Cancer Immunology, Immunotherapy (submitted in 2024) – Mona Alhussein Aboalela et al. Supplementary Materials.

Supplementary Table 1

Gene	Probe	Froward primer	Reverse primer	
US4	5'-/56-FAM/CGTCTGGAC/ZEN/	GCAGGCACACG	TTCTCGTTCCTCACTGCCTC	
	CAACCGCCACACAGGT/3IABkFQ/-3'	TAACGCACGCT	CC	
CMV	5'-/56-FAM/AGTACATCA/ZEN/	CAATGGGGCGG	ACCATGGTGATGCGGTTTTC	
promoter	ATGGGCG TGGA /3IABKFQ/-3'	AGTTGTTAC	ACCAIGGIGAIGCGGIIIIG	
γ34.5	5'-/56-FAM/TCTCCGGA G/ ZEN/	TCTAACGTTACA	GTATATATGCGCGGCTCCTG	
	AGACGATGG/3IABkFQ/-3'	CCCGAGGC	GIAIAIAIGCGCGGCICCIG	

Table.S1 Sequence of primers for qPCR.

Pan02						KPC					
Days	FTV	FTV	E-FTV	O-FTV	E- FTV/O -FTV	Days	FTV	FTV	E-FTV	O-FTV	E- FTV/O -FTV ^a
	HSV-	MSLN-	Combin	Combin	Combin		HSV-	MSLN-	Combin	Combin	Combin
	MSLN	CAR T	ation	ation	ation		MSLN	CAR T	ation	ation	ation
0	0.95053	1.0190	0.96860	0.92619	1.04579	0	1.0216	1	1.02161	0.97279	1.05018
	4253	1185	5668	4427	0861		17661		7661	4724	8324
2	0.85577	0.8594	0.73553	0.71580	1.02756	2	0.8373	1.0020	0.83909	0.74321	1.12900
	8583	9244	5222	1574	8602		81779	41233	107	2901	4985
4	0.79026	0.9417	0.74426	0.68898	1.08023	4	0.6140	0.9789	0.60115	0.56710	1.06002
7	2172	97753	7138	8764	1169	4	63216	73889	1855	9482	7866
7	0.61406	0.7865	0.48300	0.41233	1.17139	7	0.6555	0.8585	0.56289	0.39861	1.41211
'	5583	73335	7613	6747	1142		99379	93043	3066	632	7463
9	0.62747	0.8486	0.53249	0.38611	1.37909	9	0.6270	0.9457	0.59296	0.31196	1.90077
	4282	27771	2102	8023	1548		01472	2053	8164	2	0492
11	0.55777	0.8291	0.46248	0.29260	1.58057	11	0.6988	0.9166	0.64061	0.33427	1.91646
11	3445	67515	7622	6279	9962		94487	14744	6991	0913	0469
13	0.56205	0.8679	0.48785	0.25046	1.94777	14	0.6977	0.9048	0.63137	0.39343	1.60478
13	4321	90123	7599	9136	5313		55837	6865	7382	3746	7056
16	0.52340	0.8218	0.43017	0.24317	1.76900	16	0.6809	0.9338	0.63591	0.43101	1.47540
10	5999	70588	1997	1572	6113	10	90643	13459	8228	2192	6592
18	0.50274	0.8422	0.42345	0.24092	1.75762	18	0.6790	0.9302	0.63169	0.39987	1.57975
	9031	78235	4566	426	5267		69903	42739	9846	3049	0993

Table.S2 Fractional tumor volume (FTV) after treatment with HSV-MSLN, either alone or in combination with MSLN-CAR T cells. FTV, fractional tumor volume (mean tumor volume experimental/mean tumor volume control); E-FTV, expected FTV (mean FTV of HSV-MSLN) × (mean FTV of MSLN-CAR T cells); O-FTV, observed FTV (FTV of combination). Synergic effect: E-FTV/O-TV > 1 in red.

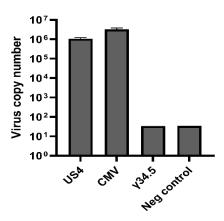


Fig.S1 CMV-MSLN Cassette Efficiently Replaces γ 34.5 in HSV-MSLN Virus. HSV-MSLN copy number were determined by qPCR for the US4, CMV and γ 34.5 genes.

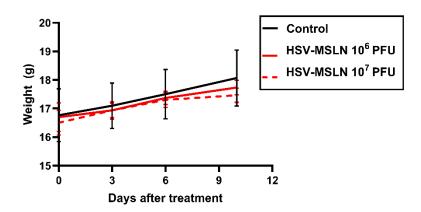
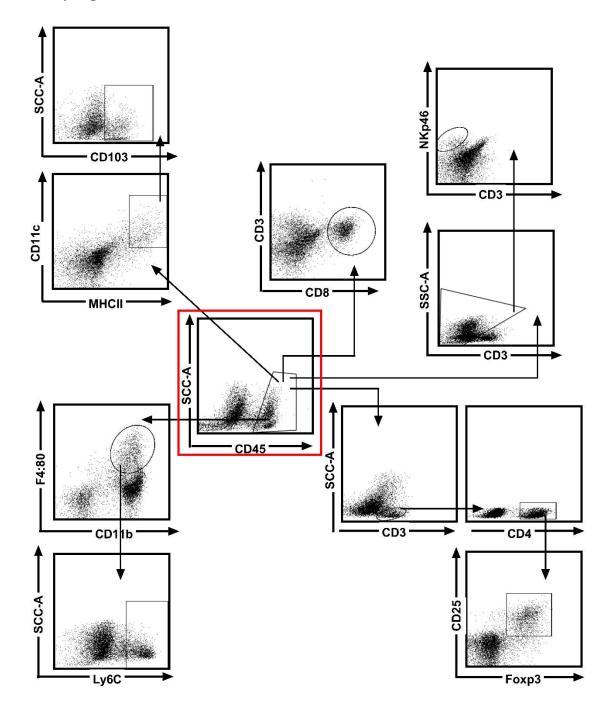



Fig.S2 Safety of the Intratumoral Injection of HSV-MSLN in Pan02 tumor-bearing mice. Mice weight data from the experimental design shown in fig. 2a

Fig.S3 Gating Strategy of Flow Cytometry Analysis. Gating strategy on tumor cell suspensions from Fig. 2e to check immune cell infiltration. Samples were stained with the indicated antibodies and subjected to flow cytometry analysis, and data were analyzed by FlowJo software. First, duplicates were eliminated and then gated on CD45⁺ (Red square). The Shown Data were from multiple panels.

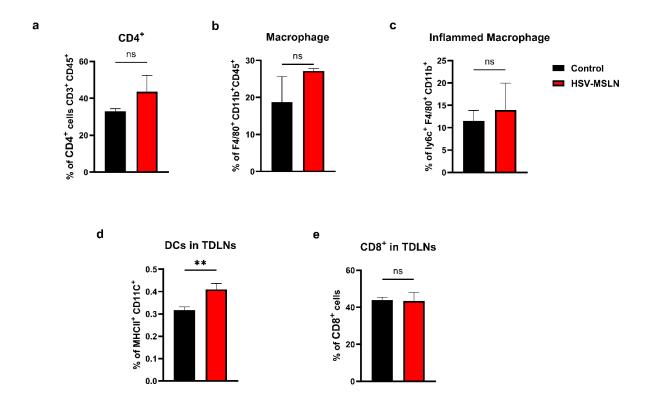


Fig.S4 HSV-MSLN alters the immune cells infiltration is Pan02 tumor bearing mice. The Data shown were from Fig. 2e (a) Bar graphs of CD4⁺ T cells in the TME. (b) Bar graphs of macrophages (F4/80⁺ CD11b⁺ CD45⁺) in the TME. (c) Bar graphs of inflamed macrophage (Ly6c⁺ F4/80⁺ CD11b⁺ CD45⁺) in the TME. (d) Bar graphs of DCs (MHCII⁺ CD11c⁺) in the TDLNs. (e) Bar graphs of CD8⁺ T cells in the TDLNs. Student's t-test was performed. **p < 0.01

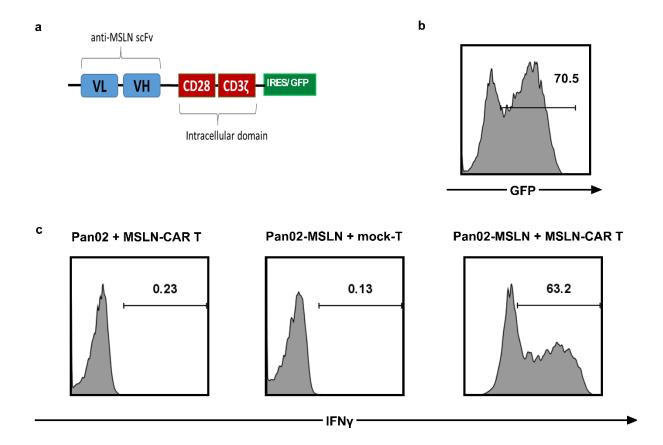


Fig.S5 MSLN-CAR T cells exhibit activity against Pan02 cells stably expressing MSLN in vitro. (a) Design of the MSLN-CAR target vector. (b) Representative histogram shows the percentage of GFP⁺ CAR T cells. (c) Representative histograms show the percentage of intracellular IFN γ^+ from MSLN-CAR T cells cocultured with Pan02 (left), mock T cells cocultured with Pan02-MSLN (middle) and MSLN-CAR T cells cocultured with Pan02-MSLN (right) in vitro

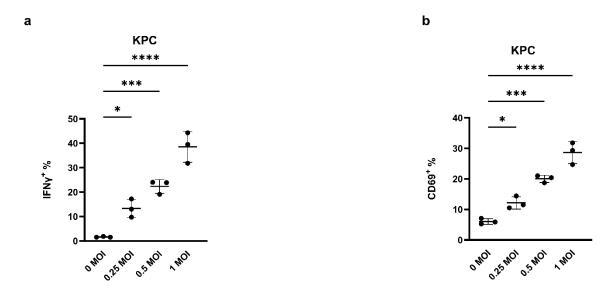


Fig.S6 HSV-MSLN delivers MSLN to KPC cells, enhancing the activation of MSLN-CAR T cells *in vitro*. Scatter plot graph showing the percentage of intracellular IFN γ^+ (a) and cell surface CD69 $^+$ (b) in MSLN-CAR T cells after coculture with KPC infected with (0, 0.25, 0.5 and 1 MOIs) of HSV-MSLN for 6 hours. Data are presented as mean \pm SD (n=3). One-way ANOVA followed by Dunnett's multiple comparison tests were performed. * p < 0.05, *** p < 0.001, **** p < 0.0001

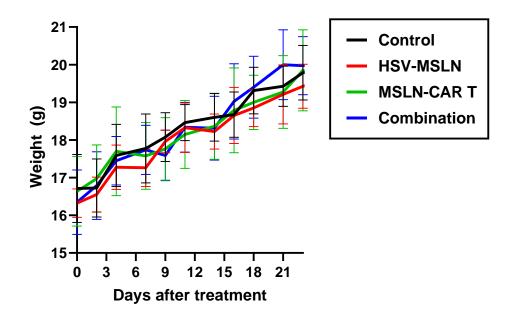
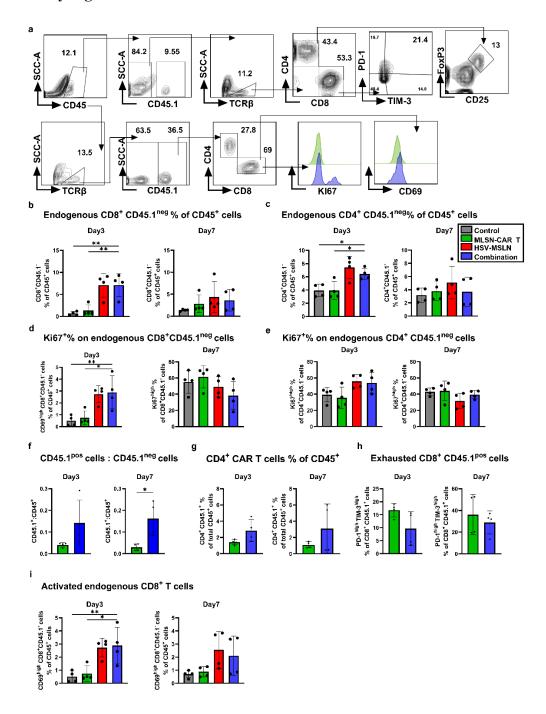



Fig.S7 Safety of the combination therapy of HSV-MSLN and MSLN-CAR T cells in KPC tumor-bearing mice. Mice weight data from the experiment shown in fig. 4d

Fig.S8 HSV-MSLN alters the immune cells infiltration is KPC tumor bearing mice. (a) Gating strategy on tumor cell suspensions from Fig. 5 to check immune cell infiltration. (b) Bar graphs show endogenous CD8⁺ CD45.1^{neg} % of CD45⁺ cells. (c) Bar graphs show endogenous CD4⁺ CD45.1^{neg} % of CD45⁺ cells. (d) Bar graphs show Ki67 % on CD8⁺ CD45.1^{neg} cells. (e) Bar graphs show Ki67 expression on CD4⁺ CD45.1^{neg}. (f) Bar graphs show CD45.1^{pos}: CD45.1^{neg} cells ratio. (g) Bar graphs show transferred CD4⁺ CD45.1^{pos} % of CD45⁺ cells. (h) Bar graphs show PD-1^{high}

TIM-3^{high} expression on transferred CD8⁺ CD45.1^{pos}. (i) Bar graphs show CD69^{high} CD8⁺ CD45.1⁻% of CD45⁺ T cells. Statistical analysis was performed using one-way ANOVA followed by Dunnett's multiple comparison test. All values are presented as the mean \pm SEM. *p < 0.05, and **p < 0.01

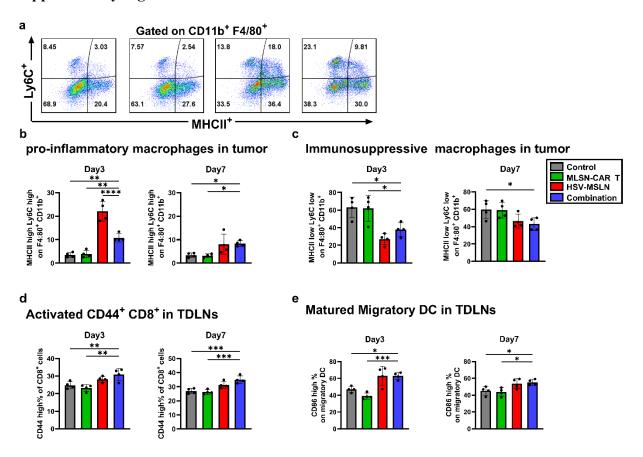


Fig.S9 HSV-MSLN enhances Macrophage activity in TME of KPC Tumor-Bearing Mice. Mice were subcutaneously implanted with KPC tumors and treated with two doses of HSV-MSLN (5 × 106 PFU), followed by a single dose of MSLN-CAR T cells (3 × 106 cells). **a-c** A single-cell suspension was prepared from tumor tissue 3 and 7 days after the last treatment and stained with indicated antibodies. (a) Representative dot plot of MHCII⁺ ly6C⁺ gated on tumor associated macrophages (CD45⁺ MHCII⁺ F4/80⁺) from the four treated groups at day 3. (b) Bar graphs show percentages of proinflammatory macrophage (MHCII^{high} Ly6c^{high}) in the tumor tissue. (c) Bar graphs show percentage of immunosuppressive macrophages (MHCII^{low} Ly6c^{low}). (d) Bar graphs show percentage of CD44⁺ CD8⁺ T cells on TDLNs. (e) Bar graphs showing mature migratory DC on TDLNs. Statistical analysis was performed using one-way ANOVA followed by Dunnett's multiple comparison test. All values are presented as the mean \pm SD. *p < 0.05, **p < 0.01 and ***p < 0.001