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Abstract
Identification of Drug-Drug Interactions (DDIs) is a significant challenge during drug devel-

opment and clinical practice. DDIs are responsible for many adverse drug effects (ADEs),

decreasing patient quality of life and causing higher care expenses. DDIs are not systemati-

cally evaluated in pre-clinical or clinical trials and so the FDA U. S. Food and Drug Adminis-

tration relies on post-marketing surveillance to monitor patient safety. However, existing

pharmacovigilance algorithms show poor performance for detecting DDIs exhibiting prohibi-

tively high false positive rates. Alternatively, methods based on chemical structure and

pharmacological similarity have shown promise in adverse drug event detection. We hy-

pothesize that the use of chemical biology data in a post hoc analysis of pharmacovigilance

results will significantly improve the detection of dangerous interactions. Our model inte-

grates a reference standard of DDIs known to cause arrhythmias with drug similarity data.

To compare similarity between drugs we used chemical structure (both 2D and 3D molecu-

lar structure), adverse drug side effects, chemogenomic targets, drug indication classes,

and known drug-drug interactions. We evaluated the method on external reference stan-

dards. Our results showed an enhancement of sensitivity, specificity and precision in differ-

ent top positions with the use of similarity measures to rank the candidates extracted from

pharmacovigilance data. For the top 100 DDI candidates, similarity-based modeling yielded

close to twofold precision enhancement compared to the proportional reporting ratio (PRR).

Moreover, the method helps in the DDI decision making through the identification of the DDI

in the reference standard that generated the candidate.
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Introduction
Medication co-administration can alter the pharmacokinetic or pharmacodynamic profiles of
the drugs being prescribed. Drug-Drug Interactions (DDIs) occur when the effect of one drug
is altered by the co-administration of another drug. This change in the effect can lead to the de-
velopment of clinically important adverse events. In fact, a significant amount of the adverse
effects caused by drugs in the patients are due to the administration of multiple medications
[1–3]. As an example of DDIs, some macrolides, such as erythromycin, inhibit the metabolism
and the elimination of warfarin [4]. This fact could cause an increased effect of warfarin with
the consequent risk due to its anticoagulant properties. Another example is the combination of
simvastatin and posaconazole, associated with a risk of myopathy and rhabdomyolysis due to
increased statin plasma concentrations [5].

Pharmacovigilance focuses on the collection, monitoring and evaluation of adverse events
caused by drugs and other biological products in the pharmaceutical market. Pharmacovigi-
lance agencies, such as the FDA U. S. Food and Drug Administration, are interested in the use
of post-marketing data to analyze possible adverse drug effects (ADEs) and possible DDIs that
cause higher impact in ADE development. However, improvements in the current approaches
are still needed to help in the early detection of DDIs.

Recently, a number of computational methods have been successfully applied to predict
DDIs. Among them, cheminformatic methodologies, such as protein-structure-based and
ligand-based methods, have been used in the detection of DDIs. Cheminformatics provides a
useful approach through the use of 2D/3D QSAR (quantitative structure-activity relationships)
[6–8], homology modeling [9] and molecular docking [10]. These methods can infer similarity
between sets of drugs [11–13] and study possible interactions with pharmacodynamics or
pharmacokinetic targets. In previous work, we have leveraged cheminformatics to construct
general models of DDIs [11, 12].

On the other hand, scientific literature and pharmacovigilance databases are additional
sources with important implications in DDI discovery [3, 14]. Percha et al. [15] mined the sci-
entific literature to detect DDIs through the extraction of gene-drug relationships. Mining elec-
tronic health records (EHRs) or the FDA’s Adverse Event Reporting System (FAERS) [16] is
an alternative for the discovery of DDIs [1, 17]. In fact, Tatonetti et al. recently provided an im-
portant source of DDI candidates, the TWOSIDES database [18], through mining FAERS.
However, analysis of pharmacovigilance data is still very challenging and rampant confound-
ing leads to high false positive rates. Alternatively, cheminformatic methods can be applied to
rank the DDI candidates extracted from a pharmacovigilance study. These methods offer the
possibility to study the final candidates from the point of view of the molecular structure, phar-
macological action or adverse effects comparison. Similarity-based methods were useful to
rank drug candidates extracted from pharmacovigilance data mining that produce some ad-
verse events, such as rhabdomyolysis and pancreatitis [19, 20].

In this paper, we systematically apply six different similarity-based techniques to evaluate
drug interaction hypotheses mined from pharmacovigilance data. The objective of the current
study is to improve the detection of DDIs in the TWOSIDES database using methodologies we
recently developed based on the application of similarity-based modeling (see Fig 1). When ap-
plied to the TWOSIDES database a reference standard of DDIs that produce arrhythmia, we
measured: 1) enrichment factor provided by TWOSIDES, and 2) performance when we rank
the set of DDI candidates using proportional reporting ratio (PRR), p-values, and different
similarity-based models. As is demonstrated by our results, the implementation of cheminfor-
matic models in pharmacovigilance data is useful in DDI signal detection and decision making
process.
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Methods

DDI reference standard
We collected a reference standard with 149 DDIs present in the intersection of both DrugBank
[21] and Veterans Association Hospital database [22]. The collected DDIs produced the effect
of arrhythmias and related terms, such as QT prolongation or increased heart rhythm. In our
reference standard there are DDIs with different levels of documentation, from “well estab-
lished through controlled studies” to “theoretical interactions but pharmacological reasons
lead clinicians to recognize the possible interaction”. The 149 DDI pairs comprised 162 drugs
and were included in a 162×162 drug-drug matrix called M1 (13,041 total number of possible
interactions). We codified the 149 reference standard DDIs in M1 with value 1 in each respec-
tive cell, and the non-DDIs with value 0 (see S1 and S2 Tables).

Fig 1. Flowchart with the different steps implicated in the study.

doi:10.1371/journal.pone.0129974.g001
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Drug similarity-based calculation
To calculate drug similarity we used different measures. Fig 2 shows the workflow used to cal-
culate some similarity measures. A detailed explanation about the construction of drug similar-
ity-based models can be found in previous publications [11, 12]. Different drug similarity
matrices (M2) were generated at this step (the data is provided in S3 Table).

2D molecular structure drug similarity (matrix M2a). We calculated MACCS finger-
prints for all the 162 drugs in our reference standard. MACCS represents the 2D molecular
structure as a vector that codifies the presence or absence (1 and 0 codes) of different structural
keys or sub-fragments. A detailed description of the fingerprint calculation can be found in

Fig 2. Flowchart including the steps implicated in the calculation of different similarity measures. Drugs were represented as fingerprints, i.e. bit
vector codifying the presence or absence (1, 0) of structural keys, adverse effects, targets, drug-drug interactions or ATC codes. The Tanimoto coefficient
(Tc) between all the fingerprint pairs is calculated and placed in a drug-drug similarity matrix (M2). Different M2 matrices are calculated weighted with the
different similarity measures.

doi:10.1371/journal.pone.0129974.g002
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previous publications [11, 23]. We compared pairs of MACCS fingerprints using the Tanimoto
coefficient (Tc). The Tc is the ratio between the number of features (structural keys in our
case) in the intersection and the union of two fingerprints. The Tc ranges from 0 to 1, which
means minimum and maximum similarity respectively. Once we calculated the Tc for all the
drug pairs, we constructed a 162×162 drug similarity matrix (M2a). In each cell of the matrix
we placed the Tc for the drug pair (see Fig 2).

3D molecular structure drug similarity (matrix M2b). We downloaded from DrugBank
[21] the isomeric SMILES codes of the 162 drugs in our reference standard. Isomeric SMILES
codes provide information about the chemical structure but also allow the specification of the
configuration of chiral centers. We pre-processed the database using the LigPrep module in the
Schrödinger 2011 package [24]. Through this process, when there are non-specified chiral cen-
ters in some drugs, a maximum of three enantiomers was generated. We performed Monte
Carlo Multiple Minimum (MCMM) conformational analysis calculations using Macromodel
[24] to determine the most stable 3D molecular structure for each drug. We retained the struc-
ture with the minimum potential energy OPLS_2005 as a drug-template for the next shape
screening step. Using these 3D drug structure templates generated through MCMM, we per-
formed shape screening calculations with Phase module [24] to identify similar molecules to
the templates. The calculation performed a flexible alignment between the 3D conformations
of drug i with the rigid 3D structure template of drug j and identified similarities between pair
of drugs based on similar 3D distribution of pharmacophoric features. We calculated a 3D sim-
ilarity score (Phase Sim property) that ranges from 0 to 1 indicating minimum and maximum
similarity respectively. 3D scores between all the pairs (162×162) were integrated in the 3D
similarity matrix M2b. A more detailed explanation about 3D calculation parameters can be
found in previous references [24, 25].

Adverse drug effect profile fingerprint (ADEPF) similarity (matrix M2c). Adverse ef-
fects were collected from SIDER database [26], an open resource of drugs and related side ef-
fects extracted from public documentation and package inserts. The adverse effects for each
drug were represented as fingerprints, i.e. bit vector codifying the presence or absence (1, 0) of
adverse effects. As explained previously in the study (see 2Dmolecular structure drug similarity
section), we calculated the Tc between all the fingerprint pairs and constructed the matrix M2c

with ADE similarity information between all the drugs (see Fig 2).
Target profile fingerprint (TPF) similarity (matrix M2d). We collected the targets for

each drug using DrugBank [21]. We integrated the datasets with information about targets, en-
zymes, transporters and carriers. The same target protein but from different organisms was
considered as a unique case. As we explained previously, we represented targets in each posi-
tion of a fingerprint and then we calculated the Tc between all the fingerprint pairs. In the final
step, we constructed the matrix M2d weighted with target information including in each cell
the Tc between the corresponding drug pair.

Drug-drug interaction profile fingerprint (DDIPF) similarity (matrix M2e). The con-
cept of drug-drug interaction profile fingerprints was introduced in a previous study [12]. Each
drug was represented as a vector that codifies the presence (code 1) or the absence (code 0) of
the different drug-drug interactions, i.e., in our case we constructed DDIPFs with drug interac-
tion information from DrugBank [21]. Tc comparing the DDIPFs was included in the matrix
M2e (see Fig 2).

ATC-codes fingerprint similarity (matrix M2f). We used the Anatomical Therapeutic
Chemical (ATC) Classification System [27] to calculate similarities between drugs. We consid-
ered four levels in the ATC codes, involving information in different categories: location
(organ or system), therapeutic, pharmacological, and chemical properties. The different
groups in each level were represented as vector positions and Tc was calculated between all the
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ATC-code fingerprint pairs. As previously, we constructed the matrix M2f with ATC-codes
similarity.

Calculation of DDI candidates
The method to generate the new set of DDI candidates has been recently described by our re-
search group [11, 12, 25, 28]. Through this step a new DDI matrix (M3) is calculated with the
DDI score for each pair of drugs in each respective cell. It is worth noting that diagonal values
in the initial matrices M2 are set 0 not representing similarity of a drug with itself. The final
DDI score provided by M3 is based on a leave-one-out process. To generate the final matrix M3

with all the drug pairs DDI candidates we multiplied M1 by M2 retaining only in each cell the
highest value in the addition-array. Although in each cell all the scores against the set of refer-
ence standard DDIs are generated (the matrix product generated in each cell the addition of
the different scores), only the highest score is retained to represent the maximum similarity
against the well-known DDIs. The resultant matrix is not symmetric (similarity is implemented
in both branches of the drug-drug pair), for which a symmetric transformation is carried out
retaining the maximum value in each symmetric cell. That way, each cell in the final M3 matrix
represents the drug pair DDI candidate with the maximum similarity score regarding to a DDI
drug pair deemed as true positive in our reference standard. DDIs from the M3 matrix are listed
with their corresponding similarity scores (these data is provided in S4 Table). DDIs belonging
to the matrix diagonal and representing drugs interacting with themselves are eliminated. Al-
though our models are based on the maximum similarity score, the method allows the imple-
mentation of alternative algorithms.

Pharmacovigilance data: TWOSIDES database
We downloaded the TWOSIDES database [18], a data source of DDIs extracted frommining
FAERS [16]. We collected 13,105 DDIs related to the terms arrhythmia and bradyarrhythmia
with proportional reporting ratio (PRR)>1 and p-value<.05. These data were mapped to our
initial DDI reference standard to find the DDIs in common.We retained 386 DDIs present in
both databases: 14 positives and 372 negatives (see S5 Table). The subset of final DDIs was sorted
by PRR and p-value (provided by TWOSIDES) and by the different similarity-based models.

Combination of similarity-based modeling
We constructed different complex models combining the M3 similarity-based scorings for the
386 cases analyzed in TWOSIDES. We used Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). Through PCA the six M3 scorings (2D, 3D, ADEPF, TPF, DDIPF
and ATC) were transformed into a unique component explaining the 66.4% of the variance (Fac-
tor loadings were: 2DMACCS = -0.87, 3D = -0.85, ADEPF = -0.85, TPF = -0.74, DDIPF = -0.84,
ATC = -0.73). The percentage of the variance explained by each additional factor is provided in
S1 Fig On the other hand, we trained a LDAmodel with 14 positives and 372 negative cases. Five
variables were introduced in the model using the forward-stepwise method: 2D, 3D, TPF,
DDIPF and ATC scores. Statistical quality of the model was assessed through parameters such as
Wilks’ statistic (U = 0.84), Fisher ratio (F (5, 380) = 14.8) and the significance level (p<.0001). S1
Fig also provides the AUROC results of LDA including from 1 to 5 variables in the model.

Assessment of the performances
Wemeasured the enrichment factor (EF) detected in TWOSIDES as the ratio between the
prevalence detected in TWOSIDES and the prevalence in the initial reference standard.
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Prevalence is defined as the proportion of known well-established DDIs between all the DDI
candidate cases. We also ranked the DDIs according to proportional reporting ratio (PRR) and
p-value, provided by the TWOSIDES, and according to our different similarity DDI models
and assessed the precision in different top positions. Precision or positive predictive value was
calculated as the ratio between true positives and all positive cases, true positives plus false pos-
itives (Precision = TP/TP+FP). For the comparison of the performances we also used areas
under the receiver operating characteristic curves (in the manuscript this partial AUROC for
the subset of TWOSIDES DDI candidates is defined as pAUROC). If the area under the curve
is 0.5 the classifier is random whereas a perfect classifier will yield an area of 1. ROC curves
were also plotted showing the true positive fraction (sensitivity) against the false positive frac-
tion (1-specificity). We performed an external evaluation using reference standard data
sources, such as Drugdex (Micromedex) [29] and Drugs.com [30], to deem the rest of 372 can-
didates as positive and negative cases.

Results

Performance in TWOSIDES using the initial reference standard
Wemapped our initial DDI reference standard (149 positive and 12,892 negative cases) to the
arrhythmia DDI candidates extracted from TWOSIDES database to find DDIs in common.
From TWOSIDES we identified 14 positive cases and 372 negatives, a 3-fold enrichment factor
(p = .0003) (see Fig 1). We ranked the subset of DDI candidates obtaining an area under the
ROC curve of 0.62 and 0.67 using proportional reporting ratio (PRR) and p-values as scorings
(we defined this partial AUROC as pAUROC; see Fig 3).

Application of similarity-based modeling in DDI signals ranking
As an alternative system to PRR and p-values, we ranked the subset of 386 DDI candidates ex-
tracted from TWOSIDES using the different similarity-based models. Fig 3 shows the
pAUROC results and ROC curves for the different ranking methods used to sort the candi-
dates, including PRR, p-values, (data shown previously) and all the similarity-based models
using 2D and 3D similarity, ADEPF, TPF, DDIPF and ADE-codes similarities (pAUROC val-
ues, 95% confidence intervals and significance statistics are shown in S6 Table). The score pro-
vided by the models for each DDI is based on a leave-one-out procedure. Application of
similarity models offered better results in the ranking process.

We constructed more complex models combining the different individual similarity scores
through unsupervised methods, such as Principal Component Analysis (PCA), and supervised
methods, such as Linear Discriminant Analysis (LDA) (see Fig 3). In PCA we combined the six
similarity scorings (2D, 3D, ADEPF, TPF, DDIPF and ATC) in a simple component-scoring.
Using LDA, five individual scores (2D, 3D, TPF, DDIPF and ATC) were introduced in the
final model. Detailed description of the parameters for PCA and LDA are provided in the
Methods section. The PCA and LDA models showed pAUROCs of 0.87 an 0.90 respectively.

Assessing performance using alternative reference standards
In the set of 386 TWOSIDES DDI candidates, 372 were considered negative cases or non-DDIs
according to our initial reference standard. However, as our reference standard may be incom-
plete, we assessed the detection of DDIs against two additional reference sources: Drugdex
(Micromedex) [29] and Drugs.com [30].

Assessment of DDIs using Drugdex. We labeled the remaining 372 DDIs as true positives
(TP) or false positives (FP) whether the interactions causing arrhythmias are described in
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Drugdex (Micromedex) or not. We considered different levels of knowledge to deem the inter-
actions as positives: (Set 1) well-established interactions, probable, and theoretical are included
(we found 164 TP and 208 FP); (Set 2) well-established interactions and probable are included
(49 TP and 323 FP); (Set 3) only considered well-established interactions (10 TP and 362 FP).
The pAUROC results are shown in Table 1. Our individual six similarity models, along with
PCA and LDAmodels, performed well in set 1 whereas in set 2 and 3 the performance was
poor. Only ATC-codes and LDAmodel showed some predictive power in set 3.

Assessment of DDIs using Drugs.com. The same 372 DDIs were analyzed using Drugs.
com as a reference standard. Two sets of DDIs were considered depending on the clinical

Fig 3. ROC results using different methods to rank the 386 TWOSIDES candidates: PRR (Proportional Reporting Ratio), p-values, 2D structural
similarity (MACCS), 3D structural similarity, ADEPF (Adverse Drug Effect Profile Fingerprint), TPF (Target Profile Fingerprint), DDIPF (Drug-Drug
Interaction Profile Fingerprint), ATC-code fingerprint, PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). Panel (a)
shows pAUROCs with 95% confidence intervals. Panels (b) and (c) show the ROC curves for the different methods.

doi:10.1371/journal.pone.0129974.g003
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significance: set 4 including interactions with high and moderate clinical significance and set 5
with only highly clinically significant interactions as TP. The pAUROC results have shown
that our similarity-based models performed better than PRR and p-values in the mentioned
sets (Table 1). We also calculated precision in different top positions for all the methods includ-
ing all the previous test sets (see S7 Table). Figs 4 and 5 show the precision versus the ranking
for test sets 1 and 4, using all the levels of DDI knowledge in Drugdex and Drugs.com. Preci-
sion is improved when we used the similarity-based models to rank the DDIs.

Discussion
The objective of our current study is to show the ability of cheminformatics to improve the
analysis of DDI data extracted from a pharmacovigilance study. We applied different similari-
ty-based models to improve DDI detection in the TWOSIDES database [18], an important
source of DDI candidates extracted from FAERS [16]. Similarity models can be applied to
other types of pharmacovigilance data, such as Electronic Medical Records, or claim databases
[31]. These methods not only offer a possibility to improve the precision and hence, the detec-
tion of DDIs, but also provide additional information very useful in decision making. As an ex-
ample, Table 2 shows some interactions detected by the different similarity models. For each
DDI candidate, the method isolates the most similar drug pair in the reference standard, for
which interaction information is available in the literature. This fact could be valuable for re-
searchers to make decisions about the importance of the candidate, novelty or possible mecha-
nism of action by which the drugs interact and cause the adverse effect. The DDI models can
point out new DDI candidates based on the comparison of drugs that belong to the same phar-
macological class. As an example in Table 2, the model generated the DDI candidate clarithro-
mycin-verapamil because there is a similar interaction in our reference standard, the
combination erythromycin-verapamil. In this case, both clarithromycin and erythromycin are
macrolide antibiotics that belong to the same pharmacological class and can inhibit the
CYP3A-mediated verapamil metabolism and increase verapamil exposure. However, the mod-
els are also able to detect some new candidates through the comparison of drugs in different
classes. This is the case of some examples in Table 2 and Fig 6, such as the interaction between

Table 1. pAUROCs using different methods to rank the DDIs. Drugdex (sets 1–3) and Drugs.com (sets 4–5) were used as reference standards.

pAUROCs (95% confidence interval)

Scoring
method

Drugdex Set 1 [164 TP
and 208 FP]

Drugdex Set 2 [49 TP
and 323 FP]

Drugdex Set 3 [10 TP
and 362 FP]

Drugs.com Set 4 [231
TP and 141 FP]

Drugs.com Set 5 [87 TP
and 285 FP]

PRR 0.53 (0.471 to 0.589) 0.56 (0.481 to 0.639) 0.55 (0.418 to 0.689) 0.52 (0.458 to 0.579) 0.58 (0.509 to 0.647)

p-value 0.52 (0.458 to 0.576) 0.54 (0.459 to 0.616) 0.50 (0.338 to 0.669) 0.51 (0.454 to 0.574) 0.57 (0.501 to 0.638)

2D MACCS 0.66 (0.612 to 0.710) 0.51 (0.419 to 0.605) 0.53 (0.315 to 0.741) 0.61 (0.548 to 0.662) 0.65 (0.587 to 0.717)

3D similarity 0.68 (0.623 to 0.734) 0.43 (0.334 to 0.514) 0.34 (0.145 to 0.530) 0.68 (0.623 to 0.731) 0.67 (0.605 to 0.739)

ADEPF 0.68 (0.628 to 0.738) 0.52 (0.435 to 0.604) 0.46 (0.311 to 0.591) 0.62 (0.561 to 0.675) 0.65 (0.583 to 0.716)

TPF 0.70 (0.649 to 0.754) 0.54 (0.465 to 0.621) 0.47 (0.328 to 0.592) 0.65 (0.595 to 0.708) 0.67 (0.603 to 0.725)

DDIPF 0.75 (0.699 to 0.800) 0.55 (0.467 to 0.639) 0.55 (0.349 to 0.751) 0.69 (0.641 to 0.748) 0.67 (0.602 to 0.731)

ATC codes 0.69 (0.642 to 0.743) 0.56 (0.485 to 0.644) 0.66 (0.481 to 0.834) 0.61 (0.560 to 0.663) 0.68 (0.619 to 0.743)

PCA 0.75 (0.700 to 0.805) 0.53 (0.440 to 0.620) 0.51 (0.319 to 0.691) 0.69 (0.632 to 0.739) 0.71 (0.644 to 0.772)

LDA 0.73 (0.680 to 0.782) 0.61 (0.535 to 0.686) 0.73 (0.573 to 0.877) 0.63 (0.575 to 0.687) 0.66 (0.588 to 0.724)

In set 1, interactions well-established, probable and theoretical are considered true positives (TP). In set 2, interactions well-established and probable are

considered TP. In set 3, only interactions well-established are considered TP. Set 4 included interactions with high and moderate clinical significance as

TP. Set 5 included only highly clinically significant interactions as TP.

doi:10.1371/journal.pone.0129974.t001
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methadone and fluconazole that it is generated from the interaction amitriptyline-fluconazole.
The model detected that the 3D structure of methadone, used in the treatment of opioid depen-
dency and chronic pain, was similar to the tricyclic antidepressant amitriptyline
(3D_score = 0.82). In both cases, fluconazole can decrease the CYP3A4 metabolism of amitrip-
tyline and methadone and increase the serum concentration with a higher risk of causing
drugs-related adverse effects, such as arrhythmias or QT interval prolongation [29]. Amitripty-
line was also predicted by the 3D model to interact with gatifloxacin, an antibiotic of the fluoro-
quinolone family. The interaction was confirmed in Drugdex [29]. The model generated the
candidate because amitriptyline was similar to the antiarrhythmic drug disopyramide (3D
score = 0.80) (see Fig 6) and the interaction disopyramide and gatifloxacin was present in our

Fig 4. Precision of the different methods in test set 1 with all the interactions described in the reference standard Drugdex (interactions
well_established+probable+theoretical).

doi:10.1371/journal.pone.0129974.g004
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reference standard. The probable mechanism of the interaction in both cases is due to additive
effects on QT interval. A likely molecular mechanism of the drugs-QT prolongation is the
blockade of the HERG potassium channel [32]. The selective serotonin reuptake inhibitor
(SSRI) citalopram, was also found to be similar to disopyramide (3D score = 0.80) and hence,
to interact with ranolazine. The combination disopyramide-ranolazine is associated with the
risk of possible additive effects on QT prolongation. The same mechanism is predicted by the
3D model for the candidate citalopram-ranolazine and confirmed in Drugdex [29]. Another
example described in our reference standard is the concomitant use of imipramine and flucon-
azole, associated with higher risk of QT prolongation due to possible alterations in imipramine
metabolism. The Target model predicts the interaction between imipramine and diltiazem

Fig 5. Precision of the different methods in test set 4 with all the interactions described in the reference standard Drugs.com (high andmoderate
clinically significant interactions).

doi:10.1371/journal.pone.0129974.g005
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with the same mechanism associated. The probable mechanism described in Drugdex is in
agreement and based on decreased imipramine clearance. Although in not all the cases the in-
formation about the adverse effect and mechanisms associated from the original DDI in the
reference standard to the new candidate is correct, in many cases this information is valuable
to assess the etiology and the importance of the DDI candidate.

As we have shown previously, information provided by the different similarity scores can be
implemented in the development of more complex models (PCA and LDA). Although the in-
formation is complementary, the different scoring measures showed some correlation. Table 3
shows the correlation coefficients between the six similarity measures implemented in this
study.

Some knowledge measures, such as TPF and DDIPF, were more related to the therapeutic/
pharmacological/chemical category defined in the ATC similarity (r = .46 and r = 0.41). This
type of similarity measures are highly dependent on the information provided by knowledge
databases that can be bias towards the pharmacological category. However, as shown in Fig 6,
the similarity measures have the ability to capture intra-class and inter-class similarity. We cal-
culated the number of drug pairs retrieved by the similarity scores in the different top percen-
tile positions in a range of ATC classification, from zero (drugs in different class) to four ATC
levels in common (drugs in the same class). All the measures showed a good recovery of the
drug pairs in the same pharmacological class (4 coincident ATC levels). However, high similar-
ity was also detected between some pairs of drugs with a totally different ATC classification (no
ATC coincident levels). S8 Table shows the results of the analysis. In this article, similarity was
integrated comparing drugs. However, additional similarity metrics could be added comparing
adverse effects or adverse reactions caused by drugs combinations as a useful and alternative
system to develop this type of predictor.

Table 2. Example of some arrhythmia DDIs described in Drugdex and detected by the different similarity-basedmodels (2D MACCS, 3D similarity,
ADEPF, TPF, DDIPF and ATC) .

DDI candidates Similar DDI in the initial reference standard Models score PRR

Verapamil-Clarithromycin Erythromycin-Verapamil Tc_2DMACCS = 0.98 5.47

Fluoxetine-Prochlorperazine Thioridazine-Fluoxetine Tc_2DMACCS = 0.81 2.79

Erythromycin-Prochlorperazine Thioridazine- Erythromycin Tc_2DMACCS = 0.81 5.50

Fluconazole-Methadone Amitriptyline-Fluconazole 3D_score = 0.82 29.08

Gatifloxacin-Amitriptyline Disopyramide-Gatifloxacin 3D_score = 0.80 8.30

Ranolazine-Citalopram Disopyramide-Ranolazine 3D_score = 0.80 3.95

Trimipramine-Citalopram Fluoxetine-Trimipramine Tc_ADEPF = 0.42 5.89

Amiodarone-Ofloxacin Moxifloxacin-Amiodarone Tc_ADEPF = 0.39 3.31

Ziprasidone-Ofloxacin Moxifloxacin-Ziprasidone Tc_ADEPF = 0.39 4.37

Fluconazole-Quetiapine Ziprasidone-Fluconazole Tc_TPF = 0.84 2.53

Imipramine-Quetiapine Ziprasidone-Imipramine Tc_TPF = 0.84 6.27

Imipramine-Diltiazem Fluconazole-Imipramine Tc_TPF = 0.55 8.05

Gatifloxacin-Prochlorperazine Perphenazine-Gatifloxacin Tc_DDIPF = 0.94 7.78

Fluconazole-Doxepin Amitriptyline-Fluconazole Tc_DDIPF = 0.93 5.14

Gatifloxacin-Promethazine Perphenazine-Gatifloxacin Tc_DDIPF = 0.74 2.53

Ziprasidone-Azithromycin Clarithromycin-Ziprasidone Tc_ATC = 1.00 2.17

Quinidine-Azithromycin Clarithromycin-Quinidine Tc_ATC = 1.00 3.46

Fluoxetine-Nortriptyline Trimipramine-Fluoxetine Tc_ATC = 1.00 4.14

In the table we provided also proportional reporting ratio values (PRR) found in TWOSIDES data.

doi:10.1371/journal.pone.0129974.t002
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The test using Drugdex as a reference standard showed poor performance in sets 2 and 3,
where only probable and well-established DDIs were considered positives. The similarity mea-
sures, capturing chemical and pharmacological features can detect with better precision DDIs
deemed as theoretical by Drugdex (see set 1 with 115 theoretical, 39 probable and 10 well-
established DDIs). The predictors are still useful pointing out possible dangerous drug combi-
nations associated with severe outcomes. The test based on Drugs.com showed that the similar-
ity models performed better than PRR and p-value scorings. In this set we used a DDI system

Fig 6. Examples of different pairs of similar drugs with different pharmacological profile detected by our models. Panel (a): methadone is similar to
amitriptyline and predicted to interact with fluconazole (reference standard amitriptyline-fluconazole). Panel (b): amitriptyline is similar to disopyramide and
predicted by the 3D model to interact with gatifloxacin (reference standard disopyramide—gatifloxacin). Panel (c): citalopram, was found to be similar to
disopyramide and hence, to interact with ranolazine (reference standard disopyramide-ranolazine). Panel (d): diltiazem was found to be similar to fluconazole
and predicted to interact with imipramine (reference standard fluconazole-imipramine).

doi:10.1371/journal.pone.0129974.g006
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classification based on clinical significance, related to the severity of the possible adverse events
produced by the interactions.

Drug phenotypic, therapeutic, structural and genomic similarity modeling have also been
applied to predict DDIs based on machine learning methods [33]. On the other hand, different
types of similarity models were also previously published by our research group to predict dif-
ferent adverse effects [34] or new potential DDIs of different etiology [28]. In this study we
showed the applicability of the similarity based models to improve the detection of DDIs that
cause arrhythmias in pharmacovigilance data. Combining pharmacovigilance data with simi-
larity modeling showed potential to facilitate the detection of new DDIs. In our study we inte-
grated the data through an straightforward and simple approach that allows to obtain good
performance values but also assists the researcher in the decision making process. The method
allows the calculation and evaluation of new drugs in an external test set. Drugs in the test can
be added to the matrix M2 providing similarity information between drugs in the test and
drugs in the reference standard. The method will generate for the new drug-drug candidates in
the test a score based on the maximum similarity against the set of DDIs in the reference stan-
dard. However, a limitation is that our method only predicts interactions between our 162 ref-
erence standard drugs and drugs in the test. No DDIs can be generated when both drugs
implicated in the interaction are different from our 162 reference standard drugs. This fact lim-
its the applicability of the developed models.

We applied similarity-based modeling to the DDI signals detected in FAERS when PRR>1
and p<.05. However, application of similarity modeling to all the DDIs included in the pharma-
covigilance data could be an option to retrieve some interactions not detected by the data min-
ing algorithm. This type of models could be implemented in the early detection of DDIs related
to drugs newly introduced in the market and with not enough exposure in the population.

Conclusions
In this study, we applied similarity-based modeling to the candidates selected through pharma-
covigilance data mining of DDIs that can cause the ADE arrhythmia. When ranking the subset
of DDI candidates, similarity-based modeling showed better performance than the parameters
obtained in the pharmacovigilance data mining, such as PRR and p-values. The implementa-
tion of similarity-based modeling in pharmacovigilance improved precision of the final method
and provided a mechanism for decision making. Our method is a useful tool as a pharmacov-
igilance resource that can help in the decision support of new DDIs.
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