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Abstract

Recent and classical work has revealed biologically and medically significant subtypes in

complex diseases and traits. However, relevant subtypes are often unknown, unmeasured,

or actively debated, making automated statistical approaches to subtype definition valuable.

We propose reverse GWAS (RGWAS) to identify and validate subtypes using genetics and

multiple traits: while GWAS seeks the genetic basis of a given trait, RGWAS seeks to define

trait subtypes with distinct genetic bases. Unlike existing approaches relying on off-the-shelf

clustering methods, RGWAS uses a novel decomposition, MFMR, to model covariates,

binary traits, and population structure. We use extensive simulations to show that modelling

these features can be crucial for power and calibration. We validate RGWAS in practice

by recovering a recently discovered stress subtype in major depression. We then show the

utility of RGWAS by identifying three novel subtypes of metabolic traits. We biologically vali-

date these metabolic subtypes with SNP-level tests and a novel polygenic test: the former

recover known metabolic GxE SNPs; the latter suggests subtypes may explain substantial

missing heritability. Crucially, statins, which are widely prescribed and theorized to increase

diabetes risk, have opposing effects on blood glucose across metabolic subtypes, suggest-

ing the subtypes have potential translational value.

Author summary

Complex diseases depend on interactions between many known and unknown genetic

and environmental factors. However, most studies aggregate these strata and test for asso-

ciations on average across samples, though biological factors and medical interventions

can have dramatically different effects on different people. Further, more-sophisticated

models are often infeasible because relevant sources of heterogeneity are not generally

known a priori. We introduce Reverse GWAS to simultaneously split samples into

homogeneous subtypes and to learn differences in genetic or treatment effects between
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subtypes. Unlike existing approaches to computational subtype identification from high-

dimensional trait data, RGWAS accounts for covariates, binary disease traits and, espe-

cially, population structure–important features of real genetic datasets. We validate

RGWAS by recovering known genetic subtypes of major depression. We demonstrate

RGWAS can uncover useful novel subtypes in a metabolic dataset, finding three novel

subtypes with both SNP- and polygenic-level heterogeneity. Importantly, we show that

RGWAS can uncover subtypes with differential treatment response: we show that statin, a

common drug and potential type 2 diabetes risk factor, may have opposing subtype-spe-

cific effects on blood glucose.

Introduction

Distinguishing subtypes can be essential for treatment, prognosis, and learning basic disease

biology. For example, breast cancer has subtypes distinguished by tumor hormone receptor

status that have different genetic risk variants, population structure, comorbidities, treatment

responses, and prognoses [1, 2]. Many other common diseases have known, biologically dis-

tinct subtypes [3–7], often involving distinct tissues or biological pathways, including two

diseases we study: major depression (MD) [8] and type 2 diabetes (T2D) [9, 10]. Genetically

distinct subtypes can arise from gene-environment interactions [11–13]; gene-gene interac-

tions [14, 15]; or disease misclassification, which is well documented but usually ignored

[16, 17].

In this work we describe a novel method to learn and validate genetic subtypes in a two-

step approach that we call reverse GWAS (RGWAS). In the first step, RGWAS infers subtypes

by clustering multiple traits with a finite mixture of regressions method we designed specifi-

cally for large, multi-trait GWAS datasets (MFMR). The core assumption of MFMR is that the

subtypes differ in distribution for many traits, which creates a subtype structure that can be

detected with computational algorithms. In the second step, RGWAS assesses the causal bio-
logical distinction between the inferred subtypes by testing for genetic effect heterogeneity

across subtypes, both at the SNP- and polygenic-levels. We also test effect heterogeneity for

non-genetic covariates, like medical interventions, to assess pragmatic distinctions between

subtypes [18–21].

RGWAS offers several important advances in both the identification and testing steps over

other recent computational approaches to uncover subtypes [22–31]. First, unlike previous

methods, the RGWAS identification step corrects for population structure, handles binary

traits, and scales to tens of thousands of samples. Second, previous approaches to the testing

step were badly confounded and/or under-powered to detect genetic heterogeneity in complex

traits, while RGWAS offers calibrated p-values, polygenic subtype validation tests, and covari-

ate adjustment. These advances substantially reduce both type I and type II errors in computa-

tional subtyping.

We first evaluate RGWAS through extensive simulations over a wide range of parameter

settings and generative models, including several scenarios that violate our assumed model. In

comparison to previous methods, as well as several novel methods and obvious extensions, we

find that RGWAS is substantially more powerful, more robust, and better calibrated. We then

validate RGWAS in real data by recovering a recently discovered stress subtype in MD, as well

as known subtype-specific SNP effects.

Finally, we apply RGWAS to a metabolic cohort where subtypes are unknown a priori and

find strong statistical support for genetic effect heterogeneity across dozens of complex
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phenotypes: first, a subtype-aware mixed model substantially increases heritability, from

20.7% to 30.2% on average across traits; second, we identify dozens of subtype-specific SNP

effects that could not be discovered in standard analyses, including three SNPs with previously

identified metabolic interactions; third, subtype-aware GWAS increases the number of hits,

from 60 to 70 across traits. Crucially, we find that statin, a widely prescribed drug that may

increase diabetes risk [32–34], has opposing effects on blood glucose across metabolic sub-

types, which suggests that learned subtypes may have significant translational value.

Results

Reverse GWAS is calibrated and powerful in simulations

We examine the relative behaviors of RGWAS and other recent methods for computational

subtype identification through application to simulated datasets. We simulated from a range

of generative models and parameter settings meant to reflect many of the complexities of real

data (Methods, Supplementary Section 3). Our baseline includes noise that is correlated across

traits; large main subtype effects; 27 quantitative and 3 binary traits; and 12 SNPs containing

null, homogeneous, and heterogeneous SNPs. We simulate datasets both under a K = 2 model

and a K = 1 model where no subtypes of any sort are present. For each parameter setting we

aggregate results from roughly 300 simulated datasets. We explore several variations to this

baseline later.

For each simulated dataset we first cluster individuals (RGWAS step 1) into a subtype vector

z. We focus on our Multi-trait Finite Mixture of Regressions (MFMR) approach (Methods) and

three other, conceptually distinct approaches to cluster individuals into subtypes (Methods).

First, we use Gaussian Mixture Models (GMM) to represent covariate-unaware methods, e.g. k-

means [28, 31] and TDA [22, 26, 27]. Second, we consider a novel approach based on Canonical

Correlation Analysis (CCA) that defines the subtype vector z as the top phenotypic CC. Third,

we use the true z to show the best-case scenario with perfect subtyping (Oracle).

First, we observed that MFMR outperformed non-oracle methods in recovering true cluster

identities across a range of simulations settings (S1 Fig). While this does increase confidence

in MFMR, clustering accuracy is not a directly useful metric because true clusters are not

known in practice. Moreover, we are primarily concerned with the significance and interpreta-

tion of our inferred subtypes, rather than merely their existence, which requires calibrated

tests for effect heterogeneity between identified clusters. Hence our primary evaluation focuses

on the false- and true-positive rates (FPR and TPR) for the standard SNP-subtype (z) interac-

tion test in (3), conditioning on main subtype effects (RGWAS step 2). A polygenic alternative

for RGWAS step 2 is presented below (Methods, [35]). We report a true positive if the SNP

was simulated with heterogeneous effects across subtypes, and a false positive if the SNP was

simulated with null or homogeneous effects.

The results in Fig 1 show that interaction tests applied to MFMR subtypes are calibrated

and almost perfectly obtain oracle power. Crucially, MFMR remains calibrated even when

K = 1 (Fig 1b), so RGWAS discoveries reliably validate the existence of subtypes. Further,

when K> 2 subtypes were simulated, MFMR with fixed K = 2 lost power but remained cali-

brated (S2a Fig). Together, this shows that MFMR is robust to misspecified K, though power

increases when K is more accurate.

On the other hand, GMM is miscalibrated by an order of magnitude when K = 1, making it

unreliable for interaction testing and, more broadly, validating the existence of subtypes (Fig

1b). One fundamental difference between MFMR and GMM is that only MFMR models covari-

ates. Intuitively, ignored covariate effects confound true subtypes, hence GMM performs poorly

when homogeneous effects are large or heterogeneous effects are small (Fig 1c, S2c–S2e Fig).
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Another difference between MFMR and GMM is that the former explicitly models binary traits,

while the latter discards them and, concomitantly, loses power (S2b Fig, Methods).

Our novel application of CCA has low power but seems calibrated and, sometimes, seems

to outperform even the oracle (e.g. S2c and S3 Figs). Unsurprisingly, this is a Pyrrhic victory:

by smoothing over traits, CCA creates a bias that simultaneously increases FPR and TPR,

which we show with theory (Supplementary Section 4) and simulation (S3 Fig). Moreover, the

CCA subtypes poorly capture the true, discrete subtypes (S1 Fig). Broadly, CCA is often cali-

brated for testing the existence of heterogeneity, but it cannot determine which specific traits

are truly heterogeneous and, moreover, has lower power than MFMR. We also tried using the

top phenotypic PC for z, which performed like CCA except with lower power, and the top

genetic PC [25], which had very low power (S4 Fig).

Simulations violating model assumptions. Having analyzed simulations from our

assumed model, we turn to other generative models and parameter settings to assess the limita-

tions of RGWAS. We first considered several direct variations to our baseline simulation. We

drew t5-distributed noise, which has higher kurtosis than the Gaussian noise assumed by our

model. We found that MFMR and CCA performed similarly as in the Gaussian case, but

GMM became even more inflated (S5 Fig); nonetheless, we caution that MFMR, like linear

regression, will not generally be calibrated under arbitrary noise distributions. Next, we

assessed non-linear SNP effects and found that MFMR again remained roughly calibrated, but

GMM and CCA were inflated for strong homogeneous effects; this held for two types of non-

linear covariate transformations (S6 Fig), but we again caution that MFMR is not generally cal-

ibrated when covariates have non-linear effects. We also tried replacing the discrete subtypes z
with a continuous z drawn from a Gaussian distribution. This exacerbated GMM inflation, but

MFMR remained powerful and calibrated; however, when we doubled all heterogeneous effect

sizes, MFMR became� 4-fold inflated for large homogeneous covariates and N� 30, 000 (S7

Fig), suggesting caution for MFMR in large datasets when large-effect, continuous subtypes

may exist. Overall, modest amounts of these types of model misspecification cause relatively

modest RGWAS bias, but stronger model violations will inevitably cause FPR inflation.

Second, we examined case ascertainment, which causes bias in many genetic testing settings

[36–40]. We simulated “Case/Control” studies of a relatively rare disease, with population

prevalence 20%, by ascertaining a 50/50 case/control dataset (S8 Fig). Little changed qualita-

tively, though all methods, even the oracle, had slight FPR inflation for large N. This modest

level of inflation is expected because the ascertainment process violates the interaction regres-

sion model [41].

Fig 1. SNP heterogeneity tests at nominal p = .01. SNPs are either null (a); homogeneous (Hom, c); or truly heterogeneous (Het, d); we also test Hom SNPs in

simulations with no subtypes (b). FPR is shown on the log scale. Hom SNPs explain 4% of variance and Het SNPs explain .4% (triangles) or vice versa (circles).

https://doi.org/10.1371/journal.pgen.1008009.g001
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Third, we examined the robustness of MFMR to covariate/phenotype misclassification.

Running MFMR requires specifying whether each available variable is a trait or a covariate

(though SNPs are always covariates because of Mendelian randomization, and all the covari-

ates in our simulation are SNPs). Intuitively, subtypes are clusters of covariate-adjusted

traits. Variables that confound subtype structure, then, should included as covariates, while

variables that may have different distributions between subtypes should be included as traits.

Nonetheless, this distinction can be murky in practice, and so we perform simulations where

we treat a covariate like a trait or vice versa. MFMR remained calibrated when swapping

traits and covariates, unlike GMM, suggesting exact covariate/trait specification is not essen-

tial for valid inference with MFMR. However, MFMR did lose power, emphasizing the statis-

tical utility derived from properly modelling the distinction between covariates and traits

(S9 Fig).

Fourth, we studied the impact of SNP-subtype correlation (Supplementary Section 3.2),

which is a known source of bias in genetic interaction tests [42]. We found that power held

roughly constant for all methods as the G-E correlation increased from 0 to 1, but FPR did

increase for all methods, including the oracle (S2f Fig). Nonetheless, the MFMR inflation is

modest–always less than 3-fold–and MFMR was no more inflated than the oracle. Altogether,

this simulation does recapitulate known biases from G-E correlation, but it does not suggest

that RGWAS is more susceptible to these biases than standard tests for genetic interaction.

Finally, and most importantly, we examined the robustness of the clustering methods to

population structure, which is routinely the primary confounder in genetic studies. We simu-

lated a 50/50 mixture of two populations and 10,000 SNPs from a Balding-Nichols model with

FST = .1 (Supplementary Section 3.3). We repeated our simulations using 12 randomly selected

SNPs (out of the 10,000) and adding population main effects of varying strength. For MFMR

and the oracle, we condition on three genetic PCs and their interactions with z in the step 2

tests. MFMR remains calibrated and powerful while CCA and GMM suffer substantial FPR

inflation, even for completely null SNPs (S8 Fig). Using PCs in step 2 largely addresses the

inflation from using GMM in step 1, but only when subtype structure is stronger than popula-

tion structure; otherwise, the inferred GMM subtypes are non-trivially confounded by popula-

tion structure. This is important because population structure is often stronger than subtype

structure in reality, especially in multi-ethnic datasets, and because GMM produces false posi-

tives when subtypes are completely absent. Altogether, successful genetic subtype inference

requires population structure adjustment both when inferring subtypes in step 1 and when

testing their genetic significance in step 2.

Positive control: A known major depression subtype

The results over the simulated datasets showed that RGWAS was powerful and calibrated

across a wide range of parameter settings. To see if RGWAS could perform well in a real set-

ting, we used CONVERGE [43], a major depression (MD) cohort with a recently discovered,

genetically heterogeneous “Stress” subtype [44]. This serves as a positive control for genetic

subtype discovery. In addition to having a known subtype, CONVERGE is ideally suited to

RGWAS analysis because it recruited a large number (N = 9, 303) of deeply phenotyped (31

binary and 10 quantitative traits) Han Chinese women with recurrent MD and matched con-

trols. Cases were carefully ascertained to minimize environmental heterogeneity, compara-

tively amplifying signals for biological heterogeneity. RGWAS analysis is also compelling

because only a small number of genetic associations with MD have been found to date–consis-

tent with the existence of genetically distinct disease subtypes–and there are few known genetic

interactions in complex human traits.
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The inferred MFMR subtypes (RGWAS step 1) with K = 2 are summarized in Fig 2. We

conditioned on age and ten genetic PCs as covariates, and we jointly imputed the covariates

and traits (Methods). The MFMR method split the individuals into subtypes that distinguish

the aggregate lifetime adversity measure “Stress”, which recovers the subtype chosen by

domain experts [44]. While “Stress” is an obvious contributor to MD risk, there is no reason

to expect MFMR would identify this as the key factor given we are studying a large number

explicitly MD-relevant traits. Indeed, GMM did not split along this trait (squared correlation

with “Stress” is .01), demonstrating “Stress” is not a trivially obvious subtype. The GMM clus-

ters were not examined further as they have high FPR in simulations.

We tested five SNPs for effect heterogeneity (RGWAS step 2) across subtypes (Fig 2c) with

our standard SNP-subtype interaction test. The first two SNPs (rs35936514 and rs12415800)

were discovered in the initial GWAS [43] and we use as negative controls for heterogeneity.

For positive controls, we use three SNPs (rs7526682, rs11577545, and rs950893) that we

recently found to interact with “Stress” [44]. As expected, the homogeneous SNPs are nearly

genome-wide significant, and RGWAS successfully determines which of the five SNPs are

heterogeneous. Note that the heterogeneous SNPs show only modest homogeneous signal

because they essentially have no effect in the “Stress” subtype. In previous work, we established

that these subtypes have differential polygenic architecture using linear mixed models

Fig 2. Genetic heterogeneity in the CONVERGE major depression dataset. Quantitative trait 90% inter-quantile ranges (a) and binary trait prevalences (b) are

shown for each subtype. (c) Per-subtype odds ratios (±2 s.e.) for two SNPs discovered by (homogeneous) GWAS [43] (left) and three SNPs discovered using known

subtypes [44] (right).

https://doi.org/10.1371/journal.pgen.1008009.g002

Reverse GWAS: Using genetics to identify and model phenotypic subtypes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008009 April 5, 2019 6 / 22

https://doi.org/10.1371/journal.pgen.1008009.g002
https://doi.org/10.1371/journal.pgen.1008009


(p = .038); we also found suggestive polygenic score interaction and suggestive differences in

the respective heritability estimates per subtype [44], further supporting the genetic distinction

between “Stress” subtypes of MD.

We chose K = 2 using prior knowledge that MD can be split by (binary) “Stress”. We

assessed this empirically by evaluating the MFMR likelihood on held-out data, which sup-

ported K> 1 subtypes (S10 Fig). K = 3 creates an MD-only subtype, so we do not pursue

K� 3.

New metabolic subtypes with genetic and pragmatic significance

We next applied MFMR (RGWAS step 1) to metabolic traits measured in METSIM [45]. By

combining genetic, environmental, metabolomic, and disease measurements, METSIM

enables tracing the pathway from risk factors to metabolic consequences to altered disease

risk. We studied 6,248 unrelated Finnish men. We used three binary traits: 854 samples

had T2D, 3,526 had pre-diabetes (preT2D), and 541 had coronary heart disease (CHD); we

excluded 15 samples with T1D. We used 13 broad quantitative traits and 228 nuclear magnetic

resonance (NMR) metabolite measurements. We projected the NMR traits onto their top 6

PCs (capturing 77% of variance), which is a standard way to ease computation while retaining

most of the information in the raw NMR traits. As covariates, we used three genetic PCs, age,

age2, and smoking, alcohol, statin, diuretic, and beta-blocker use.

We study K = 3 to compromise between parsimony and the cross-validated log-likelihood,

which broadly supports 1< K� 7 (S10 Fig). To test robustness to perturbations of the data,

we used five-fold cross-validation. We found that 99.6% of originally co-clustered pairs (i.e.

same likeliest subtype) remained together, showing that people from the same training popula-

tion can be accurately assigned to existing subtypes.

The three inferred metabolic subtypes are summarized in Fig 3. They primarily distinguish

the metabolomic PCs, which are aggregates of 228 NMR traits. To elucidate the subtypes, we

fit logistic regressions on the raw NMR traits, conditional on statin, and studied those with

nominal p< .01 (despite [28, 30], these p-values are not calibrated). We first compared the

Fig 3. Three inferred metabolic subtypes in METSIM. (a) Quantitative and (b) binary distributions for covariates (grey labels, left) and traits (black labels, right). (c)

Subtype sizes.

https://doi.org/10.1371/journal.pgen.1008009.g003
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large blue group to the combined orange and green groups, which suggested the blue group

had less-esterified cholesterol in small HDL and higher histidine and relative amounts of

omega-3 fatty acid. Next, comparing orange to green indicated orange had more free but less

esterified overall cholesterol, especially in large LDL, and that orange has higher polyunsatu-

rated fats and phenylalanine.

SNP level metabolic heterogeneity. We next sought to evaluate the subtypes for evidence

of SNP effect heterogeneity on metabolic phenotypes (RGWAS step 2). However, with�6,000

samples, we do not have power for genome-wide heterogeneity tests. Instead, we test known

metabolic GWAS SNPs–68 from T2D and 13 from CHD (Methods). We found four heteroge-

neous SNP-trait associations at p = .05/81 (Fig 4). The orange and green effect estimates had

opposite sign for 2/4, and all blue estimates were near zero. This suggests that the blue group is

a type of baseline and that partially overlapping biological pathways are specifically activated

in the smaller groups.

These SNPs have several known metabolic interactions, providing additional evidence that

the subtypes are meaningful. rs10401969 is a splice variant for SUGP1 that affects downstream

splicing in the gene targeted by statins, HMGCR [46]; it also interacts with an APOE SNP on

fenofibrate response [47]. rs7138803 interacts with exercise for obesity [48] and features in an

obesity score interacting with diet [49]. rs780094 interacts with another SNP for fasting glucose

[50], suggestively interacts with diet [51], and is one of three SNPs in a risk score interacting

with postprandial and post-fenofibrate cholesterol [52].

We additionally performed heterogeneity tests of these 81 SNPs directly over the 228 raw

NMR phenotypes we used to construct the NMR PCs. We found 33 further SNP-trait interac-

tions at p = .05/81 (S11 Fig). This included interactions between rs7138803 and 8 VLDL traits

and insulin; rs7528419 and 16 VLDL traits and HDL; and rs780094 and triglyceride propor-

tion in large VLDL. These results add confidence and interpretability to the interactions we

discovered for NMR PCs 3 and 6. Further, we discovered 5 additional SNPs, not significantly

heterogeneously associated with our 16 primary traits, including rs10885122 (interacting with

medium HDL phospholipid percentage and HDL-3), rs1387153 (phospholid percentage in

large and extra large VLDL), and rs6903956 (HDL).

To show an example of the utility of identifying subtypes, we performed a genome-wide

interaction scan with the global, K df test [53]. This “GxE GWAS” test does not establish SNP

heterogeneity, but it can increase power over ordinary GWAS when heterogeneity exists. GxE

GWAS and GWAS give largely consistent results (Table 1, S12 Fig), as expected because the

homogeneous and global tests are not independent. Nonetheless, GxE GWAS is a valuable

complement to GWAS as it discovers 10 additional loci (though GxE GWAS misses 19/60

GWAS loci).

Fig 4. Metabolic subtype-specific SNP effects across the 16 traits used for subtyping. Subtype-specific effect estimates are shown ± 2 s.e. for significantly

heterogeneous SNPs out of 81 known metabolic SNPs (p = .05/81).

https://doi.org/10.1371/journal.pgen.1008009.g004
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To mimic prior approaches, we performed a covariate-unaware GxE GWAS by using

GMM subtypes (in step 1) and by excluding covariates from the heterogeneity tests (in step 2).

Genome-wide tests were highly inflated for K 2 {2, 3, 4}, usually obtaining effectively infinite

λGC (S1 Table). Notably, λGC was even inflated for the binary traits, which were excluded from

the clustering in step 1 in order for GMM to converge, emphasizing the subtlety and breadth

of overfitting concerns in two-step testing. This inflation can easily be mistaken for strong,

ubiquitous signal when evaluating only candidate SNPs, which is common in computational

subtyping papers. The RGWAS λGC (using MFMR in step 1 and covariate-aware tests in

step 2) were comparatively modest, with a maximum of 1.33 (after excluding NMR PC 5, with

λGC = 1.83). Despite this modest inflation for some traits–which can be readily detected, and

avoided, by evaluating λGC–RGWAS results are usable, unlike the covariate-unaware results

that mimic existing approaches. Similar conclusions hold for the global, K df test.

Polygenic metabolic heterogeneity. Identification of heterogeneous effects at individual

SNPs provides both evidence of differential causal effects between subtypes and the specific

loci that distinguish them. To complement these results, we additionally employed a polygenic

linear mixed model (LMM) test for genetic subtype heterogeneity (RGWAS step 2). Such poly-

genic approaches have greater power to detect genetic signal than SNP-level tests, but they do

not identify individual causal loci.

Briefly, the polygenic model estimates both the ordinary heritability and the subtype-spe-

cific heritability, the latter aggregating all subtype-specific SNP effects. For example, when sub-

types are two sexes, the subtype-specific heritability aggregates all SNP effects that are active

only in one sex (and, more generally, SNP effects that differ between sexes). For non-sex linked

traits, the resulting sex-specific heritability is zero, hence nonzero subtype-specific heritability

demonstrates the existence of subtype-specific genetic effects.

We fit the subtype specific LMM with IID GxEMM [35], which is a simple extension of a

previous LMM for GxE [54] that accommodates probabilistic subtype membership. This is

important because hard-assignment of individuals to subtypes discards information and fails

to propagate step 1 subtyping uncertainty to step 2 subtype testing. We use the covariates used

in our MFMR decomposition as fixed effects, as well as their interactions with subtype status

[55]. We calculate variance explained after residualizing fixed effects [56]. We test for h2
g > 0

with a Wald test, and we test for h2
het ¼ 0 with an LRT. For T2D, we exclude people with

preT2D; for preT2D, we exclude people with T2D.

We report estimates for binary traits on the observed scale as there is no commonly

accepted approach for rescaling heterogeneous heritability estimates to a liability scale. Simi-

larly, we do not report p-values for these binary traits, to be maximally conservative. Nonethe-

less, we do observe that IID GxEMM increases the estimated heritability for preT2D and

CHD, which is consistent with the existence of subtype-specific heritability.

We found significant subtype-specific heritability for 4 of the 13 quantitative traits used in

the MFMR decomposition (p< .01/13, Fig 5, left), giving strong evidence that our inferred

subtypes tag meaningfully distinct biology. On average, these subtype-aware heritability

Table 1. Number of genome-wide significant loci for GWAS and GxE GWAS. Shared describes the number of loci that are significant in both the GWAS and GxE

GWAS for the same trait (r2 < .2), while GWAS and GxE GWAS describe the loci unique to that association scan. No loci were found for CHD, insulin, or WHR. Both

approaches found a single preT2D locus. We excluded NMR PC 5 because of GxE GWAS inflation.

Gluc BMI LDL HDL TG PC 1 PC 2 PC 3 PC 4 PC 6

GWAS 1 0 3 2 6 5 2 0 3 4

GxE GWAS 2 1 2 1 2 1 3 1 1 1

Shared 2 0 5 5 3 1 2 0 3 19

https://doi.org/10.1371/journal.pgen.1008009.t001
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estimates are 30.2%, compared to 20.7% for ordinary heritability estimates (S13 Fig). This

shows that subtypes can mask substantial heritability across an array of traits. Intuitively,

this increase in heritability derives from allowing subtype-specific effects that are ignored by

homogeneous heritability: in the sex example, a SNP with exactly opposite effects in males and

females has zero net contribution to homogeneous heritability, but it clearly contributes to the

broader notion of subtype-specific heritability.

To expand to a larger set of traits and bolster confidence in widespread subtype-specific

heritability, we repeated our IID GxEMM analysis on the 228 NMR traits (Fig 5, right). We

found significant subtype-specific heritability for 104 of the 228 NMR traits (p< .01/228), dra-

matically increasing the number of significantly polygenically heterogeneous traits. On aver-

age, the subtype-aware heritability is 31.8% and the standard heritability is 17.5% (Fig 5),

which are qualitatively comparable to the average heritabilities from the 13 quantitative

MFMR traits.

Pragmatic metabolic heterogeneity. While identifying genetic heterogeneity is important

for showing that subtypes have differential causal biology, identifying nongenetic sources of

subtype heterogeneity can be pragmatically important. We tested for statin effect heterogeneity

to assess the ability of the metabolic subtypes to differentiate medical intervention effects.

Using our standard interaction test with K = 3 (Methods), only glucose had significant statin

heterogeneity at p = 0.05/16 (p = 1.19 × 10−4). There is no obvious FPR inflation as statin has

no other significantly heterogeneous effects across other traits (S2 Table). These results held

after conditioning on T2D as a heterogeneous covariate in our step 2 test (statin-glucose inter-

action p = 2.95 × 10−6). Statin effect heterogeneity is further supported by tests with K = 4

(T2D-adjusted heterogeneity p = 9.67 × 10−7); for K = 2, however, the test is insignificant

(p = .39), providing further evidence that K = 2 gives insufficient subtype resolution.

We next estimated the subtype-specific statin effects with our primary metabolic subtypes

(derived treating statin as heterogeneous inside MFMR). We performed a heterogeneous lin-

ear regression on glucose conditional on our standard covariates and T2D, which indicated

that statin increases blood sugar in most people–consistent with [32, 33]–but also that it may

decrease glucose in the smaller, higher-risk orange and green groups.

Since METSIM measured two time points, we next tested the pragmatic ability of our base-

line subtypes to predict conversion from preT2D to T2D. We fit logistic regression on time

2 T2D status for the 1,924 baseline prediabetics with time 2 data. Subtypes significantly

Fig 5. Polygenic heterogeneity in the inferred metabolic subtypes. Left: Point estimates ± 2 s.e. for traits used in MFMR clustering. Right: Across-trait estimate

distribution for all 228 raw NMR traits. h2
g is the standard heritability estimate from GREML [54]. h2

hom and h2
het are the homogeneoues and subtype-specific

heritability estimates from IID GxEMM, and h2
iid is the sum of h2

hom and h2
het .

https://doi.org/10.1371/journal.pgen.1008009.g005
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predicted T2D conversion (p = 0.0036), with orange and green converting less often than blue,

which remained after conditioning on our standard covariates (p = .031). This also demon-

strates the subtypes persist at least partially over time, in contrast to prior, directly age-depen-

dent T2D subtypes [57].

Discussion

In a purely descriptive sense, inferring subtypes is easy: applying any clustering algorithm to

any data produces subgroups. But existing methods cannot go beyond such descriptions

because they are liable to downstream FPR inflation. By contrast, RGWAS is calibrated in sim-

ulation, recovers known MD subtypes, and produces biologically and pragmatically validated

metabolic subtypes. RGWAS handles covariates, mixed binary and quantitative traits, and

residual trait correlations.

There are several limitations to RGWAS. First, like other two step methods, RGWAS fails to

propagate first-step uncertainty. Similarly, although we do not imagine there is a “true” K, more

can always be done to better choose K. Also, while we have tested a variety of simple decompo-

sitions to learn subtypes, others may perform better, especially where domain-specific tools

exist. In particular, MFMR is conceptually similar to a matrix factorization/depth-two linear

network, suggesting inner layers of appropriate neural networks may define useful subtypes.

There are also specific limitations to our inferred stress subtypes in CONVERGE. First, our

stress measurements were retrospective and self-reported, hence they may be biased by MD

status. Second, our analysis was not entirely without domain supervision because we included

the aggregate trait “Stress” that was previously manually constructed [44]. Nonetheless,

RGWAS identified the key trait amongst dozens, unlike GMM, and our METSIM analysis

demonstrates that RGWAS can be useful without any domain guidance.

The statin effect heterogeneity on glucose we found is consistent with previously reported

interactions between statin and age [32] and genetically predicted LDL [34] on T2D, and also

fenofibrate’s interaction with lipid levels on cardiovascular risk [58]. By contrast, large meta-

analyses did not find inter-study statin heterogeneity [32, 33]. This suggests that statin hetero-

geneity largely exists within, rather than between, datasets. In the future it will be important to

more precisely characterize the causal mechanism underlying statin heterogeneity. Although

we expect such a mechanism to broadly replicate, the same is not necessarily true for our spe-

cific subtypes, especially as they rely on phenotypic PCs which are dataset-specific.

MFMR is only a first step toward genetic subtyping, and there are many possible extensions.

Sparsifying penalties can be incorporated by replacing CM steps with calls to third-party soft-

ware and could extend MFMR to higher-dimensional traits and covariates. A random-effect

version of MFMR could improve power to detect polygenic subtypes, though computational

issues are non-trivial. MFMR could also be adapted to count data, zero-inflation, higher-order

arrays, or missing data. Theoretically, it would be interesting to let subtypes vary between

traits, which MFMR can capture only non-parsimoniously by choosing large K. Instead of an

i.i.d. prior on z, MFMR could model z with a multinomial logistic regression to estimate, test,

and correct for effects on z, which can be directly interesting [59]; this can also be important

for correcting bias from G-E correlation [42]. Or, instead, we could use a continuous prior on

z with a factor analysis model [23]. (We note, however, that RGWAS copes reasonably well

with modest G-E correlation and continuous z in our simulations.) Finally, MFMR could be

applied only within diseased individuals to directly define subtypes of disease, though this

requires fundamentally different step 2 tests (c.f. [60]).

Our polygenic approach to subtype validation with GxEMM provides a much needed

power advantage over SNP-level heterogeneity tests at the cost of resolution; conceptually,
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polygenic risk score tests lie between [61, 62]. But SNP-level precision is not needed to meet

our criterion for biologically meaningful subtypes, making GxEMM invaluable for subtype val-

idation. Nonetheless, there are many limitations to our approach that we will address in future

work. First, GxEMM can confuse non-linear effects for heterogeneity. Similar issues arise in

generalized linear models, where the existence of effect heterogeneity depends on the choice of

link function. Some forms of non-linearity can be accommodated [63], including ascertained

case/control data where cases are over-sampled from the population [36–40]; we are working

to extend these approaches to leverage subtype heterogeneity. Second, IID GxEMM assumes

that each subtype has equal heritability and equal noise levels, which may not hold in practice

for many meaningful subtypes. Several approaches exist to relax these assumptions to varying

degrees [35, 64, 65], which reduce bias, provide richer characterizations of subtypes, and will

be important to pursue in future work. However, this increased generality comes with higher

estimation error for individual parameters, and we consider the results presented in our paper

conservative alternatives to these richer models.

Although we focused on fixed- and random-effect interaction tests to establish heterogene-

ity between subtypes in RGWAS step 2, it may also be useful to apply recent, complementary

heterogeneity tests. For example, Subtest could be used to assess differences between K = 2 dis-

ease-only subtypes [60]. For large K, on the other hand, StructLMM is a natural complement

to GxEMM: the latter is more powerful because it uses genome-wide information and a richer

GxE model, but the former has SNP-level resolution and scales to dramatically larger N and K.

Similarly, large-K subtypes could be post-processed with hierarchical clustering and tested

with TreeWAS [62]. Broadly, any heterogeneity test can be used in the second step.

In the future, we will actively encourage MFMR to prioritize tissue-specific subtypes by

incorporating tissue-specific genetic risk scores as heterogeneous covariates. This is particu-

larly interesting for traits, including metabolic diseases [15, 66], that have disparate genetic

risk factors acting through distinct cell types, tissues, or biological processes. Subtypes that dif-

ferentiate biological modes of action at this systems-level would be more easily interpretable

and useful for basic research and precision treatment. In larger datasets, it may also be interest-

ing to evaluate subtype-specific enrichments in heritability explained per tissue or cell type

[67].

Finally, as MFMR seeks clusters that are unaffected by confounders like population struc-

ture, age, or sex, it may be useful for clustering in settings where protecting certain information

is important for privacy or fairness [68]. In this sense, MFMR is to GMM roughly as AC-PCA

[69] or contrastive PCA [70] are to ordinary PCA.

Methods

Ethics statement

CONVERGE: The study protocol was approved centrally by the Ethical Review Board of

Oxford University (Oxford Tropical Research Ethics Committee) and the ethics committees of

all participating hospitals in China. All participants provided written informed consent.

METSIM: The Ethics Committee of the University of Eastern Finland and Kuopio Univer-

sity Hospital approved the METSIM study, and this study was conducted in accordance with

the Helsinki Declaration. All participants provided written informed consent.

RGWAS step 1: Clustering with MFMR to find subtypes

Reverse GWAS first clusters samples into subtypes (step 1) and then tests for covariate effect

heterogeneity between subtypes (step 2). RGWAS always uses MFMR in step 1. Step 2 always
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features interaction tests between subtype membership and focal covariates, which may be

non-genetic, a SNP, or all SNPs in the genome.

We derive a novel clustering algorithm, multitrait finite mixture of regressions (MFMR),

beginning from the standard regression model for interaction. Assuming a single quantitative

trait y, covariates X, discrete subtypes z, and a focal covariate g putatively interacting with z,

our model is:

yi ¼ Xi; aþ gzi þ gibzi
þ �i ð1Þ

Xi, is a vector of Q control covariates, like genetic PCs or sex, with homogeneous effect sizes α.

zi 2 {1, . . ., K} is a K-level factor specifying the subtype for individual i, and γk are the subtype

main effects. β is the vector of subtype-specific g effect sizes. We say g is homogeneous if

β1 = . . . = βK; otherwise, g is heterogeneous. We assume � is i.i.d. Gaussian with mean zero.

Our full MFMR model generalizes (1) in several complementary directions. First, we learn

the subtypes (z) rather than assume they are known (giving a Finite Mixture of Regressions,

FMR) by assuming zi are i.i.d. Categorical:

Pðzi ¼ kjpÞ ¼ pk for k ¼ 1; . . . ;K ð2Þ

Second, we generalize the single trait y to a matrix Y of Multiple traits (MFMR), which adds

power for subtypes that affect the distribution of many traits. This power is important in prac-

tice because genetic interactions are often weak but phenotypic relationships are often strong.

We also generalize the single heterogeneous covariate g to a matrix G of multiple covariates,

which adds power when there are many heterogeneous effects.

Finally, we model binary traits with probit link functions to mitigate the spurious local

modes that plague methods like k-means. For example, this issue led others to discard roughly

half their data post hoc [31]. The full multi-trait probit model is computationally prohibitive

even for modest B, which we address with a novel conditional independence assumption. This

induces constraints in our optimization which we solve analytically with block matrix identi-

ties (Supplementary Section 2.3).

Computationally, we fit MFMR with an Expectation Conditional-Maximization (ECM)

algorithm. Our ECM generalizes standard EM for Gaussian Mixture Models. Both iterate

between z updates in E-steps and parameter updates (e.g. α and β) in (C)M steps.

When fitting MFMR in step 1, a covariate that will be tested for heterogeneity in step 2 can

either be ignored (MFMRX), included in X (MFMR, our default), or included in G (MFMR+).

In Gaussian mixture models, covariates can only be ignored (GMM) or added as traits

(GMM+) [31]. MFMR+ and GMM+ overfit in simulations, inflating the FPR; conversely,

MFMRX and GMM underfit homogeneous covariates, which also inflates FPR (S4 Fig).

MFMR strikes a balance: the homogeneous effect is adjusted but subtypes are not tuned to the

heterogeneous effect. This resembles a score test as the alternate is tested by evaluating only

the null. Nonetheless, small-effect covariates, like SNPs, can be safely ignored within MFMR,

enabling genome-wide testing with MFMRX [71]. For simplicity, we refer only to MFMR

throughout our paper, but we use the MFMRX test for real human SNPs (in CONVERGE and

METSIM, but not the simulations) as they likely have negligible effects; however, we use the

MFMR test for statin in the main text because it has large metabolic effects.

We note that MFMR generalizes several well-known models. If binary traits and X are

excluded and the covariates G are reduced to an intercept, MFMR becomes GMM. When

P = 1 and z is known, MFMR becomes a standard gene-environment interaction (GxE) model

with discrete environments/subtypes. Finally, if P = 1 and βk = β0 for all k, MFMR reduces to

linear/probit regression.
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RGWAS step 2: Calibrated tests to validate subtypes

For simplicity, we assume there are K = 2 subtypes and just one interacting covariate, g. These

assumptions mean the output from step 1 is just a vector z, where zi is the subtype 1 probability

for sample i, and that the interaction model takes a simple form:

y � ~Xaþ zgþ gdþ ðg � zÞbþ � ð3Þ

~X collects all background covariates, like genetic PCs, unlike existing subtype validation tests

that largely ignore population structure [24, 26, 29, 31]. � is element-wise multiplication, but it

can easily be generalized to allow K> 2 and a matrix G instead of a single covariate g.

We consider three tests for g: the homogeneity test for δ 6¼ 0 given β = 0; the heterogeneity

test for β 6¼ 0 with free δ; and the global test for δ, β 6¼ 0 [53]. The homogeneity test has 1

degree of freedom (df), the heterogeneity test has K − 1 df, and the global test has K df. We

focus on the heterogeneity test, which establishes that g has differential effects across subtypes

and thus that the subtypes differ in causal biology (if g is genetic) or pragmatically (e.g. if g is a

treatment). We also investigate the global test’s ability to increase power over the typical

homogeneous test in the GxE GWAS analysis in Table 1. We assume � is i.i.d and test with lin-

ear or logistic regression.

Polygenic step 2 tests. We also developed a polygenic version of the interaction test in (3)

to jointly model and test δ and β across all SNPs with random effects. When there are no inter-

action effects, i.e. β = 0, this gives exactly the standard GREML approach to estimate heritabil-

ity from genome-wide similarity across unrelated samples [56]. GREML accomplishes this by

modelling each SNP’s homogeneous effect, δ, as a small Gaussian variable, and then aggregat-

ing the size of each SNP’s δ across the genome to estimate the total genetic contribution to phe-

notypic variability, i.e. heritability.

Polygenic interaction models go further by also giving the interaction effect, β, a random

effect distribution. As the homogeneous mixed model used in GREML aggregates the δ esti-

mates across the genome to estimate homogeneoues heritability, the interaction mixed

model aggregates the β estimates along the genome to estimate the heterogeneous heritability

explained by subtype-/environment-specific genetic effects. The latter provides an estimate of

subtype-specific heritability, which can be combined with the homogeneous heritability esti-

mates to partition broad-sense heritability into shared- and subtype-specific components.

This approach was pioneered for unrelated humans in [54], but this model assumes that each

sample is deterministically assigned to a single environment/subtype. Because our subtype

assignments are probabilistic, we use GxEMM to fit subtype-specific heritabilities [35], which

accommodates arbitrary environmental covariates.

Polygenic interaction tests are essential for genetic subtyping at modest sample sizes

because the test for nonzero subtype-specific heritability is much more powerful than testing

individual SNPs in complex traits. Polygenic interactions can demonstrate that subtypes have

partially distinct genetic bases even when power is too low to discover individual subtype-spe-

cific SNP effects.

Other approaches to infer subtypes

We develop a novel subtyping approach by applying CCA to G and the joint binary and quan-

titative phenotype matrix (Yb: Y), each column-wise centered and scaled, and taking z to be

the top phenotypic CC. CCA (and phenotypic PCA) defines z as a linear trait combination.

We prove that this causes the interaction tests to have inflated FPR when a mixture of hetero-

geneous and homogeneous traits are studied (Supplementary Section 4), which is likely in
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practice. Nonetheless, sparse estimators can resolve this problem in some theoretical settings,

and CCA is computationally efficient (S1 Fig).

We also tested GMM, which models samples as draws from one of K multivariate Gaus-

sians. We fit GMM to the quantitative traits with a standard EM algorithm [72]; in early tests

where binary traits were included, GMM often failed to converge, or converged to exactly

coincide with one of the binary traits, even with multiple random restarts. We consider GMM

similar, in the sense of covariate-unawareness, to k-means, which struggles even more with

binary traits, and TDA, a proprietary package.

Most similar to MFMR, LIMMI aims to identify GxE with unknown E in gene expression

[23]. Beyond many technical differences, LIMMI and MFMR are built for disjoint scenarios:

MFMR only fits tens of traits, but LIMMI only fits hundreds of samples, preventing its use in

our setting.

METSIM dataset

We selected metabolically relevant SNPs by taking published GWAS SNPs for T2D or CHD.

We used the 153 T2D SNPs in Table 1 of [73] as known T2D SNPs. We had genotyped 86 of

these SNPs, which we reduced further to 68 roughly independent SNPs (r2 < .1). We used the

65 CHD SNPs in S2 Table of [74] as known CHD SNPs, 13 of which we genotyped (all r2 <

.1). We filtered the original 10,070 person dataset so all pairwise kinships were below 0.05, as

in [56].

Phenotype imputation

We imputed missing data before running MFMR in CONVERGE. We jointly imputed covari-

ates and traits with a sample-wise i.i.d. Gaussian model (MVN-impute from [75]). We thre-

sholded imputed entries in Yb to {0, 1} in order to retain the downstream logistic regression

framework. By contrast, discarding samples with any missing data reduces sample size by

roughly half and the known positive SNP interactions were no longer recovered.

We imputed METSIM similarly, including all 228 NMR traits at the imputation step. We

used softImpute to accommodate the wide matrix [76].

We note that complete-data analyses performed in similar contexts substantially reduce

sample size, e.g. [31] discard 39% of their samples.

Code availability

RGWAS is implemented in the simple, free rgwas R package, available with a vignette at

https://github.com/andywdahl/rgwas.

All summary data and code necessary to reproduce the main and supplementary figures

and tables are available at: https://github.com/andywdahl/rgwas-scripts.

Supporting information

S1 Text. Supplementary note. Full description of MFMR model and EM algorithm. Also

includes full descriptions of simulations and proofs about PCA/CCA subtype estimators.

(PDF)

S1 Fig. Running time and subtype estimation accuracy in simulations. Left: Average run-

ning times in main Fig 1 (excluding failed GMM runs). Right: Clustering accuracy for simula-

tions without (‘Quantitative’, as in main Fig 1) and with ascertainment (‘Case/Control’, as

in S2 Fig). We measure accuracy with adjusted Rand index, which varies from 0 (random

guessing) to 1 (exact match). We compute the index only across pairs from a random 300
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subsamples, reducing computation roughly� 105-fold when N = 100, 000. Accuracies are esti-

mated for roughly 300 simulations per point in the plot. MFMR+ is shown for simplicity

because MFMR gives different clusters per tested SNP.

(TIF)

S2 Fig. Simulations varying several further parameters. Tests for truly heterogeneous SNPs

are shown in the top 6 panels (a-f), and the corresponding tests for SNPs with only homoge-

neoues effects are shown in the below 6 panels (g-l). K is the number of true, simulated sub-

types and B is the number of binary traits. ρGE is the gene-subtype correlation term, with ρGE =

0 giving non-heritable subtype statuses and ρGE = 1 giving perfectly heritable subtypes. h2
hom,

h2
het, and h2

z are the variances explained by homogeneous SNPs, heterogeneous SNPs, and main

subtype effects, respectively. As in main Fig 1, solid lines have ðh2
hom; h

2
hetÞ ¼ ð4%; :4%Þ, and

dashed lines are reversed; in (d,e), line types define only the h2 term not governed by the x-

axis. In (a), all methods fit K = 2 subtypes; there is no true heterogeneity for K = 1, where the

oracle is not defined, and for K> 1 and the oracle picks a true cluster at random. Generally,

increasing the heterogeneous factors (h2
het and h2

z) makes subtyping easier, while increasing

h2
hom makes subtyping harder.

(TIF)

S3 Fig. Simulations where SNP heterogeneity only exists for some traits, for which they

are only homogeneous. Left: the tested trait has no genetic heterogeneity or main subtype

effect. Center: the tested trait has only a main subtype effect but no heterogeneity. Right:

the full heterogeneity simulation. Linear subtype estimators (CCA and Y PC) are not trait-

specific.

(TIF)

S4 Fig. Main Fig 1 with further subtyping methods. MFMR+ varies MFMR by treating the

tested SNP as heterogeneous. GMM+ varies GMM by including the SNPs as traits when clus-

tering. As expected, MFMR+ and GMM+ are miscalibrated. GMM+ often fails to converge,

especially for N� 10, 000 (we evaluate only the converged runs). The other methods, with

low power, define subtypes as the top PC of Y or G, optionally thresholded to be binary

(“G PC+disc”).

(TIF)

S5 Fig. Simulations with non-Gaussian noise. Purely homogeneoues simulations, without

subtypes, where the noise, �, has marginal t5 distributions. � is simulated by drawing i.i.d. t5-

distributed random variables, arranging into an N × P matrix, and then right-multiplying with

S1/2, where S is the noise covariance matrix and is drawn as in the main simulations in main

Fig 1.

(TIF)

S6 Fig. Simulations with non-linear homogeneous effects. Purely homogeneoues simula-

tions, without subtypes, where SNPs truly have a non-linear effect. In (a-d), the SNPs are

squared before use in MFMR, so that the true SNP and the utilized covariate (i.e. SNP2) have

zero correlation. In (e-h), the true SNPs are exponentiated before inclusion in MFMR, so the

true SNP effect is log-linear. Results are partitioned by whether the tested traits are quantitative

or binary, as well as by whether the true SNP effect is null or homogeneous.

(TIF)

S7 Fig. Simulations with continuously-varying subtypes. z is chosen to be Gaussian. Top:

Effect sizes are chosen so that power roughly matches main Fig 1; it is not trivial to directly

convert effect sizes from the discrete z simulations. Bottom: All heterogeneoues effect sizes are
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doubled relative to top panels.

(TIF)

S8 Fig. Alternate versions of Fig 1. Top: SNP effect heterogeneity tests are applied to binary

traits, not quantitative traits as in main Fig 1. Even though GMM only clusters the quantitative

traits, tests for the (correlated) binary traits are miscalibrated. Middle: a 20% population preva-

lence binary trait is ascertained to have 50% in-sample prevalence and then tested. Bottom:

population structure is added and MFMR, Oracle and GMM-PC test conditional on three

genetic PCs; GMM and GMM-PC use the same subtype estimator.

(TIF)

S9 Fig. Simulations where some covariates and traits are swapped. Simulation modification

where decompositions falsely treat a trait as a SNP/covariate (a,b,e,f,i) or vice versa (c,d,g,h,j).

(a-d) No genetic or main subtype heterogeneity is simulated, so that the positive heterogeneity

associations are unambiguously false. We test both the variable that we misplace (a,c) and the

correctly place SNP/covariates and traits (b,d). (e-j) Simulations are drawn as in main text

Fig 1, with K = 2. (e-h) Tests are shown for the misplaced trait/covariate in (e,g); for the truly

homogeneous SNPs in (f,h); and for the truly heterogeneous SNPs in (i,j).

(TIF)

S10 Fig. Out-of-sample likelihood varying K in CONVERGE (left) and METSIM (right).

Samples are split into 5 folds; parameters are fit holding one fold out; the parameters’s likeli-

hood is evaluated on the held out fold; and the process is repeated for each fold. The log-likeli-

hoods are shown relative to the baseline likelihood of each fold at K = 1; this is analogous to

using likelihood ratio statistics to compare a general K to the null with K = 1. The average

across folds are shown in red, and the maximizer of K is highlighted in green.

(TIF)

S11 Fig. Metabolic subtype-specific SNP effects across all 228 NMR traits. SNP-phenotype

pairs where the test for effect heterogeneity across subtypes is significant at p = .05/81. We test

all 228 NMR-based metabolomic traits here rather than using their top PCs as in main Fig 4

and the MFMR decomposition used to learn subtypes. Per-subtype estimates and standard

errors are provided in colors as in main Fig 4.

(TIF)

S12 Fig. Comparison of the −log10(p)-values for ordinary GWAS (x-axis) and our novel

GxE GWAS (y-axis). Guide lines are drawn at p = 5 × 10−8, the conventional GWAS thresh-

old. Each point is a SNP, and colors indicate which analyses were significant for the SNP. T2D,

CHD, WHR and insulin are omitted because they have no genome-wide significant hits in

either analysis; preT2D is omitted because the only hit is shared between both analyses. NMR

PC 5 is omitted because it is badly inflated in GxE GWAS (λGC = 1.83); this trait has one hit in

GWAS.

(TIF)

S13 Fig. Comparison of GREML and IID metabolic heritability estimates. Left: total IID

GxEMM heritability (which adds the homogeneous and heterogeneous estimates) compared

to the ordinary heritability estimated with GREML. Right: histogram of per-trait heritability

increases from replacing GREML with IID GxEMM.

(TIF)

S1 Table. λGC for GWAS, MFMR GxE GWAS, and GMM GxE GWAS. GWAS means the

standard regression approach conditioning on known covariates and genetic PCs. RGWAS is
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our approach, which uses covariate-aware clusters (MFMR) and tests for genetic variant effect

heterogeneity (Het) or globally for any genetic effect (Global). “Previous Subtyping” is like

RGWAS, except using covariate-unaware clustering (GMM) and heterogeneity tests. “Inf”

means our calculations suffered numerical problems, meaning that λGC is very large. We do

not perform SNP tests on NMR PC 5.

(CSV)

S2 Table. Statin effect heterogeneity test for K 2 {2, 3, 4} and the 16 traits used to define

clusters with MFMR. The “MFMR droptest” columns test using the large-effect covariate

test implemented in the rgwas R package and described in the Methods in the main text. The

“+Condition on T2D” columns run the same linear model as in droptest, except that T2D

status is additionally included as a covariate; this analysis is performed to add confidence that

the heterogeneous statin effect on glucose is not merely driven by simple confounding from

T2D status.

(CSV)
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ants within FTO form long-range functional connections with IRX3. Nature. 2014; 507(7492):371–375.

https://doi.org/10.1038/nature13138 PMID: 24646999

67. Finucane H, Reshef Y, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. Heritability enrichment of

specifically expressed genes identifies disease-relevant tissues and cell types. BioRxiv. 2017; p.

103069.

68. Zou J, Schiebinger L. AI can be sexist and racist—it’s time to make it fair. Nature. 2018; 559

(7714):324–326. https://doi.org/10.1038/d41586-018-05707-8 PMID: 30018439

69. Lin Z, Yang C, Zhu Y, Duchi J, Fu Y, Wang Y, et al. Simultaneous dimension reduction and adjustment

for confounding variation. Proceedings of the National Academy of Sciences. 2016; 113(51):14662–

14667. https://doi.org/10.1073/pnas.1617317113

70. Abid A, Zhang MJ, Bagaria VK, Zou J. Exploring patterns enriched in a dataset with contrastive principal

component analysis. Nature communications. 2018; 9(1):2134. https://doi.org/10.1038/s41467-018-

04608-8 PMID: 29849030

71. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong Sy, Freimer NB, et al. Variance component model to

account for sample structure in genome-wide association studies. Nature Genetics. 2010; 42(4):348–

354. https://doi.org/10.1038/ng.548 PMID: 20208533

72. Leisch F. FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R.

Journal of Statistical Software. 2004; 11(8):1–18. https://doi.org/10.18637/jss.v011.i08

73. Prasad R, Groop L. Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes. 2015; 6(1):87–123.

https://doi.org/10.3390/genes6010087 PMID: 25774817

74. The CARDIoGRAMplusC4D Consortium, Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, et al. A

comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery dis-

ease. Nature Genetics. 2015; 47(10):1121–1130. https://doi.org/10.1038/ng.3396 PMID: 26343387

75. Dahl A, Iotchkova V, Baud A, Johansson Å, Gyllensten U, Soranzo N, et al. A multiple-phenotype impu-

tation method for genetic studies. Nature Genetics. 2016; 48(4):466–472. https://doi.org/10.1038/ng.

3513 PMID: 26901065

76. Mazumder R, Hastie T, Tibshirani R. Spectral Regularization Algorithms for Learning Large Incomplete

Matrices. Journal of Machine Learning Research. 2010; 11(Aug):2287–2322. PMID: 21552465

Reverse GWAS: Using genetics to identify and model phenotypic subtypes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008009 April 5, 2019 22 / 22

https://doi.org/10.1038/nature08185
http://www.ncbi.nlm.nih.gov/pubmed/19571811
https://doi.org/10.1038/ncomms5890
http://www.ncbi.nlm.nih.gov/pubmed/25234577
https://doi.org/10.1038/ng.3912
http://www.ncbi.nlm.nih.gov/pubmed/28692066
https://doi.org/10.1038/nature13138
http://www.ncbi.nlm.nih.gov/pubmed/24646999
https://doi.org/10.1038/d41586-018-05707-8
http://www.ncbi.nlm.nih.gov/pubmed/30018439
https://doi.org/10.1073/pnas.1617317113
https://doi.org/10.1038/s41467-018-04608-8
https://doi.org/10.1038/s41467-018-04608-8
http://www.ncbi.nlm.nih.gov/pubmed/29849030
https://doi.org/10.1038/ng.548
http://www.ncbi.nlm.nih.gov/pubmed/20208533
https://doi.org/10.18637/jss.v011.i08
https://doi.org/10.3390/genes6010087
http://www.ncbi.nlm.nih.gov/pubmed/25774817
https://doi.org/10.1038/ng.3396
http://www.ncbi.nlm.nih.gov/pubmed/26343387
https://doi.org/10.1038/ng.3513
https://doi.org/10.1038/ng.3513
http://www.ncbi.nlm.nih.gov/pubmed/26901065
http://www.ncbi.nlm.nih.gov/pubmed/21552465
https://doi.org/10.1371/journal.pgen.1008009

