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Plasmodium falciparum is the causative agent of deadly malaria disease. It is an
intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts
viz, mosquito and human. In order to habituate within host environment, parasite
conform several strategies to evade host immune responses such as surface antigen
polymorphism or modulation of host immune system and it is mediated by secretion
of proteins from parasite to the host erythrocyte and beyond, collectively known as,
malaria secretome. In this review, we will discuss about the deployment of parasitic
secretory protein in mechanism implicated for immune evasion, protein trafficking,
providing virulence, changing permeability and cyto-adherence of infected erythrocyte.
We will be covering the possibilities of developing malaria secretome as a drug/vaccine
target. This gathered information will be worthwhile in depicting a well-organized picture
for host-pathogen interplay during the malaria infection and may also provide some
clues for the development of novel anti-malarial therapies.
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INTRODUCTION

World Health Organization report summarized that about 198 million cases and 0.58 million
deaths occurred in year 2013 (World Health Organization [WHO], 2014). Amongst different
species of Plasmodium, P. falciparum is the most dangerous and responsible for severe complexities
during infection like multi-organ failure, cerebral malaria, coma, and death (Miller et al., 1994;
Mendis and Carter, 1995). P. falciparum completes its life cycle spanning two alternate host,
human, and mosquito. Within the human host, parasite undergoes series of developmental stages
in the liver and erythrocytes (RBCs). The intra-erythrocytic cycle is found to be important as it
is responsible for patho-physiology of the disease (Miller et al., 2002). Within the erythrocyte,
the parasite proceeds through the different morphological stages such as ring, trophozoite,
and schizont (Bannister et al., 2000; Florens et al., 2002). After completion of infection cycle,
erythrocyte gets ruptured, and merozoites are released into the host bloodstream. The released
merozoites initiate next round of erythrocytic cycle by infecting fresh erythrocytes (Gilson and
Crabb, 2009). The survival of parasite inside the host cell is difficult, ascribed to which Plasmodium
adapts various strategies to avoid the host immune response (Miller et al., 1994; Hisaeda et al.,
2005). The strategies encompass the secretion of hitherto of proteins against infected RBC (iRBC)
surface and beyond it into the host plasma (Singh et al., 2009). Infected erythrocyte surface
remodeling is an example of such phenomena, involving the insertion of secreted proteins into
the iRBC membrane (Deitsch and Wellems, 1996; Parker et al., 2004). Remodeling assists in cyto-
adherence of iRBCs to the endothelial lining of blood vessels and thus averting them from splenic
clearance (Newbold et al., 1999; Cooke et al., 2001; Rowe et al., 2009). Host immune modulation
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is another phenomenon involving the release of secretory
proteins before or along with rupture of iRBCs. The released
proteins interact with the components of the host immune system
to provide conducive environment for merozoites before they
invade new erythrocytes (Singh et al., 2009). The entire set
of secreted proteins is known as ‘Secretome.’ These proteins
are implicated in the processes essential for parasite survival
such as host–parasite interactions and immune modulation
(Ranganathan and Garg, 2009). Hence, in this review we will be
focusing on parasite secretome and its significance in the malaria
biology.

IDENTIFICATION OF MALARIA
PARASITE’S SECRETOME

The export of secretory proteins from various species including
P. falciparum has been thoroughly studied (van Ooij et al.,
2008). Transport of secretory proteins follows a complicated
route due to the presence of three membranes of parasite and
vacuole inside the host cell (Martin et al., 2009). There must be a
defined mechanism or recognizable sequence motifs behind such
complex transport. Advent of bioinformatics tools facilitates the
prediction of such conserved signal sequences responsible for the
export and localization of the secretory proteins (Hiller et al.,
2004; Marti et al., 2004, 2005).

The identification of sequence motifs necessary for export
of parasite proteins is required for unearthing the complete
secretome of the parasite. The first report proposed the presence
of host targeting signal (HT motif) (Hiller et al., 2004) or
Plasmodium export element (PEXEL motif) (Marti et al., 2004)
in the sequence that is a requisite for the export of secretory
proteins from parasitophorous vacuole (PV). The HT/PEXEL
motif, present in more than 400 parasitic proteins, comprises
short amino-terminal sequence, ‘R/KxLxE/Q’. The role of motif
in the export of both soluble and surface-associated protein
is determined by green fluorescent protein (GFP) and yellow
fluorescent protein (YFP) assays involving the fusion of secretory
proteins such as Knob associated histidine rich protein (KAHRP),
Pf EMP-1 (with PEXEL like motif), Glycophorin binding protein
(GBP130), and members of repetitive interspersed family (rifin).
Mutation or truncation of the PEXEL motif interrupted the
transport of proteins and rendered their accumulation in PV itself
(Marti et al., 2004; van Ooij et al., 2008). Prior to the secretion
of PEXEL containing proteins to destination, N-terminus is
processed in endoplasmic reticulum (ER) by protease enzyme
plasmepsin V (PMV), followed by N-acetylation of the cleaved
product (Chang et al., 2008; Boddey et al., 2010; Russo et al.,
2010). The decisive role of PMV in export of proteins is also
demonstrated by identification of transition state (TS) inhibitor,
WEHI-916 (Walter and Eliza Hall Institute of Medical Research).
The WEHI-916 inhibitor is found to compete with the PEXEL
containing substrate resulting in blocking of activity of PMV
and ultimately lead to the cessation of parasite growth at the
trophozoite stage. Knockdown studies of PMV further supported
the inhibitory role on PMV. Indirect hindrance of export of
PfEMP-1 and the loss of virulence and cytoadherence of iRBC

has been observed due to inhibitory activity of WEHI-916
(Sleebs et al., 2014a,b). Recently, another inhibitor of PMV,
WEHI-842 has been identified. The inhibitory role of WEHI-
842 is assessed through the immunoblotting of GFP tagged
PEXEL containing PfEMP-3. It is found to be more effective in
comparison to WEHI-916 (Hodder et al., 2015). The presence
of PEXEL motif leads to identification of first set of parasite
secretome. However, HT/PEXEL is found missing in various
secretory proteins (Lingelbach and Przyborski, 2006). Analysis
of such sequences showed the presence of a hydrophobic stretch
in the internal region of trans-membrane proteins which helps
in crossing the Parasitophorous Vacuolar Membrane (PVM).
Immune localization experiments and GFP-tagged approach
investigated that first 20 amino acids of N-terminus along with
hydrophobic residues in trans-membrane domain are common
features of all PEXEL negative export proteins (PNEPs). Thus
PNEPs have further expanded the secretome repertoire of the
parasite (Spielmann et al., 2006; Spielmann and Gilberger, 2010;
Heiber et al., 2013).

Apart from sequence-motifs based approach, other
approaches are used to predict secretory proteins of Plasmodium.
A Position-Specific Scoring Matrix (PSSM) profile based method
is adapted that employs phylogenetic relationship derived
through PSI–Blast against the non-redundant database. Based
on these data, web server called ‘Plasmodium Secretory and
Infected erythrocyte Associated Protein prediction’ (PSEApred)
is developed to predict the secretory nature of plasmodium
proteins (Verma et al., 2008). Similarly, the presence of
N-myristoylation site, a cysteine S-palmitoylation site and some
basic residues at N-terminus of parasite proteins are found to
be responsible for the targeting to PVM and beyond (Gunaratne
et al., 2000; Ma et al., 2012; Thavayogarajah et al., 2015; Wetzel
et al., 2015). Together, both classical and non-classical path
of secretion of proteins from parasite to the host cell have
enhanced the secretome of the parasite. However, there is a
possibility of appending more proteins to the growing secretome
of parasite by identifying new signatures and patterns of
secretion.

TRAFFICKING PATHWAY OF
SECRETOME

The protein containing PEXEL motif moves from ER after
cleavage by PMV to the PV either in the form of vesicular cargo
(Barnwell, 1989) or through the secretory apparatus (Hinterberg
et al., 1994; Taraschi et al., 2003). Proteins that are not cleaved
by PMV have been shown to bind with phosphatidylinositol 3-
phosphate (PI3-P) in the ER and proceed for further trafficking
pathway (Bhattacharjee et al., 2012). The PNEP proteins require
transmembrane domain for their transport (Heiber et al., 2013).
All the proteins in the PV are found to be exported through
Plasmodium Translocon of Exported protein (PTEX) complex
(de Koning-Ward et al., 2009; Beck et al., 2014; Elsworth et al.,
2014). These proteins undergo unfolding for their translocation
across PV (Charpian and Przyborski, 2008; Gehde et al., 2009;
Gruring et al., 2012). P. falciparum has developed a membranous
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structure in the cytoplasm of the host cell called ‘Maurer’s
cleft’. It is a secondary organelle and required for the export
of the proteins involved in virulence, modification of host cell
environment (Trager et al., 1966; Rudzinska and Trager, 1968)
and for trafficking of membrane localized proteins (Przyborski
et al., 2003; Lanzer et al., 2006; Mundwiler-Pachlatko and Beck,
2013). The exported proteins from PV are found to reside in
the Maurer’s cleft (Haldar et al., 2002). Knock-down studies
of Maurer’s cleft residing proteins like Membrane-Associated
Histidine-Rich Protein (MAHRP1) and Skeletal binding protein-
1 (SBP-1) proved its vitality in protein sorting (Epp and Deitsch,
2006; Maier et al., 2007; Spycher et al., 2008). In addition,
most of the known secretory proteins including three antigenic
families of parasite proteins (Stevor, Rifin, and Var) are localized
in the Maurer’s cleft (Cheng et al., 1998) via PTEX export
system (de Koning-Ward et al., 2009). PTEX export system,
found exclusively in the genus Plasmodium, is responsible for the
translocation of proteins targeted beyond the vacuolar membrane
of the parasite (de Koning-Ward et al., 2009; Desai and Miller,
2014). It is a complex of five proteins including PTEX150,
Heat shock protein 101 (HSP101), exported protein 2 (EXP2),
PTEX88, and thioredoxin 2 (TRX2). The passage for directing
proteins toward the cytosol of host erythrocyte is formed by
EXP2 (de Koning-Ward et al., 2009). TRX 2 is found to be
involved in unfolding of proteins destined to pass through the
PTEX. Inhibition of HSP101 leads to the obstruction in protein
export and eventually the accumulation of proteins such as Ring
Infected Erythrocyte Surface Antigen (RESA), Ring Exported
Protein 3 (REX3), Histidine Rich Protein-1 (HRP1), and KAHRP
in parasitic compartment (Beck et al., 2014). It is observed that
deletion of PTEX components prevent proteins from crossing
PVM, resulting in interference of parasitic growth at the ring
and trophozoite stage (Elsworth et al., 2014). However, mode
of recognition between proteins to be exported and those to
be retained by the PTEX complex still remains unclear. The
mechanism of unfolding during protein export is also not
defined and therefore it opens a new window of opportunity
for scientists to explore and explain the facts related to PTEX
system. In addition, the presence of this export system exclusively
in Plasmodium genus makes it a captivating drug target (de
Koning-Ward et al., 2009).

HOST CELL REMODELING

In order to make opportune environment within host, parasite
makes substantial modifications in the host erythrocytes
(Haldar and Mohandas, 2007). The modifications are
predominantly mediated by secretion of parasite proteins
across the PVM (Charpian and Przyborski, 2008; Maier et al.,
2009; Goldberg and Cowman, 2010; Marti and Spielmann, 2013;
Elsworth et al., 2014). The process of erythrocyte remodeling
includes.

Cytoadherence
To circumvent immune clearance in spleen, infected erythrocytes
get adhered to endothelial wall, which is mediated through

various cell adhesion molecules like ICAMs, CD36 on blood
vessels (Gardner et al., 1996; Ho and White, 1999; Bhalla
et al., 2015). Some events during adhesion process such
as rosette formation with fresh erythrocyte (Udomsangpetch
et al., 1989), auto-agglutination due to clumping of iRBCs and
platelets (Pain et al., 2001) leads to severe disease pathologies
(Rowe et al., 1995, 2002; Newbold et al., 1999). P. falciparum
erythrocytic membrane protein-1 (Pf EMP-1) is major virulent
factor present on surface of erythrocyte (Magowan et al.,
1988; Chen et al., 1998). A study regarding transgenic lines of
P. falciparum with altered Pf EMP-1 expression shows strong
immune response targeted against Pf EMP-1 (Chan et al., 2012).
Alteration in functioning of B-cells during parasite infection
comprehends the interaction between cysteine-rich inter-domain
region 1α (CIDRα) of Pf EMP-1 and B-cells. The complex
formed causes the activation of NF-kB pathway resulting in
functional impairment of B-cells (Simone et al., 2011). Multiple
Pf EMP-1 proteins of P. falciparum bind to Fc portion of IgM
(Jeppesen et al., 2015; Stevenson et al., 2015a) and found to
be involved in rosette formation (Stevenson et al., 2015a,b).
In addition to Pf EMP-1, sub-telomeric variant open reading
frame (STEVOR) and RIFIN members also play decisive role
in rosette formation (Cheng et al., 1998; Kyes et al., 1999;
Niang et al., 2014). The antigenic variation of proteins allows
the parasite to escape host immune response (Bull et al.,
1998). A protruding structure on the surface of erythrocyte
namely ‘knob’ is found to be essential in adhesion process
of iRBCs (Crabb et al., 1997). Some proteins localized to
knob interact with surface proteins of erythrocytes. Interactions
include binding of KAHRP with ankyrin R and pro-coagulant
glucosaminoglycans (Waller et al., 1999; Wickham et al.,
2001; Rug et al., 2006; Weng et al., 2014) and binding of
Plasmodium helical interspersed sub-telomeric domain (PHIST)
to Pf EMP-1 (Oberli et al., 2014). In case of cerebral malaria,
Pf 14_075, member of PHIST family is found to be highly up-
regulated and binds to human brain endothelial cell line (HBEC-
5i). The study indicates its mantle in cyto-adherence (Claessens
et al., 2012). Proteins such as erythrocyte membrane protein 3
(Pf EMP3), Mature parasite-infected Erythrocyte Surface Antigen
(MESA; Lustigman et al., 1990), RESA, Pf EMP-1 (Sharma,
1997; Horrocks et al., 2005), KAHRP (Rug et al., 2006)
and Pf EMP3 (Knuepfer et al., 2005) are involved in knob
formation. Merozoites Surface Protein-1 (MSP-1), another knob
protein, shows interaction with RBC surface proteins like
Band 3 and Glycophorin A (GPA). A study of mouse model
deficient in GPA-Band3 complex described the role of knob
formation in cyto-adherence. (Goel et al., 2003; Baldwin et al.,
2015).

Membrane Permeability
Secretory proteins make astonishing alterations in the
permeability of iRBCs membrane for ions and nutrient exchange.
(Homewood and Neame, 1974; Ginsburg et al., 1983; Kutner
et al., 1983). The presence of ion channels such as Plasmodium
Surface Anion Channel (PSAC) is responsible for induction of
drug resistance. The identification of structural composition
of this complex would contribute to better understanding of
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pathogenic interaction and drug resistance mechanism and
therefore suggested for therapeutic intervention (Lisk et al.,
2008; Desai, 2012). Cytoadherence-linked antigen3 (Clag3)
protein, found on the host membrane is appraised to be
associated with PSAC in ion and nutrient transport through
channels (Nguitragool et al., 2011; Pillai et al., 2012; Sharma
et al., 2015). Secretory proteins involved in regulation of
net flux of Na+, K+, and other ions are on the focus (Kirk,
2015). For instance, P-type ATP4 (Pf ATP4), regulating the
transport of Na + ions is contemplated as a potential drug
target (Spillman et al., 2013). Membrane permeabilization is
found to be a necessary event for egress of parasites from
iRBCs. Cysteine proteases have been shown to play cardinal
role in rupture of erythrocyte membrane for the release of
parasite (Hadley et al., 1983; Dluzewski et al., 1986; McKerrow
et al., 1993; Raphael et al., 2000; Lee and Fidock, 2008).
One of the members of this class, falcipian 2 is responsible
for the cleavage of ankyrin and protein 4.1 of erythrocytic
cytoskeleton (Dua et al., 2001). It has been evident through
the gene disruption studies that expression of Plasmodium
perforin like protein 2 (PPLP2) is paramount for membrane
permeabilization during the gametocyte release from infected
erythrocytes. It had been illustrated that gametocytes are unable
to release from PPLP2 (−) lines of parasite, thereby reducing
the transfer of gametocyte to vector (Wirth et al., 2014). MSP-1
has also been demonstrated to interact with host cytoskeleton
spectrin causing the membrane destabilization and thereby
enabling the release of merozoites from iRBC (Das et al.,
2015).

Membrane Rigidity
Apart from cytoadherence, membrane rigidness or loss of
deformability is also responsible for the sequestration of iRBCs
(Bull et al., 1998). It has been clarified that knobs are liable for
causing stiffness and hardening of the iRBCs (Zhang et al., 2015).
Deformability of parasitized RBC is reduced due to association
of RESA with spectrin (Mills et al., 2007). Pf 332 exported on
the membrane is directly involved in membrane rigidity and
adhesion (Glenister et al., 2009). The KAHRP along with the
membrane skeleton imparts rigidity to infected cell and will
eventually obstruct blood flow (Waller et al., 1999; Pei et al.,
2005). PHIST protein increases membrane rigidity by binding to
membrane skeleton (Parish et al., 2013). Thus, it can be surmised
that proteins responsible for rigidity are directly linked to
virulence, providing an evidence for secretome in establishment
of infection.

SECRETORY PROTEIN EXPORTED
BEYOND THE ERYTHROCYTE

Most of the data reported with respect to secretome is
related to proteins secreted into the erythrocytes cytosol
or membrane. Interestingly, some proteins, which are not
restricted to iRBCs membrane rather squeeze out from iRBCs
membrane and get secreted out. First experimental evidence
(Singh et al., 2009) identified secretion of 27 novel proteins

beyond the erythrocyte membrane before it gets ruptured.
Immune localization and immune electron microscopic studies
confirmed the secretion of proteins beyond iRBC (Singh
et al., 2009). Some of them are functionally characterized.
The protein containing Sel-1 functional domain is found to
be involved in regulating ‘Notch signaling pathway’ which
in turn has been hypothesized to influence the T cell
differentiation (Grant and Greenwald, 1996; Singh et al., 2009).
In most protozoan parasites, to evade host immune response,
common mechanism includes altered T-helper cell differentiation
(Zambrano-Villa et al., 2002; Rodrigues et al., 2014). Some
proteins, closely associated with highly polymorphic genes,
contribute to antigenic determinants of parasite (Singh et al.,
2009). Secretory protein with LCCL (Limulus clotting factor
C) domain, conserved across apicomplexan parasite, assumed
to have role in immune evasion mechanism, (Claudianos
et al., 2002; Dessens et al., 2004), defense mechanism and
shows binding with lipid A of lipopolysaccharides. CRISPLD2
(Cysteine-Rich Secretory Protein LCCL Domain containing
2), an example of LCCL domain containing protein, has an
anti-inflammatory function and is related to disease pathology
(Vásárhelyi et al., 2014).

Sequence similarity studies suggested that some proteins
viz, virulent immuno-reactive protein (specific to bacteria
and virus), PFB0765w (uncharacterized protein), rhoptry neck
protein (RON4), moving junction protein and MAL13P1.39
(uncharacterized protein) are involved in modulation of host
immune response (Singh et al., 2009). Domain analysis
demonstrated the presence of extracellular domain responsible
for the interaction with other proteins, speculative of being
involved in host–parasite interactions. [Table 1: Domains
identified by CDD (Conserved Domain Database), NCBI]. It
is depicted through flowcytometery and confocal microscopy
that translationally controlled tumor protein (TCTP) analog
released by Plasmodium in host serum is responsible for
release of histamine and IL-8 from basophils and eosinophils,
respectively, (MacDonald et al., 2001) and reduction in B-cell
immune response. In another study, a canonical tyrosyl-
tRNA synthetase (Pf TyrRS) from Plasmodium is evidenced
to be secreted out from the iRBCs and involved in non-
canonical function of immune cell binding and modulation
(Bhatt et al., 2011). Likewise in other intracellular pathogens
such as Mycobacterium tuberculosis immune modulation ability
is found in secretory proteins (Giacomini et al., 2001). During
infection, secretome is also charged for causing alteration
in functioning of antigen-presenting cells and dendritic cells
(Sacks and Sher, 2002; Langhorne et al., 2004; Millington
et al., 2006; Sponaas et al., 2006; Teirlinck et al., 2015).
The presence of proteins on the surface or in secretion
implicate their role in host–parasite interactions and probably
in immune modulation for better survival of parasite and
it would be fascinating to have information related to the
‘Interactome’ of the secretory proteins. In-silico knock-out
studies and graphical analysis of protein–protein interaction
network (PPIN) explored newer approach in order to identify
the interacting partners vital to parasite during host–parasite
interaction (Bhattacharyya and Chakrabarti, 2015). Nevertheless,
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TABLE 1 | Some secretory protein exported out from the iRBC.

Sr. No Gene name Domain description/protein name Reference

1 MAL7P1.138 _ Singh et al., 2009

2 MAL8P1.126 Serine protease DegP Singh et al., 2009

3 MAL13P1.24 – Singh et al., 2009

4 MAL13P1.39 _ Singh et al., 2009

5 PF07_0074 _ Singh et al., 2009

6 PF07_0086 Uncharacterized protein with domain
1. TATA element modulatory factor 1
2. DNA repair protein RAD18

Singh et al., 2009

7 PF07_0113 _ Singh et al., 2009

8 GBP-PF10_0159 1. Glycophorin-binding protein Singh et al., 2009

9 PF10_0318 1. Uncharacterized / ACR, YagE family domain Singh et al., 2009

10 PF10_0380 Trophozoite antigen R45, putative Singh et al., 2009

11 PF EP PF11_0139 Protein tyrosine phosphates Singh et al., 2009

12 RON4 PF11_0168 Moving junction protein Singh et al., 2009

13 TKL-2 PF11_0220 Protein Kinase Singh et al., 2009

14 PF11_0324 Uncharacterized protein Singh et al., 2009

15 PF11_0369 Uncharacterized protein Singh et al., 2009

16 PF11_0381 Subtilisin-like protease 2 Singh et al., 2009

18 PF13_0198 Reticulocyte-binding protein 2 homolog a Singh et al., 2009

19 PF14_0462 SEL-1 protein, putative Singh et al., 2009

20 CCP1 PF14_0723 LCCL domain containing protein CCP1 Singh et al., 2009

21 PFA018w 1. L-seryl-tRNA(Sec) kinase,
2. Predicted nucleotide kinase

Singh et al., 2009

22 PFB0190c Conserved Plasmodium protein with domain
1. Sel1-like repeats
2. TPR repeat, SEL1 subfamily

Singh et al., 2009

23 PFB0315w Uncharacterized protein PFB0315w Singh et al., 2009

24 PFb0465c Monocarboxylate transporter, putative with domain
1. The Major Facilitator Super family (MFS)
2. Oxalate/formate antiporter family transporter.
3. Monocarboxylate transporter

Singh et al., 2009

25 PFB0655c Conserved Plasmodium protein Singh et al., 2009

26 PFB0750w Vacuolar protein-sorting protein VPS45, putative Singh et al., 2009

27 PFB0765w Uncharacterized protein PFB0765w with domain
1. Chromosome segregation ATPases
2. Myosin class II heavy chain [Cytoskeleton]

Singh et al., 2009

28 PFE0245c Uncharacterized protein with domain
1. Dos2-interacting transcription regulator of RNA-Pol-II
2. DNA repair/transcription protein Mms19
3. Ultrahigh sulfur keratin-associated protein

Singh et al., 2009

29 PFE0440w Uncharacterized Singh et al., 2009

30 PFL0030c Erythrocyte membrane protein 1 (PFEMP1) Singh et al., 2009

31 PF I1150w HRP II/I II domain Singh et al., 2009

32 PFL2405c Chromosome segregation protein SMC (structural maintenance of chromosomes)
PFG377 protein

Singh et al., 2009

33 PFTyrRS Tyrosyl-tRNA synthetase Bhatt et al., 2011

34 PFTCTP Plasmodium falciparum translationally controlled tumor protein MacDonald et al., 2001;
Calderon-Perez et al., 2014

some more studies are required to understand the role of
secretory proteins in regulating host pathways. The role of
secretory proteins of the parasite could have larger impact
on malaria biology. Besides available knowledge, there is a
need to identify signature motif or pattern responsible for
secretion of proteins outside iRBCs. The identification of
marker responsible for the localization of proteins to infected

erythrocyte membrane and their export will be highly beneficial
in interaction studies. There is a requirement of classifying
secretome in terms of cellular localization and expression
during developmental stages of parasite in order to understand
its role in better way. It would be interesting to explore
trafficking pathway of protein exported beyond the iRBCs
membrane.
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SECRETOME AS POTENTIAL
DRUG/VACCINE TARGET

The intracellular parasite adapts different strategies for protein
export in order to survive in host environment. As the
secretome is intimately associated with disease pathology and
parasite survival is reliant on them, any interference in the
secretory pathway or inhibition of secretory proteins itself
would jeopardize the parasite. In addition, utilization of
information of secretome available shall provide clues to certain
strategies involved in host–parasite interaction at molecular level
(Ranganathan and Garg, 2009). The function of these proteins
can be annotated by comparing with homologous protein
of known function in other organisms. Homology modeling
of secretory proteins could also provide a starting point for
the lead identification in the process of drug development.
Vaccine and drug development against the secretory protein is
in progress in various other pathogens like H. pylori (Lower
et al., 2008), Helminths parasite (Hewitson et al., 2009) etc. Till
date, various parasite proteins involved in secretory pathway
have been characterized and may be critical in anti-malarial
drug targeting such as inhibition of PTEX complex. Another
important drug target capturing the interest in context of drug
development area is PMV (plasmepsin V). Indispensability of
PMV in virulence, cytoadherence, and parasitic growth makes
PMV an attractive anti-malarial drug target (Sleebs et al.,
2014a,b). Structural determination of PMV–WEHI 842 inhibitor
complex provides an insight for interaction between active site
residue and inhibitor. This study paves the way for developing
potent anti-malarial by blocking export machinery of parasite
(Hodder et al., 2015).

Taken together, the functional characterization of secretory
proteins and proteins involved in their export, implicated
in knob formation, involved in trafficking pathway, or

those involved in host pathogenic interaction and invasion
of host immune system, are all indispensible for parasite
survival or pathogenicity. Therefore, complete investigation
and characterization of secretome may provide us better
understanding to get effective therapies for malaria
disease. Allelic replacement and GFP tagging revealed
the importance of PMV in protein export and parasite
survival thus making it an attractive target for anti malarial
drugs.

CONCLUSION

Export of secretory parasite proteins into host cytoplasm will
lead to apprehension of host cell functions required for parasite
growth and survival by modulating crucial phenomena of
malaria biology such as immune evasion and virulence. Deep
understanding and investigation of role played by malaria
secretome will be not only beneficial in deciphering host–
pathogen interactions but it may also lead to better therapeutic
intervention for malaria disease.
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