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Abstract: Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative
therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage
differentiation potential. The harvested adipose tissues are further digested to extract stromal
vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to
characterize their stemness, surface markers, and multi-differentiation potential. The differentiation
potential of ASCs is directed through manipulating culture medium composition with an introduction
of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative
therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic
outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome
comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives
might offer huge advantages over cells through their synthesis and storage for long-term use.
When considering the therapeutic significance and future prospects of ASCs, this review summarizes
the recent developments made in harvesting, isolation, and characterization. Furthermore, this article
also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.

Keywords: adipose tissue; adipose-derived stem cells; secretome; regenerative therapy

1. Introduction

The self-renewal and differentiation potential of adipose-derived stromal/stem cells (ASCs)
have accelerated the progress in regenerative therapy. In the previous literatures, a variety of
terms have been used for these cells, such as adipose-derived adult stromal cells, adipose-derived
adult stem (ADAS) cells, adipose-derived stromal cells (ADSC), adipose stromal cells (ASC),
adipose mesenchymal stem cells (AdMSC), preadipocytes, processed lipoaspirate (PLA) cells,
and adipose-derived stromal/stem cells (ASCs); however, to address this discrepancy, the International
Fat Applied Technology Society (IFATS) reached a consensus to refer them as adipose-derived
stromal/stem cells (ASC) [1]. These cells are mainly present in perivascular region of all tissue
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and organs, including white adipose tissues [2–5]. The higher abundance of ASCs in these areas from
which they could be easily harvested via minimally invasive procedures make them a suitable agent in
cell-based therapy [5]. Aesthetic and economical liposuction surgeries are less painful and provide rich
source of ASCs and progenitor cells in large quantity as compared to harvesting bone marrow stem
cells (BMSCs) [6,7]. ASCs have been reported for its pluripotency/plasticity into various cells, such as
chondrocytes, osteoblasts, myocytes, adipocytes, neural cells, and epithelial cells [8–10]. Therefore,
their regenerative potential have been explored in the treatment of various diseases, such as diabetes
and related complications, osteoarthritis, cardiovascular diseases [11–13], nerve regeneration and
neurological disorders [10,14,15], skin aging [16], ischemic limb disease [17], skin burn, and wound
healing [18–20]. Along with differentiation potential of ASCs, the exhibited paracrine activity,
and secretion of growth and signaling factors enhance their clinical significance [21]. It is reported that
ASCs maintain their phenotypic characteristics, differentiation potential, and proliferation capacity
even after 25 passages [22]. This indicates their reduced frequency of passaging and hence the
low risk of cellular senescence [23,24]. In the recent years, the intense research has focused on
isolation and characterization of ASCs from various adipose tissue sources of animal models and
human. These ASCs are present in stromal vascular fraction (SVF) along with other cells, such as
endothelial, hematopoietic, and other cells [23,25]. After lipoaspiration, the adipose tissue is digested
with collagenase and subcultured to obtain the sufficient number of cell populations [26]. Thereafter,
the cell proliferation/viability is determined and the cells are further assessed for the presence of
mesenchymal stem cell characteristics, such as cell surface markers in form of cluster of differentiation
(CD) [5–7,25,27,28], and their multi-lineage differentiation potential, which is determined by culturing
them in specific induction media.

Contemplating the importance of regenerative potential of ASCs; this review article
comprehensively summarizes the isolation, characterization, and differentiation methodologies of
ASCs from various sources for their possible use in regenerative therapy.

2. Adipose Tissues as Source of ASCs

Adipose tissues are a rich and popular source of adult stem cells [29,30]. They are also
involved in homeostasis, metabolism regulation, and aging processes [31]. These tissues are
derived from mesenchyme and mainly constitute stem cells, endothelial cells, collagen, resident
monocytes/macrophages, lymphocytes, fibroblasts, vascular smooth muscle cells, preadipocytes,
and adipocytes [26,32–35]. Adipose tissues are classified into three groups, namely, white adipose tissue
(WAT), bone marrow adipose tissue (BMAT), and brown adipose tissue (BAT) in mammals [36–39].
Both, the BAT and WAT contain lipolytic and lipogenic functions and are involved in energy
accumulation and dissipation, respectively [36]. However, BATs are larger in size and rich in
mitochondria than WAT and possess a specific uncoupling protein-1 (UCP-1), a mitochondrial ion
carrier [40]. The existing color of BAT is due to the high number of vascularization, cytochromes,
and mitochondria, which is responsible for high energy dissipation along with other dedicated
proteins, such as UCP-1 [41,42]. On the other hand, WAT is found as subcutaneous and visceral depots
that are not involved in metabolic disorder due to high number of young adipocytes and adipose
turnover [43,44]. The role of WAT in metabolism regulation is critical and has been shown that several
metabolic disorders such as hyperglycemia, diabetes, hypertension, liver disease, hyperlipidemia, etc.
are generally caused by an imbalance in adipocytes [45]. In addition, BAT is considered as source of
heat as it catalyzes energy uncoupling, dissipation, and mitochondrial biogenesis [46]. Heterogeneity
and plasticity are the characteristics of adipose tissues that depend on species and source of fat
depots [42]. Adipose tissues are appealing due to their higher abundance in stem cells and ease of
harvest when compared to bone marrow [42]. However, the ASCs yield is influenced by various factors,
such as age, location of adipose tissue, harvesting techniques, and species [47–49]. BAT is mainly
found in axillary, perirenal, periadrenal regions, and cervical in fetus and neonate; however, this tissue
transformed mostly into WAT in adults [50,51]. Whereas, the human WAT is distributed at various
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sites, such as subcutaneous region of abdomen, thighs and buttocks, intestines, perirenal, omentum,
retro-orbital space, and bone marrow [52,53]. Subcutaneous depots are localized at superficial and
deep region of abdomen and are considered superior source of stem cells when compared to other fat
depots [52]; however, superficial abdominal adipose tissues has showed an enhanced multipotency and
stemness characteristics [54]. Standard en bloc resection and lipospiration are the two most common
surgical procedures that are used to harvest adipose tissues [52]. Further, though the efficacy of adipose
tissues site on ASC yield and its characteristics is not explicitly established, a few seminal studies
demonstrated that abdominal adipose tissue is rich in ASCs as compared to other sites, such as hip,
thigh, femoral, axilla, and flank regions [25,47,55]. Furthermore, another comparative study implied
that superficial adipose tissue is a better source of stromal vascular fraction (SVF) [56]. These bodies of
evidence indicate that superficial abdominal adipose tissue is a prospective source of ASCs. However,
in contrast to the above studies, a recent report revealed a significantly higher yield of ASCs and SVF
from adipose tissues of inner as well as outer thigh when compared to those of abdominal, waist,
and inner knee regions [57]. In another study, Khojasteh et al. suggested that, when compared to
abdomen and hip regions of both male and female donors, the buccal fat pad seems more promising
source of ASCs for regenerating bone tissues [58]. On the other hand, no significant differences on
yield characteristics and viability have also been observed among ASCs of abdomen, thigh, or hip [59].
Along with the donor site, the factors, such as gender and age, have also been extensively evaluated
and need to be considered during harvesting of adipose tissues to isolate ASCs [60]. In a rabbit model,
the aging induced suppression of ASCs yield and adipogenic potential was evident with no significant
effect on their osteogenic and clonogenicity [61]. A recent systemic review has reported an inihibited
proliferation and differentiation potential of ASCs with advancing age [62]; however, this phenomenon
was not extensively uniform throughout. A comparative study concluded that yield and characteristics
of human orbital adipose derived stem cells remain constant among young and aged donor [63].
Similarly, no significant effect of aging on ASC yield and therapeutic potential of ASCs was observed
from adult to elderly stem cells [64]. This might be attributed to no influence of aging on the cellular
senescence and ASC yield from subcutaneous adipose tissue, thereby gaining promising potential for
regenerative therapy [65]. On contrary, Lee et al. found the higher cell population doubling levels and
differentiation potential of ASCs among younger dog when compared to older ones, indicating that
the age of donor is an important factor in cell-based therapy [66].

Coleman’s technique, direct excision, and liposuction are the common harvesting techniques
that are used in collection of adipose tissues [49]. The collection site and procedure followed
in above techniques affects the yield and characteristics of ASCs [67]. However, no significant
effect on ASCs yield and differentiation potential through direct resection and liposuction had also
been reported. Further, the ASCs obtained through ultrasound-assisted liposuction are lower in
yield and proliferative potential compared to resection and tumescent liposuction methods [59].
Notwithstanding, the liposuction seems better harvesting technique, and yield more homogenous
ASCs than the resection technique [68]. However, the pattern of expressed genes from ASCs isolated
by liposuction indicate their enhanced endodermal differentiation; whereas, ASCs isolated by resection
had tendency of mesoderm and ectoderm differentiation [68]. Taken together, though the recent studies
have established several factors that might affect ASCs yield, viability, and characteristics, an intense
investigation is needed to gain a deeper insight on the role of factors on quality and quantity of ASCs.

2.1. Harvesting of Adipose Tissues

Harvesting adipose tissue is the first step in isolation of ASCs. The three general techniques
liposuction, resection, and Coleman are used to harvest adipose tissues from human fat sites; of which,
the liposuction results in better cellular yield and viability than others [69]. Liposuction is one of the
most common and increasingly used surgical operation being carried out by plastic and reconstructive
surgeons since several past years to restructure body contour to improve aesthetic looks and in
treatment of pathologies in reconstructive surgery [70]. Further, though the various sites are targeted
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to harvest adipose tissues, subcutaneous regions are considered as the most appropriate choice [70,71].
Liposuction is generally carried out Recently, Arpad and Giorgio Fischer has developed a novel method
of liposuction in which a blunt hollow cannula is attached to a suction source to extract adipose tissues
with lesser complication. This dry liposuction technique was further modified as wet/tumescent
liposuction to decrease the effect of hemorrhagic risk and the associated complexity through bringing
down the bleeding level <1% compared to 30% of dry liposuction [72]. In the wet/tumescent technique,
firstly the Klein solution (0.05% lidocaine, 1:1,00,000 epinephrine, and 10 mL sodium bicarbonate per
1000 mL saline) or saline solution containing local anesthetic agent and/or epinephrine is injected
at the target site to reduces blood loss and enhance the safety of the procedures [73]. Thereafter,
the adipose tissues are harvested by using cannula and syringe of different sizes.

Besides, vaccum or syringe aspirations are the most commonly followed techniques during
fat harvesting procedures [74,75]. The increased vacuum increases the aspiration rate; however,
a very high pressure may disrupt structural integrity of ASCs and other cells [76,77]. Additionally,
cannula size and types of syringe needles also might affect the cell yield, size, and viability of harvested
fat [78–80]. However, a study by Campbell et al. reported that if the needle size is greater than 20 gauge,
it exerts no significant effect on adipocyte morphology and metabolism [81]. In contrast to above
studies, no significant effect of multi-perforated cannula with the Coleman 3 mm aspiration cannula
was observed on cell viability or size of fat tissues [82,83]. Ultrasound and laser-assisted liposuction are
the other two approaches to harvest fat with enhanced accuracy and safety during procedures [84–86].
Besides, the Coleman developed fat harvesting techniques using syringe, cannula, and centrifuge
in which an incision is made at the target site and injected with 1 cc solution per cm3 of fat to be
harvested [87].

2.2. Isolation of ASCs from Harvested Adipose Tissues

The first attempt to isolate ASCs is initiated by appropriate washing, followed by their digestion
with collagenase and centrifugation to separate stromal vascular fraction (SVF). The SVF is considered
as a source of adipocyte progenitors and ASCs along with other cells; iterative sub-culturing enriched
the plastic adherent ASCs (Figure 1) [88–90].

Figure 1. Schematic representation of process for harvesting, isolation and characterization of adipose
derived stem cells (ASCs). Adipose tissues are harvested through liposuction, enzymatically digested;
and centrifuged to isolate stromal vascular fraction (SVF). Finally, the SVF is cultured and adherent
cells are analyzed for presence of cell surface markers through flow cytometric analysis to confirm the
presence of mesenchymal stem cells characteristics.
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Additionally, this process has been further modified to recover ASCs from human adipose
tissues [91–95]. Centrifugation speed affects the cell yield and 1200× g has been observed as optimal
centrifugation speed for sufficient recovery of cells [96]. The general procedure of isolation of ASCs
initiates from fragmenting large adipose tissues into smaller tissue chips and to avoid connective
tissues as they might become source of contamination; this is followed by washing adipose tissues
with phosphate-buffered saline (PBS)/Dulbecco’s phosphate buffered saline or saline to remove blood;
wash buffers can be supplemented with antibiotic/antimyocotic [97]. The properly rinsed tissue is
further minced in sterile condition and then washed again with PBS to remove any traces of blood.
The minced tissue is incubated with 0.075–0.5% collagenase type IA at 37 ◦C for 30 min [68,97]. Another
study used collagenase type I (0.5 mg/mL) in equal volume of adipose tissues to digest adipose
tissue [98]. Collagenase type II and type IV might also be used; however, optimum concentration of
enzyme depends upon quality of enzyme [97]. In addition to collagenase a recent study showed that
trypsin can be a cheaper alternative for digesting adipose tissues [99]. Enzymatic activity of collagenase
or trypsin is negated by supplementing digested tissue sample with DMEM or α-MEM supplemented
with 10% or 20% inactivated fetal bovine serum (FBS) [53,97]. Notwithstanding the enzymatic
digestion is a costly method for extraction of ASCs and might affect efficacy and safety [100–102].
Therefore, the recent study has explored the economical non-enzymatic method for standardization of
ASCs isolation [103]. In another study, lipoaspirate was cultured without enzymatic digestion and
sub-cultured after five days; suspension cells were removed from culture flasks by washing and only
adherent cells were further analyzed for mesenchymal stem cells characteristics [104]. Similar to this
study, another attempt was made to develop non-enzymatic method by simple washing and excessive
and repeated shaking of adipose tissues to collect infranatant, which was further centrifuged and
collected SVF was cultured to grow ASCs [105]. Notably, this study reported no major differences in
cell characteristics isolated from enzymatic and non-enzymatic methods; however, cellular yield was
higher in the enzymatically digested method. In another recent study, the mesenchymal stem cells
(MSCs) obtained from harvested adipose tissue of animal or human were pluripotent and successfully
differentiated into adipocyte and osteoblasts [106]. Various commercial mechanical devices have been
developed to process adipose tissue; which uses forces, such as pressure, centrifugal force, shear force,
radiation, and ultrasound, etc. to disintegrate the tissues [107]. To maintain sterility, safety, and quality
of ASCs and to fulfill the regulatory requirements, various attempts have been made to develop closed
and sterile isolation system to reduce uncertainty [107]. However, more extensive studies are required
to set standard protocol to fulfill the clinical regulation to explore real-time therapeutic effectiveness
of ASCs.

3. Characterization of ASCs

Ability of colony formation of stem cells is an indicator of potency and proliferation [108,109].
When stem cells are cultured in low density, each cell have capacity to form individual colonies [110];
however, stem cells that are isolated from rat or mouse may form more than one colony, as the cells
may disintegrate from colony and regenerate another cell colony [111–113]. CFU can be determined
by culturing the cells in medium for 10–14 days, after which thier colonies are visualized and counted
using crystal-violet stain. Similarly, cells are also characterized based on expression of their surface
markers by using flow cytometry [114]. Characterization of surface markers of ASC is generally
carried out by incubating subcultured cells with primary monoclonal and secondary antibodies that
are labeled with dyes, such as fluorescein isothiocyanate (FITC), texas red, allophycocyanin (APC),
or phycoerythrin (PE) [115,116]. Further, these cells incubated with labeled dye conjugated secondary
antibodies are washed. The minimum suggested for positive markers are represented in Table 1.
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Table 1. List of minimum mesenchymal stem cells (MSC) immunophenotypic markers on ASC [117].

ASC Immunophenotypic Surface Markers

Positive (+ve) CD90, CD44, CD29, CD105, CD13, CD73, CD166, CD10, CD49e and CD59
Negative (−ve) CD31, CD34, CD45, CD14, CD11b, CD19, CD56 and CD146

However, there is a great discrepancy and inconsistency in the data available about expression of
CD34 in ASCs. It has been widely accepted that CD34 is not present on the surface of cells; however,
this observation is largely based on cultured MSCs, not the tissue-resident MSCs [118]. The evidences
have shown that CD34 is present in freshly isolated ASCs and disappear after several passages [30,118].
Notably, the presence of other surface markers, such as HLA-ABC, HLA-DR, SH2, SH3, STRO-1,
VEGF2, vWF, ABCG2, SSEA-1 (CD15), PDGFR, α-SMA, c-Kit (CD117), OCT4+, and CCR5X (CD195)
have also been reported [117]. Further, after corroborating the surface markers, cells are characterized
based on their differentiation potential in chemically-induced medium.

3.1. Differentiation Potential of Adipose-Derived Stem Cells

Multilineage differentiation potential of ASCs towards both mesenchymal and non-mesenchymal
lineage cells have been reported [119]. This may be achieved by the introduction of factors promoting
specific lineage (Figure 2) [53].

Figure 2. Multi-differentiation potential of ASCs.

3.1.1. Osteogenic Differentiation of ASCs

ASCs has potential to differentiate into osteoblasts in presence of limited number of cytokines;
which provides opportunity to address bone related disorders within short-time period [120].
Osteogenic medium contains inducing factors, such as dexamethasone, ascorbic acid/ascorbate
2-phosphate, cholecalciferol, and β-glycerophosphates [121–124] in combination with factor, such as
transforming growth factor-β (TGF-β), vitamin D3, and bone morphogenetic proteins (BMPs) [125,126].
Recent studies have described role of quercetin, a natural flavonoid, in up-regulating Osx, Runx2,



Int. J. Mol. Sci. 2018, 19, 2200 7 of 23

BMP-2, Col-1, OPN, and OCN genes, promoting the osteogenesis of mouse and human ASCs [127,128].
Osteogenic differentiation is regulated by transcription factors, such as core binding factor-1 alpha
(CBF-1α), runt-related transcription factor 2 (Runx2), osterix, homeobox protein Hox-B7 (HOXB7),
Hoxa2, Hoxa9, core binding factor-β (Cbf-β), olyma enhancer binding protein 2β (Pebp2β), Sox9,
TNF-α, FOXC2, PPARγ, YAP, MyoD, BMP9, β-catenin GATA4, and GATA6 [129]. Moreover, two factors
HIF-1α and TWIST have been reported for their inhibitory effect on osteogenic differentiation through
their interaction with Runx2. Transforming growth factor-β (TGF-β)/bone morphogenetic proteins
(BMPs), Wnt/β-Catenin, Notch, Hedgehog, and fibroblast growth Factor (FGF), etc. are reported
as major signaling pathways in regulating osteogenic potential of ASCs [121]. Dexamethasone
activates FHL2/β-catenin-pathway to induce over-expression of RunX2 and collagen type I alpha
1 (COL1A1); whereas, ascorbic acid promotes the secretion of collagen type I to increase the activation
of integrin-mediated signaling and β-glycerophosphate provide phosphate resources to up-regulate
the expression of osteogenic gene [130]. Vascular endothelial growth factor A (VEGF-A) plays a
crucial role in bone regeneration due to its potential to promote both angiogenesis and osteogenesis
in human ASCs [131]. A combined treatment of ASCs with VEGF and BMP-2, -4, -6, and -9 have
demonstrated to promote osteogenesis through over-expressing osteogenic alkaline phosphatase
gene [132,133]. Moreover, a recent in vitro study reported that BMP2 exert no significant and constant
effect in the promotion of osteogenesis [134]. Similarly, no catalyzing effect of BMP2 have been reported
on osteogenesis of hASC in presence of ascorbic acid and β-glycerophosphate [135]. On contrary,
BMP2 has been reported for its synergistic effect on vitamin D3 in the promotion of osteogenesis of
ASCs [136]. Interestingly, hypoxia in addition to promoting angiogenesis [137], has also been reported
to enhance osteogenic potential and up-regulate the expression of octamer-binding transcription factor
4 (OCT4), Kruppel-like factor 4 (KLF4) and NANOG [138–140]. However, the inhibitory activity
of hypoxia against mineralization and osteogenic potential of ASCs via IGFBP3 up-regulation have
also been documented [141]. The hypoxia also inhibit the alkaline phosphatase activity, expression
of core binding factor α-1 (CBFA-1), and osteopontin leading to negative regulation of osteogenic
potential of ASC [142]. During osteogenic differentiation, the mitochondria get activated to fulfill
high energy demands in necessary biochemical reactions [143]. Sirtuin, such as Sirt1 and Sirt 6, also
plays a crucial role in osteogenic and chondrogenic potential of MSCs [144,145]. Additionally, bone
morphogenetic protein (BMP), a cytokine inducer is promptly used to direct osteogenic differentiation
among ASCs [146], and the significance of BMP-2 and BMP-7 have been clinically accepted in Australia,
United States, and Europe [147]. BMP-2, BMP-6, and BMP-14 are considered as major factors in
osteogenic differentiation of ASCs s [148,149]; whereas, BMP-7 promotes both chondrogenesis as well
as osteogenesis [150]. The osteogenic potential of ASCs is affected by the concentration of BMP and
nature of differentiation medium [151–153]. A notable osteogenesis promoting effect of combined
retinoic acid and BMP2 in murine ASCs have also been evidenced [154].

It has also been postulated that BMP alone is insufficient to direct MSCs to differentiate into
osteogenic lineage; as it triggers both adipogenesis and osteogensis at an equal rate [146]. Specifically,
BMP signaling pathway activates with binding of ligand to heterodimeric serine/threonine kinase
BMP receptor, which triggers the activation of Smad-dependent signaling pathway (Smad1/5/8)
and Smad-independent signaling pathway (JNK, p38); mediating both adipo- and osteogenesis [146].
However, the heterodimer of Smad4 with phosphorylated transcription factors Smad1, Smad5,
or Smad8 activates the expression of osteogenic promoting genes of ASCs [121]. BMP also
regulates expression level of other osteogenic factors, such as core-binding factor-1/Runt-related
family 2 (Cbfa1/Runx2) [155]. Besides, the Wnt5a directs osteogenic differentiation through Wnt
signaling pathway and suppress PPAR-γ in ASCs [156]. This pathway activates β-Catenin–T-cell
factor/lymphoid enhancer factor (TCF)/Lef transcription factors (Lef) which further enhances
osteogenesis [121]. A similar behavior of endogenous cytokine, such as tumor necrosis factor-alpha
(TNF-α) has also been observed [157], where it mediates its effect through activation of
nuclear factor-κB (NF-κB) and inhibit PPAR-γ function; TNF-α also promotes expression of TAZ
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(transcriptional coactivator with PDZ-binding motif) leading to osteogenic differentiation of ASCs.
Beside BMP and Wnt signaling pathway, the notch signaling route has also been reported for its role in
osteogenic differentiation of stem cells through sequential release, nuclear transportation, and assembly
of Notch intracellular domain (NICD) into nuclear transcription factor, leading to cascade of events
regulating the expression of osteogenic genes [158]. Apart from these pathways, accumulation of
reactive oxygen species (ROS), an indicator of oxidative stress, have also been reported to suppress the
osteogenic potential of MSCs.

3.1.2. Chondrogenic Differentiation of ASCs

Adipose-derived stem cells (ASCs) have been shown to exhibit similar chondrogenic potential
as bone-marrow derived stem cells [28,159]. However, recent studies have suggested that
inclusion of cytokine, such as BMP-6 and a higher concentration of other growth factors in culture
medium, improvise the chondrogenic potential of ASCs [160,161]. Furthermore, the presence of
ascorbic acid phosphate, dexamethasone, bovine serum albumin, linoleic acid, sodium pyruvate,
transferrin, selenous acid, proline, L-glutamine, and TGF-β1 have also been reported for their
chondrogenic promoting activity in vitro [126,129,162,163]. In addition to this, the transcription
factors, such as SRY-related high mobility group-box gene 9 (Sox9), Zinc-finger protein 145 (ZNF145),
HOXD9/10/11/13, FOXO3 A, Wnt 11, and STAT3 play an active role in chondrogenesis [129].
However, some other transcription factors such as HOX2a, Smad3 and YAP down regulate the
chondrogenic differentiation potential of MSCs. Scaffold- and pellet-based culture systems provide
three-dimensional (3D) support, high culture density, and microenvironment for chondrocytes
differentiation, leading to cartilage generation [164,165]. Micropellets are used as high-density culture
system (2.5 × 106 cells/pellet) to promote cellular interaction for the development of cartilage like
structure [164].

The ASCs tend to grow as a monolayer in in vitro and avoid cell-cell contact by growth
inhibition. However, excessive cell accumulation, as occurring in high-density micropellets, is
a fundamental prerequisite for chondrogenic differentiation. In recent years, three-dimensional
(3D) constructs, such as scaffolds, various hydrogels, alginate gels, and matrices, have been
developed to mimic the physiological milieu and overcome growth inhibition [12]. Similarly,
scaffolds that are covered with different chemotactic agents, as well as matrices of varying stiffness
values, have been designed to achieve the directional migration of cell cultures. In 2007, Xu et
al. were among the first groups to focus on mechanical properties of chondrocyte differentiation
in a 3D mass model [46]. Hydrogels of polymers, such as agar, alginate, and agarose are
also used to provide structural support, mechanical stimuli and micro-environment to direct
chondrogenesis [166–168]; however, continuous interaction of cells with hydrogels may cause cellular
sensation [169]. The Dulbecco’s modified Eagle’s medium (DMEM) is generally used as basal medium
that is used in cell culture, which is supplemented with ascorbate-2-phosphate, insulin, TGF-β1 and
1% FCS [28]. However, even in absence of FCS, the DMEM when supplemented with TGF-β3, insulin,
transferin, albumin, dexamethasone, and ascorbic acid promoted chondrogenic differentiation of
ASCs [170]. Besides, the effect of oxygen concentration seems confounding; still, its concentration
needs to be properly regulated to direct chondrogenesis in ASCs [166]. Molecular techniques, such as
real-time PCR, western blot analysis, ELISA, and RNA microarray are used to study the expression of
chondrogenic genes, such as collagen I/II/VI/IX/X, COMP, HAPLN1, SOX 9, matrilin 3, Indian hedgehog,
homeobox 7, chondroadherin, WNT 11, aggrecan, alkaline phosphatase, fibromodulin, osteocalcin, and PTHrP
during osteogenesis of ASCs [166,167]. Additionally, staining of ECM with alcian blue, toluidine blue,
or safranin-o are simple methods to determine the chondrogenic potential of ASCs.

3.1.3. Adipogenic Differentiation of ASCs

Adipogenic potential is considered as an exclusive characteristic to determine the quality of ASCs.
The adipogenesis is directed by using differential medium enriched with isobutylmethylxanthine
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(IBMX), indomethacin, 3-Isobutyl-1-methylxanthine (IDII), insulin, and dexamethasone at varying
concentrations [53,171,172]. During adipogenic differentiation, MSCs are firstly directed to differentiate
into preadipocytes and then to adipocytes [173]. The effect of dexamethasone on adipogenic
differentiation depends upon factors, such as time and concentration [171]. The prolonged exposure of
dexamethasone promotes adipogenesis and curtails osteogenesis in MSCs [174]. At high concentration,
insulin behaves like insulin growth factor 1 (IGF-1) and it promotes differentiation and the proliferation
of preadipocytes [175]. Hydrocortisone is another glucocorticoid agonist along with dexamethasone
which initiate the signal cascade to activate preadipocyte receptors and their differentiation into
adipocytes in the presence of insulin [176]. IBMX along with dexamethasone activates protein kinase
A (PKA) signaling pathway directing the transcription of PPARγ, and finally leading to adipogenic
differentiation [177,178]. The ASCs differentiation is primarily regulated through receptor tyrosine
kinases (RTKs) by Akt and extracellular ERK-1) signaling pathways; in which Akt activity promotes
adipogenesis; whereas, ERK-1 negatively regulates adipogenesis [179]. It has been also reported that
high cell density and structural support also promotes adipogenic differentiation through paracrine and
autocrine actions [180,181]. Similarly, obestatin mediates its adipogenic differentiation via autocrine
and paracrine activities [177]. PPARγ agonist, such as rosiglitazone, troglitazone, pioglitazone
thiazolidinediones, or glitazones might also be useful to enhance the adipogenesis in vitro [53,171].
In addition to transcription factors, such as PPARγ1, PPARγ2, and EBF-1; other factors, such as
PRDM16, Twist-1, Dermo-1, COUP-II, Sox2, and Oct4 promote adipogenic differentiation; whereas,
GATA2, Foxa1, and HOXC8 downregulate the adipogenesis of MSCs [129]. Furthermore, C/EBP-α,
C/EBP-β, and C/EBP-δ regulate the transcription of PPARγ to modulate adipogenic differentiation of
ASCs [182]. Cell culture models have indicated that BMP4, Wnt signaling, cell shape, and density also
induce adipogenesis in MSCs [183,184]. On the other hand, though previous studies have reported
potential of BMP2 and BMP-7 to form fat cells, the role of BMP in induction of adipogenesis is not
well understood, and thus, it is not considered as an integral component of adipogenic differentiation
medium [171]. After the cells grown in adipogenic differentiation medium, they are fixed in 10%
formalin solution or 70% ethanol to determine their lipid content by staining with dyes, such as
Oil Red-O, neutral lipid fluorescent dye, or nuclear fluorescent dye at room temperature [53].

4. ASC Secretome and Its Therapeutic Effect

ASCs regeneration potential and therapeutic values also lies in its secretome, which is rich in
extracellular proteins and growth factors (Figure 3) [185].

Figure 3. ASC-secretome. The Secretome is highly rich in cytokines, growth factors, angiogenic factors,
adipokines and neurotrophic factors, which enables ASCs to regenerate and repair injured/diseased tissues.
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This secretome exert varying beneficial effect through the paracrine activity of ASCs [186].
The pro-angiogenic factors in secretome mainly includes PDGF, FGF, VEGF, HGF, angiopoietin
(Ang-1 and Ang-2), of which PDGF are present in higher concentration [187,188]. Cell secretome
is harvested from the cells that were cultured in serum-free medium for 12 h to 48 h [189]; and their
level is determined using techniques, such as two-dimensional (2D) and difference gel electrophoresis,
mass spectrometry and ELISA [190]. Other techniques, like stable isotope labeling by amino acid in
cell culture (SILAC), isobaric tags for relative and absolute quantitation labeling (iTRAQ), western
blot, 2D planar arrays or 3D bead systems have also been employed [191]. Proteins of secretomes are
mainly associated with cytoplasm, nucleus, endoplasmic reticulum, and ECM [185]. These proteins
assist and regulate cellular metabolic activity, cell signaling, DNA repair, cytoskeletal development,
and mitosis. In the mouse model, the secretome of human ASCs conditioned medium (hASCs-CM)
restored cytokine balance and reduced the diabetic pain [192]. Another study reported that ASCs-CM
enhances the collagen synthesis and migration of dermal fibroblast to improve wrinkling and wound
healing in the animal model [193]. The hypoxic condition has also been known to influence the
characteristics of stem cells, including their secretome and efficacy. In the interesting reports,
hypoxia increased the rate of proliferation of ASCs and accelerated their wound-healing function
through the up-regulation of VEGF and bFGF [194,195]. Wang et al. documented that hypoxic
condition (5%) increased the differentiation of ASCs toward the smooth muscle phenotype [196].
Hypoxia also augmented the migration potential of ASC by enhancing the expression of stromal
cell-derived factor (SDF)-1 [197]. Besides, the other secreted growth factors, like keratinocyte growth
factor (KGF), TGF-β1, HGF, and VEGF of conditioned medium also might play a crucial role
in wound healing. Ribeiro et al. revealed an increased neuronal cell density and its metabolic
activity by introducing ASCs secretome supplemented with growth factor bFGF and B27 [198].
A recent study has reported that sphingosine-1-phosphate (S1P) and cytokine of ASCs secretome
control the inflammation of central nervous system [199]. According to Constantin et al. ASCs
secretome containing bFGF, PDGF-AB, and brain-derived growth factor controlled the experimental
autoimmune encephalomyelitis (EAE) [200]. Reports have also evidenced that secretion of VEGF,
TGF-β, and hepatocyte growth factor (HGF) promote angiogenic and neurogenic responses [185,201].
Further, the released tissue inhibitor of metalloproteinase-1 (TIMP-1) and progranulin provide
neuroprotection potential to ASCs [202]. In this concord, IGF-1 and BDNF have been shown to
improve the functional recovery in learning and behavior in rat model [203]. The in vitro study also
indicate that ASCs plays a crucial role in tissue regeneration through NGF-induced activation of
5′ AMP-activated protein kinase (AMPK) [204]. A recent study has demonstrated that the BDNF
upregulated the axonal growth in CNS [205]. Besides, the ASC-CM mitigated the oxidative stress in
stressed SH-SY5Y neuron-like cells and restored cell morphology, viability, and electrophysiological
activity [206]. This restructuring activity was linked with the presence of antioxidant and growth
factors, like BDNF, glial cell line-derived neurotrophic factor, and TGF-β1. Another study indicated
that VEGF-A and VEGF165b derived from ASCs and ADSC-CM were effective in reducing the pain
level in oxaliplatin-treated neuropathic rats [207]. It has been reported that mechanical stress enhance
the secretion of VEGF, G-CSF, HGF, Leptin, IL-8, PDGF-BB, Angiopoietin-2, human umbilical vein
endothelial cell (HUVEC) migration-stimulating factors, and follistatin [208]. Further, the oxidative
stress and hypoxia also increased the level of VEGF, IL-8, leptin, angiopoietin-2, and PDGF-BB in cell
culture medium.

The cytokines in human ASCs secretome mainly includes, angiogenic, hematopoietic,
and proinflammatory cytokines, like HGF, VEGF, flt-3 ligand, G-CSF, GM-CSF, IL-7, M-CSF, IL-6,
IL-8, IL-11, LIF, and TNFα [209]. ASCs also secrete adipokines such as FGF, ILs, IGF-binding protein,
PDGF, TGF-β, TNF-α, and VEGF [210]. However, the adipokines like TNF-α, IL-6, IL-8, and MCP-1
have been reported to promote tumor growth [211]. The role of ASCs in regulating breast cancer is
confounding due to varied nature of secreted adipokines, such as CCL5, which enhances the motility
of MCF-7 breast cancer cell in vitro [212]. In contrast to this, another study reported that high density



Int. J. Mol. Sci. 2018, 19, 2200 11 of 23

ADSC-CM inhibited the MCF-7 [213]. Though the contradictory impact of ASCs and its secretome
is wide in literature, it has been proposed that ASCs might only promotes cancer in active breast
cancer cells [214]. Wang et al. reported that ASC-CM significantly improved cellular proliferation,
regulated apoptosis and cellular senescence in UVB irradiated human dermal fibroblasts (HDFs);
which indicates the protective role of secretome against damages that are caused due to aging [215].
Similarly, TGF-β1-treated ASCs-CM upregulated type I collagen and promoted proliferation and
mobility of skin fibroblasts in mice model indicating the role ASCs-CM in wound healing [216].
The ASCs-CM human antimicrobial peptide LL-37 treatment also improved the migration of HDF [217].
The presence of VEGF, bFGF, TGF-β1, TGF-β2, HGF, keratinocyte growth factor (KGF), PDGF-AA,
placenta growth factor (PGF), type I collagen, fibronectin, and superoxide dismutase (SOD) in ASCs
seretome was effective in improving skin texture and wrinkle in micro pig model [218]. In addition,
another study evaluated the potential of secretome (concentrated ASCs-CM) in controlling ischemia
reperfusion (IR) injury in mice model indicating the potential ASC-secretome in providing therapeutic
option for treatment of IR injury [219]. The ASCs–CM has also recovered gastric wound in rat model
through promoting angiogenesis and re-epithelization [220].

Along with growth factors and cytokines, ASCs also secrete exosomes of 30–150 nm size [221];
which mediate the signaling effects and mimic the functional characteristic of cells [222,223].
Studies revealed that the exosomes of ASCs (over-expressing Nrf2) have improved wound healing
in diabetic foot ulcer rat model [224]. In a seminal report, the exosomes derived from ASC isolated
from cancer patient have been partly attributed for their therapeutic effect, indicating that expanded
ASC remain unaffected by patient condition [225]. Choi et al. demonstrated that the ASCs-exosomes
enriched in micro-RNA improvised the regeneration of human dermal fibroblasts [221]. Similarly,
ASCs-exosomes when engulfed by fibroblasts promoted soft tissue repair and cutaneous wound
healing [226]. Furthermore, the intravenously administered ASCs-exosome regulated the ratios of
collagen type III: type I, TGF-β3:TGF-β1 MMP3:TIMP1, fibroblast differentiation, and thereby reduced
scar size in the murine model [227]. In a report by Lee et al., ASCs-secreted exosomes demonstrated
therapeutic potential against Huntington’s disease by considerably reducing the aggregation of mutant
Huntingtin protein, mitochondrial dysfunction, and cellular apoptosis in R6/2 mice-derived neuronal
cells [228]. These exosomes have also improved the efficacy of anti-cancer drug in mouse model
of hepatocellular carcinoma and promoted the migration of breast cancer cell line (MCF7) [229].
Similarly, various studies have documented the therapeutic activities of ASC released exosomes
against neurodegenerative and vascular diseases [230].

Based on above body of evidence, the ASCs-derived secretome seems to be a potential agent for
the treatment of various disorders.

5. Conclusions

Adipose tissues are considered as most promising and enriched source of ASCs, and the easy
harvesting procedure and less ethical complexities, makes ASCs the most appropriate stem cell source
in development of regenerative therapeutic approaches. These cells exert their beneficial effect not only
through differentiation, but also through the paracrine effect of secretome. However, the extensive
studies are needed to understand the nature of secretome of ASC and their specific role in regeneration
and repair of damaged/diseased tissues.
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