T cells, phagocytosis and cell invasion in GBM.28–31 Besides, for cytokine-cytokine receptor interaction 

Table 4 Cell Type and Its Marker

Cluster Marker Type

0 C1QA, C1QB, TYROBP, LAPTM5 Myeloid

1 CSRP2, PLS3 Neurons

2 SOX8, SOX10, OLIG2, LPPR1 OPCs

3 KCNE1L, IL13RA2, HES1, SOX11 Neoplastic cells

4 OS9, TMBIM4, TSPAN31, LLPH NKT

5 MOG, ERMN, CNTN2, C11orf9, ENPP2, SH3GL3 Oligodendrocytes

6 PPP1R1B, AGXT2L1, RANBP3L, GABRA2 Astrocytes
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pathway, multiple cytokines in the tumor microenvironment participate in regulating tumor cell invasion, migration, 
metastasis and immune and inflammatory response via interacting with their receptors.32,33 For example, in GBM 
chemokine CCL2 recruits immunosuppressive Tregs, GAMs and MDSCs via its receptors CCR2 and CCR4, thus 
leading to impairment of the response of the effector T cells and further immune escape.34–38 Another chemokine IL6 
can inhibit the function of T cells and promote autophagy and invasion in GBM via IL6R, which is expressed in GBM 
cells and GAMs.39–41 In addition, other chemokines, such as CCL5, CXCL12, TGF-beta, and CSF1, also play vital roles 
in GBM development and progression.41 For leukocyte transendothelial migration pathway, it is a process of interaction 
between leukocytes and endothelial cells and plays an important role in remodeling immune microenvironment and thus 
affecting the progression, therapeutic response and outcome of GBM.42–44 The importance of glycans and glycosylation 
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within GBM tissues. The blue bar indicates the abundance of prognostic CIC genes in cells. (B) The dynamic expressions of prognostic CIC genes along the pseudotime 
differentiation trajectory of GBM cells. The x-axis represents the pseudotime values, and the y-axis represents the gene expression levels. 
Abbreviations: PTX3, pentraxin 3; TIMP1, TIMP metallopeptidase inhibitor 1; IGFBP2, insulin like growth factor binding protein 2; SNCAIP, synuclein alpha interacting 
protein; LOXL1, lysyl oxidase like 1; SLC47A2, solute carrier family 47 member 2; LGALS3, galectin 3.
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Figure 11 The transcription factor (TF)-prognostic cell-in-cell (CIC) genes network. (A) Venn plot showing the nine overlapping TFs involved in glioblastoma (GBM). (B) 
The expressions of TFs in GBM cohorts from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). *p-value <0.05, **p-value <0.01, ***p-value 
<0.001, ****p-value <0.0001, nsp-value >0.05. (C) The TFs targets binding to prognostic related differentially expressed cell-in-cell genes (DECGs) was predicted, where 
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key TFs along the pseudotime differentiation trajectory of GBM cells. 
Abbreviations: EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; ZNF501, zinc finger protein 501; TBX21, T-box transcription factor 21; SMAD5, SMAD 
family member 5; TFDP1, transcription factor Dp-1; GLIS2, GLIS family zinc finger 2; INSM2, INSM transcriptional repressor 2; BCL11A, BCL11 transcription factor A; 
PTX3, pentraxin 3; TIMP1, TIMP metallopeptidase inhibitor 1; IGFBP2, insulin like growth factor binding protein 2; LOXL1, lysyl oxidase like 1; SLC47A2, solute carrier 
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in GBM has been highlighted in GBM in multiple studies. Pace et al reported that the interaction between glycan and 
lectin contribute to the immunosuppressive environment in GBM.45 Cheng et al found that inhibit N-glycosylation of 
SCAP suppressed the growth of GBM.46 Taken those studies together with our findings, it is hypothesized that CIC- 
related genes may regulate the development and progression via those biological processes and pathways.

To further screen for key CIC-related genes involved in GBM prognosis, we performed univariate and LASSO Cox 
regression analyses and identified seven CIC-related genes. Using these CIC-related genes, we established a risk model 
and nomogram, both of which showed good performance in predicting the survival of patients with GBM, further 
demonstrating the crucial role of these seven CIC-related genes in GBM. It has been reported that the expression of 
PTX3 was positively associated with tumor grade in GBM.47 Recent studies by different groups have revealed the 
importance of PTX3 in GBM. Wesley et al found that PTX3 over-expression in vivo increased angiogenesis, tumor 

A B C

D E F

G

Figure 12 The verifying of the prognostic CIC genes using qPCR validation. The expressions of pentraxin (PTX3) (A), TIMP metallopeptidase inhibitor 1 (TIMP1) (B), 
insulin like growth factor binding protein 2 (IGFBP2) (C), synuclein alpha interacting protein (SNCAIP) (D), lysyl oxidase like 1 (LOXL1) (E), solute carrier family 47 member 
2 (SLC47A2) (F) and galectin 3 (LGALS3) (G) estimated by unpaired t-test. Data was presented as mean ± SD (Normal = 5, Case = 6). *p-value <0.05, **p-value <0.01, 
***p-value <0.001, nsp-value >0.05.
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growth and invasion via inflammatory signaling in GBM.48 Zhang et al reported that PTX3 could regulate the infiltration 
and polarization of macrophages in GBM.49 In addition, PTX3 over-expression contributed to the proliferation and 
migration of transformed dendritic cells in vitro and also increased transformed dendritic cells’ tumorigenicity in vivo in 
GBM.50 NFkappaB regulates GBM proliferation and growth by targeting the expression of TIMP1.51 In addition, 
bevacizumab (VEGF antibody), is administered with TOP1 inhibitor as a second line treatment for GBM patients, 
however, it was found that overexpression of TIMP1 reduced the efficacy of TOP1 inhibitor,52 suggesting that TIMP1 
expression may be associated with the chemotherapeutic response of GBM patients. IGFBP2 al. reported that regulate the 
self-renewal, proliferation, and differentiation of neural stem cells, which leads to GBM.53 Chua et al reported that 
nuclear IGFBP2 affects the migration and invasion of GBM cells, possibly via EGFR/STAT3 signaling.54 Moreover, the 
knockdown of IGFBP2 impairs immunosuppression in GBM by affecting the abundance of T cells, B cells, and 
macrophages,55 suggesting its potential for immunotherapy in GBM patients. Two SNPs in LGALS3 are associated 
with an increased risk of GBM, and LGALS3 can protect U251 and T98G cells from ionizing radiation and 
temozolomide,56 which are used in the treatment of GBM. However, to the best of our knowledge, the functions of 
LOXL1, SLC47A2, and SNCAIP in GBM remain unclear. This study is the first to suggest prognostic value for GBM. 
Moreover, bioinformatic analysis of single-cell sequencing data of GBM revealed that these genes are important for 
cellular differentiation in the context of GBM heterogeneity. Furthermore, correlation analysis showed that the expres-
sions of those prognostic genes were correlated with the infiltration of immune cells, such as DC, Th1 cells, Th2 cells, 
iDC and/ or macrophages, indicating that the aberrant expression of those genes might influence the immune micro-
environment, and their interplay might have further effect on the outcome of GBM patients.

In addition, we predicted TFs targeting the expressions of prognostic genes and identified their distributions across 
different cell types within GBM tissues. The results of pseudotime analysis suggest that fluctuated expressions of 
BCL11A, EZH2, GLIS2, SMAD5, TFDP1 and ZNF501 may be important for GBM progression. BCL11A is an 
important player regulating differentiation, migration and function of neurons.57,58 EZH2 mediates cell growth, metas-
tasis, stemness and immune invasion in GBM.59,60 Ke et al reported that GLIS2 might promote apoptosis of neurons,61 

however, its role in GBM is unclear. SMAD5 has been shown to regulate migration and proliferation of GBM cells.62,63 

TFDP1 is a key regulator of cell cycle,64 and may be involved in GBM via cell cycle pathway.65 By performing in vivo 
and in vitro experiments, Zheng et al found that ZNF501 promoted cell proliferation and tumor formation of GBM.66 

However, to the best of knowledge, the predicted TF-prognostic gene regulatory network and their biological relevance 
in GBM remain unknown, thus needing further verifications.

Our study had some limitations. First, the CIC structure and subcellular location of the prognostic genes must be 
detected in GBM samples. Secondly, the exact molecular mechanisms by which SLC47A2, SNCAIP, and LOXL1 
regulate GBM should be investigated in both in vitro and in vivo experiments. Third, the prognostic risk model and the 
difference of immune infiltration between different risk groups should be validated in the real world using a large sample 
size from different cohorts. In addition, we predicted nine TFs targeting the expressions of prognostic genes and 
compared their expressions between GBM and control samples using both TCGA and CGGA datasets. Although 
seven of them had similar expression patterns, there were two TFs exhibiting different expression patterns in TCGA 
and CGGA datasets. This may be caused by the imbalance of sample size of GBM and controls in two datasets. Thus, 
further qPCR validation on clinical samples is needed. Besides, how clinical factors, such as age, IDH status and MGMT 
status, interact with CIC score or risk model remain unclear. Clinical samples and traits are needed to be collected and 
recorded to investigate the effect of clinical factors on the expressions of CIC gene signatures or model gene signatures. 
Also, we identified cell types within GBM tissues and located the expressions of prognostic signature in those cell types. 
Those cell types and the location of prognostic signature need to be verified via multiplex immunofluorescence assays. 
Finally, the role of these genes in forming CIC in GBM, how they crosstalk with ECM, the immune microenvironment of 
GBM, and how they further affect the prognosis and therapeutic response of GBM patients needs to be explored by 
in vivo and in vitro experiments using gene editing and multi-omics technologies. In future studies, we will focus on 
these scientific questions to better understand the role of CIC in GBM progression.
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Conclusion
To the best of our knowledge, this was the first study on exploring the prognostic potential of CIC-related genes in GBM. 
We have identified PTX3, TIMP1, IGFBP2, SNCAIP, and LOXL1 as key CIC-related prognostic biomarkers involved in 
the development of GBM. Additionally, we have developed a CIC-related model to predict high-risk GBM patients. 
Furthermore, we have pinpointed the expressions of these key genes at a single-cell resolution. Those findings provide 
next-step guidance to delve into molecular mechanisms of how CIC affect GBM cell behaviors and GBM microenvir-
onment. Meanwhile, targeting these prognostic genes in specific cell types may lead to the development of novel 
therapeutic strategies for GBM patients.
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