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Abstract 

Background:  Protein phosphoglycerylation, the addition of a 1,3-bisphosphoglyceric 
acid (1,3-BPG) to a lysine residue of a protein and thus to form a 3-phosphoglyceryl-
lysine, is a reversible and non-enzymatic post-translational modification (PTM) and 
plays a regulatory role in glucose metabolism and glycolytic process. As the number of 
experimentally verified phosphoglycerylated sites has increased significantly, statisti‑
cal or machine learning methods are imperative for investigating the characteristics 
of phosphoglycerylation sites. Currently, research into phosphoglycerylation is very 
limited, and only a few resources are available for the computational identification of 
phosphoglycerylation sites.

Result:  We present a bioinformatics investigation of phosphoglycerylation sites based 
on sequence-based features. The TwoSampleLogo analysis reveals that the regions sur‑
rounding the phosphoglycerylation sites contain a high relatively of positively charged 
amino acids, especially in the upstream flanking region. Additionally, the non-polar 
and aliphatic amino acids are more abundant surrounding phosphoglycerylated lysine 
following the results of PTM-Logo, which may play a functional role in discriminating 
between phosphoglycerylation and non-phosphoglycerylation sites. Many types of 
features were adopted to build the prediction model on the training dataset, including 
amino acid composition, amino acid pair composition, positional weighted matrix and 
position-specific scoring matrix. Further, to improve the predictive power, numerous 
top features ranked by F-score were considered as the final combination for classifica‑
tion, and thus the predictive models were trained using DT, RF and SVM classifiers. 
Evaluation by five-fold cross-validation showed that the selected features was most 
effective in discriminating between phosphoglycerylated and non-phosphoglycer‑
ylated sites.

Conclusion:  The SVM model trained with the selected sequence-based features per‑
formed well, with a sensitivity of 77.5%, a specificity of 73.6%, an accuracy of 74.9%, and 
a Matthews Correlation Coefficient value of 0.49. Furthermore, the model also consist‑
ently provides the effective performance in independent testing set, yielding sensitiv‑
ity of 75.7% and specificity of 64.9%. Finally, the model has been implemented as a 
web-based system, namely iDPGK, which is now freely available at http://mer.hc.mmh.
org.tw/iDPGK​/.
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Background
Protein post-translational modifications (PTMs) are generally enzymatic and covalent 
chemical modification of proteins following protein biosynthesis. Of the 20 amino acids 
that make up proteins, lysine is one of the most highly modified residues. According to 
the various studies reviewed, there are numerous common types of PTMs that occurred 
at lysine residues such as acetylation, ubiquitination, sumoylation, methylation, hydrox-
ylation. These PTMs and enzymes are associated with a myriad of human diseases, 
including heart diseases, rheumatoid arthritis, multiple sclerosis, neurodegenerative dis-
eases, celiac diseases and cancers.

Lysine phosphoglycerylation is a non-enzymatic PTM, which be identified in both 
human cells and mouse liver by Moellering and Cravatt [1], they found that phospho-
glycerylation plays a key role in regulating glucose metabolism and glycolytic process. 
It exploits the electrophilicity of 1,3-bisphosphoglycerate (1,3-BPG) to modify specific 
lysine residues and thus form a 3-phosphoglyceryl-lysine (pgK) that function in glyco-
lysis. A comprehensive proteomics analysis reveals that pgK-modified proteins create a 
potential feedback mechanism by inhibiting and accumulating glycolytic enzymes that 
leads to the accumulation of glycolytic intermediates to alternate biosynthetic pathways 
[2]. Furthermore, it has been demonstrated that abnormal phosphoglycerylation has a 
high chance to cause the congestive heart failure [3].

Due to the labile nature of PGK bond and the low abundance of endogenously phos-
phoglycerylated proteins in vivo, further research is needed to clarify the characteristics 
and mechanisms of lysine phosphoglycerylation. Although mass spectrometry has been 
available for detection of variety of PTMs in laboratories [4, 5], but there are still many 
deficiencies, the process is expensive, time-consuming and not as effective. Thus, it is 
necessary to develop a systematic method for identifying phosphoglycerylation sites of 
proteins in silico. As listed in Additional File 1: Table S1, Xu et al. [6] developed a compu-
tational analysis tool named Phogly-PseAAC evaluated using K-nearest neighbor (KNN) 
classifier and pseudo-amino acid composition to detect the phosphoglycerylation sites. 
Another prediction tool named CKSAAP_PhoglySite was developed to predict the phos-
phoglycerylation sites on human proteins using composition of k-spaced amino acid 
pairs (CKSAAP) and fuzzy support vector machine (SVM) with tenfold cross-valida-
tion, and they indicated that the effectiveness of predicted secondary structure features 
seems to have very little practical use for discriminating between phosphoglycerylation 
sites and non-phosphoglycerylation sites [7]. However, data size is a very crucial part of 
model training, more than total 2000-dimensional features was obtained by the CKSAAP 
encoding scheme which may cause overfitting with small sample size [8]. PhoglyPred 
is another predictor which focused on selecting the important sequence-based features 
using the F-score, and evaluated using SVM and jackknife test to predict the phospho-
glycerylation sites; moreover, to improve the classification for the imbalanced dataset, 
the authors set the different parameters for positive and negative datasets [9]. Except for 
the sequence-based features, EvolStruct-Phogly has incorporated local structure confor-
mations, accessible surface area (ASA) and position-specific scoring matrix (PSSM) to 



Page 3 of 16Huang et al. BMC Bioinformatics          (2020) 21:568 	

predict phosphoglycerylated lysine residues [10]. More recently, another prediction tool 
named Bigram-PGK which used evolutionary information in PSSM of protein sequences 
and its transformation to bigram occurrences appears to predict phosphoglycerylated 
sites [11]. Numerous analytical methods were proposed for predicting the phosphoglyc-
erylation sites, which provide effective performance in cross-validation using training 
dataset. However, choosing the most reliable prediction method has been a challenge 
for researchers, because of there is a lack of independent testing to verify the objective 
effectiveness of these predictors.

In this study, we provide a full characterization of phosphoglycerylated substrate sites 
based on various features, including linear sequences and evolutionary information of 
amino acids. Subsequently, we build predictive models with both balance and imbal-
ance datasets using decision tree (DT), random forest (RF) and support vector machine 
(SVM) algorithms. Furthermore, five-fold cross-validation was conducted to assess the 
effectiveness of the proposed models. Most important of all, an additional phosphoglyc-
erylation dataset was divided from the raw dataset which completely blind to the train-
ing dataset, and an independent testing of state-of-the-art methods was performed on 
these data. To facilitate the study of protein lysine phosphoglycerylation, we are moti-
vated to develop a web tool for the identification of phosphoglycerylation sites.

Results
Composition of amino acids around phosphoglycerylation sites

In order to investigate the consensus motif surrounding phosphoglycerylated lysine 
residues, the frequency of occurrence around phosphoglycerylation sites of each of the 
20 amino acids was measured based on a 19-mer window length, and the phosphoglyc-
erylated lysine residue of each peptide was excluded from this calculation. Figure  1a 
indicates that, valine (V) residue occurs at a highest frequency surrounding the phos-
phoglycerylation sites; on the contrary, cystine (C) and tryptophan (W) which residues 
have the lowest frequencies. Comparison of the frequency of occurrence between phos-
phoglycerylation sites and non-phosphoglycerylation sites, for phosphoglycerylation 
sites, K residue has a relatively higher frequency, while aspartate (D), glycine (G), ser-
ine (S) and V residues also occur more frequently; in contrast, C, glutamate (E), leucine 
(L), proline (P) and threonine (T) have relatively fewer frequency.Furthermore, we per-
formed a measurement of the position-specific amino acid composition surrounding the 
phosphoglycerylated sites based on the training dataset using WebLogo [12].

However, as shown in Fig.  1b, both of the frequency and entropy plots indicated 
that it is difficult to identify the phosphoglycerylated sites based on the position-
specific residue composition. Thus, we utilized Two-SampleLogo tool [13] to identify 
the significance of enrichment or depletion in position-specific amino acid composi-
tion between phosphoglycerylated and non-phosphoglycerylated sites. A total of 89 
phosphoglycerylated sites and 178 non-phosphoglycerylated sites were compared in 
Fig. 1c, it was realized that two positively amino acids K and H residues reach signifi-
cant enrichment in the upstream flanking region (from positions − 1 to − 9), excepted 
at the position + 1. In particular, downstream on the peptide compared to the non-
phosphoglycerylated site, the acidic amino acid D residue has the highest proportion 
at the position + 8 with p value < 0.01. On the contrary, for non-phosphoglycerylated 
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sites, it shows that E is slightly more abundant at position − 2 that suggested a lack of 
negatively charged K, H and R residues closing to non-phosphoglycerylated sites.

Besides composition of amino acids, the composition of amino acid pairs was also 
measured to explore the statistically significant dipeptides around phosphoglyceryla-
tion sites. As shown in Fig. 2, the over-represented amino acid pairs were highlighted 
in red color and the under-represented pairs were highlighted in green color by dis-
playing in a 20 × 20 matrix. After ranking the amino acid pairs according to occur-
rence frequency, the dipeptides formation from K or G were found in the top ranking 
such as KV, AK, GL, GG and GK. This result indicated that most of the dipeptides 
involved the two residues are enriched surrounding the modified residues and were 
considered as statistically significant pairs for the identification of protein phospho-
glycerylation sites.

Fig. 1  Composition of amino acids surrounding phosphoglycerylation sites. a Comparison of AAC 
between 89 positive and 178 negative sequences. b Position-specific AAC of 89 phosphoglycerylated 
fragment sequences. c Comparison of position-specific AAC between phosphoglycerylated and 
non-phosphoglycerylated sequences based on TwoSampleLogo analysis
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Identification of the sequence motifs based on position‑specific background amino‑acid 

probabilities

With the frequency plot of sequence logo representation given in Fig. 1b, there is no 
obvious feature representation for each position. To further investigate the potential 
phosphoglycerylation motif in primary sequence, we applied a program PTM-Logo 
[14] that identify the significantly enriched and underrepresented amino acids sur-
rounding the phosphoglycerylation site based on the training dataset. The program 
makes appropriate adjustments to probabilities of amino acids at each position 
according to the PTM type and the positions relative to the modified site. But there is 
a limitation of length for input sequences, the maximum acceptable length of the pro-
gram 15-mer (− 7, + 7) is selected as the window length in the following evaluation 
and implementation.

Herein, Fig.  3a reveals that the one motif was detected based on the occurrence 
of R and D residues at upstream position − 6 of the peptide. It also shows that non-
polar and aliphatic amino acids such as alanine (A), G, and V are more abundant 
surrounding phosphoglycerylated lysine at position − 2 to + 3 and 5. Position + 4 
was exhibiting the highest proportion of polar amino acids namely glutamine (Q), 
and the positively charged and polar amino acid H had the highest ratios at position 
− 3. Additionally, the other motif was observed as shown in Fig.  3b, it was display-
ing the highest proportion of aromatic residues F (Phenylalanine) at position + 6 
and + 7. Position − 5 was a special case, showing more abundant positively charged 
amino acid. The results indicated that the upstream region of the phosphoglyceryla-
tion sites harbor a notable abundance of positively charged amino acids, which is cor-
responding to the result of the TwoSampleLogo analysis. This analysis shows that, in 
a sequence, the amino acids with special properties surrounding PTM sites plays an 
important role in identifying the phosphoglycerylated sites.

Fig. 2  The frequency differences of 20 × 20 amino acid pairs between phosphoglycerylated sites and 
non-phosphoglycerylated sites
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Cross‑validation performance of the models trained with single type and multiple types 

of features

To determine sequence-based features can be adopted to distinguish between the phos-
phoglycerylation sites and non-phosphoglycerylation sites, various kinds of features 
were extracted to build the prediction models, including AAC, AAPC, BLOSUM62 and 
PSSM. In addition, the composition of positively charged amino acids (PCAAC) such as 
H, R and K residues, were especially extracted from AAC to build a prediction model. 
Each of above listed feature sets alone with the training dataset were fed into three dif-
ferent classification algorithms, such as support vector machine (SVM), random forest 
(RF) and decision tree (DT), and the models were evaluated using five-fold cross-valida-
tion. As shown in Table 1, the models were trained with single type of features using RF 
could provide the best overall performance in classifying between phosphoglycerylated 
and non-phosphoglycerylated lysine residues. The RF model trained with AAC has the 
great performance with a sensitivity of 59.6%, specificity of 59%, accuracy of 59.2%, and 
MCC value of 0.18, while that trained with AAPC gives a passable specificity of 62.9%. 
In particular, the SVM model trained with PCAAC alone provides the best overall per-
formance comparing to the other models with a sensitivity of 58.4%, specificity of 68.0%, 
accuracy of 64.8%, MCC value of 0.25.

Moreover, to improve the predictive power, the hybrid models were trained by com-
bining two or more different types of features that were also evaluated by five-fold 

Fig. 3  The motif analysis based on position-specific amino-acid probability backgrounds of 89 
phosphoglycerylated sequences
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cross-validation. Table 2 shows that comparing to the models trained with single type of 
features, the RF model trained with the combination of AAC, AAPC and PSSM features 
could significantly improve the performance with a sensitivity of 62.9%, a specificity of 
62.9%, an accuracy of 62.9%, and the MCC value of 0.24. The models trained for each 
feature combination using RF still have the best performance when comparing to DT 
and SVM, thus Fig. 4 provides the comparison of ROC curves only among the models 
trained on different multiple types of features based on their five-fold cross-validation 

Table 1  Five-fold cross validation results of the DT, RF and SVM models trained on single 
type of features

Training feature Classifier Sensitivity (%) Specificity (%) Accuracy (%) MCC

AAC​ DT 59.6 55.6 56.9 0.14

RF 59.6 59.0 59.2 0.18

SVM 56.2 59.6 58.4 0.15

AAPC DT 59.6 47.8 51.7 0.07

RF 48.3 62.9 58.1 0.11

SVM 60.7 47.8 52.1 0.08

B62 DT 44.9 70.8 62.2 0.16

RF 55.1 55.1 55.1 0.10

SVM 51.7 43.3 46.1 − 0.05

PSSM DT 34.8 71.9 59.6 0.07

RF 58.4 52.2 54.3 0.10

SVM 39.3 59.6 52.8 − 0.01

PCAAC​ DT 50.6 71.3 64.4 0.22

RF 50.6 50.6 50.6 0.01

SVM 58.4 68.0 64.8 0.25

Table 2  Five-fold cross  validation results of  the  DT, RF and  SVM models trained 
with multiple types of features

Training feature Classifier Sensitivity (%) Specificity (%) Accuracy (%) MCC

AAC + AAPC DT 53.9 50.6 51.7 0.04

RF 58.4 60.1 59.6 0.18

SVM 53.9 57.3 56.2 0.11

AAC + B62 DT 42.7 66.3 58.4 0.09

RF 59.6 59.0 59.2 0.18

SVM 68.5 34.8 46.1 0.03

AAC + PSSM DT 32.6 64.6 53.9 − 0.03

RF 59.6 59.0 59.2 0.18

SVM 39.3 59.6 52.8 − 0.01

AAPC + PSSM DT 31.5 69.7 56.9 0.01

RF 62.9 54.5 57.3 0.16

SVM 39.3 59.6 52.8 − 0.01

AAC + AAPC + B62 DT 40.4 63.5 55.8 0.04

RF 60.7 54.5 56.6 0.14

SVM 68.5 34.3 45.7 0.03

AAC + AAPC + PSSM DT 31.5 64.6 53.6 − 0.04

RF 62.9 62.9 62.9 0.24

SVM 69.7 39.3 49.4 0.09
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performance. According to the evaluation criteria, the model trained by combining 
AAC, AAPC and PSSM using RF classifier exhibited the best overall performance among 
various predictive models.

Performance evaluation of the models trained with the selected sequence‑based features

Based on the cross-validation results presented above, there is a significant difference in 
the predictive performance between the models trained with the same features but using 
different classifiers. In this study, no matter which features are used, the models trained 
using RF classifier that provide the better performance compared to others. Notable, 
according to the random forest algorithm, a random subset of the features was selected 
at each candidate split in the learning process, it means that the performance was not 
influenced by all the features. Therefore, in order to investigate the selected sequence-
based features, a total of 4 kinds of features were ranked by F-score, including AAC, 
AAPC, B62 and PSSM. Subsequently, according to the process of forward feature selec-
tion, sequentially add only one attribute into the model to evaluate the performance at 
each step, continuing until the integration of features could not further improve the pre-
dictive performance.

Fig. 4  Comparison of ROC curves among the models trained using various features based on five-fold 
cross-validation
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And lastly, a total of 25 selected attributes were considered as the final combination 
for further classification as listed in Additional file  2: Table  S2, the predictive models 
trained on these crucial features using DT, RF and SVM classifiers, the performance 
of each model was also evaluated by five-fold cross-validation as presented in Table 3, 
and the ROC curves of the models also shown in Fig. 4. The results show that the RF 
model could provide a better performance than previous ones, which has the sensitivity 
of 70.8%, the specificity of 70.8%, the accuracy of 70.8% and the MCC value of 0.40. In a 
surprise twist, the SVM model gave the best predictive performance comparing to DT 
and RF models, which could reach the sensitivity of 77.5%, the specificity of 73.6%, the 
accuracy of 74.9 and the MCC value of 0.49. In summary, the SVM model trained with 
the top 25 features selected by F-score and SFS can significantly enhance the perfor-
mance of the model for predicting the protein phosphoglycerylation sites.

Implementation of web‑based tool for identifying phosphoglycerylation sites

Given a protein sequence, tandem mass spectrometry is the main technology cur-
rently used for identification of the post-translational modified sites [15]; however, the 
researchers still encounter equipment and technical difficulties such expensive, time-
consuming and labor-intensive process. Thus, an effective prediction tool should be 
developed to efficiently identify potential phosphoglycerylation sites. In this work, the 
SVM model trained with the selected sequence-based features is utilized to develop a 
web-based online tool for automatic prediction of phosphoglycerylation sites, named 
iDPGK. The system allows users to submit the protein sequences of interest in FASTA 
format, which efficiently returns the predictive results including the potential position of 
phosphoglycerylated sites and the bar plot for amino acid composition surrounding the 
modified residue. To demonstrate the performance of iDPGK, an experimentally-veri-
fied phosphoglycerylated proteins are used as case studies which are not included in the 
training data set. The human gamma-enolase (ENOG_HUMAN) contains one verified 
phosphoglycerylation site at Lys-351, out of 23 lysine residues in the protein sequence, 
iDPGK could make an accurate prediction for the only one validated site.

Discussion
In classifying between the phosphoglycerylation and non-phosphoglycerylation sites, 
the model trained on the training dataset might be overestimated, which could lead to 
the overfitting problem. Thus, an independent testing dataset of phosphoglycerylation 
sites was split from the non-homologous dataset and used to verify the predictive power 
of the final model, which consisted of 37 positive sites and 74 negative sites.

Table 3  Five-fold cross  validation results of  the  DT, RF and  SVM models trained 
with the selected features

Classifier Sensitivity (%) Specificity (%) Accuracy (%) MCC

DT 59.6 58.4 58.8 0.17

RF 70.8 70.8 70.8 0.40

SVM 77.5 73.6 74.9 0.49
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As given in Table 4, the SVM model constructed with the top 25 selected features pro-
vides 75.7%, 64.9%, 70.3% and 0.41 for sensitivity, specificity, accuracy and MCC value, 
respectively. In summary, based upon independent testing, the result shows that the pro-
posed SVM model can outperform other models in overall and can handle class imbal-
ance in classification between phosphoglycerylation sites and non-phosphoglycerylation 
sites.

Conclusion
This study contributes to providing a comprehensive characterization of phosphoglyc-
erylation sites based on sequence analysis of the experimentally verified modified sites 
due to the lack of experimentally determined phosphoglycerylation protein structures. 
Through observation of the results of WebLogo and TwoSampleLogo, the analysis of 
position-specific amino acids composition between phosphoglycerylation and non-
phosphoglycerylation site reveals that the regions surrounding the modified sites contain 
a high relatively of positively charged amino acids, especially in the upstream flanking 
region. Additionally, the non-polar and aliphatic amino acids are more abundant sur-
rounding phosphoglycerylated lysine following the results of PTM-Logo. As stated pre-
viously, these investigations suggested that the composition of amino acids can play a 
crucial role in distinguishing between phosphoglycerylation and non-phosphoglyceryla-
tion sites. In summary, based on the results of this study, it is suggested that the phos-
phoglycerylation sites generally occur not only within a positively charged region but 
also within a conserved motif. According to the evaluation by five-fold cross-validation, 
the SVM model was trained on all the training data using the top 25 sequence-based 
features ranked by F-score measurements, which was used to predict the phosphoglyc-
erylation sites.

Moreover, to further demonstrate the effectiveness of the proposed model, a compari-
son between our model and previous models using the independent test dataset is given. 
Considering previously published studies, there are only two existing prediction tools, 
namely Phogly-PseAAC [6] and iPGK-PseAAC [16]. The results, as shown in Table  3, 
Phogly-PseAAC provided a sensitivity of 59.5%, a specificity of 67.4%, an accuracy of 
67.2%, and an MCC of 0.09. Meanwhile, the iPGK-PseAAC provides 37.8%, 96.2%, 94.5% 
and 0.27 for sensitivity, specificity, accuracy and MCC value, respectively. The inde-
pendent testing demonstrated that iDPGK provided a better predictive performance 
with balanced sensitivity and specificity, 75.7% and 64.9%, respectively. Moreover, as 
shown Fig. 5, the ROC curve displays that our model yielded a slightly higher true posi-
tive rate (sensitivity) when at the same level of false positive rate (1-specificity) for each 
tool. Consequently, the proposed model was employed to develop a web-based tool to 

Table 4  Comparison of  independent testing results between  our method 
and the available prediction tools

Classifier Sensitivity (%) Specificity (%) Accuracy (%) MCC

Phogly-PseAAC​ 59.5 67.4 67.2 0.09

iPGK-PseAAC​ 37.8 96.2 94.5 0.27

iDPGK
(our method)

75.7 64.9 70.3 0.41
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identify phosphoglycerylation sites based on sequence-based features, named iDPGK 
(http://mer.hc.mmh.org.tw/iDPGK​). Most important of all, with the availability of data 
increasing rapidly, the proposed method is applicable for analysis of the large-scale prot-
eomics dataset with no adjustment required.

Methods
Data collection and pre‑processing

In this study, the phosphoglycerylated substrate sites were collected from Protein Lysine 
Modification Database (PLMD) [17], a manually curated database of experimentally ver-
ified lysine modification sites which contains 187 phosphoglycerylation sites of 137 pro-
teins. Lysine phosphoglycerylation is a recent research area in proteomics, the data are 
quite limited at present; therefore, the collected data were randomly split into two sets 
for model training (150 sites) and independent testing (37 sites) with the conventional 
ratio of 8:2. The testing dataset was used to evaluate the state-of-art prediction tools, 
which were compared with the presented method in terms of predictive performance.

The analytical flowchart of this work is described in Fig. 6. With reference to our 
previous work [18], sequence fragments with a window length of 2n + 1 centering at 
the experimentally verified phosphoglycerylation sites were extracted as the positive 

Fig. 5  Comparison of the predictive performance between the proposed models and existing prediction 
tools based upon independent testing

http://mer.hc.mmh.org.tw/iDPGK
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dataset; besides, the lysine residues without annotation on the phosphoglycerylated 
proteins that these fragments were extracted as the negative dataset. To determine 
an appropriate window size for model construction, we performed the evaluations 
of the models under the different window lengths on the basis of SVM classifier with 
amino acid composition features. As the results of five-fold cross validation, the 
model trained using 19-mer window length could achieve the best accuracy as shown 
in Additional File 1: Table S1.

In this work, to elude the overestimation of predictive performance, CD-HIT pro-
gram [19] was used to remove homologous sequences from the training dataset with 
40% sequence identity. Considering the limited positive data availability, the nega-
tive datasets were randomly extracted from the corresponding original datasets with 
the ratio of 1:2 between the number of positive and negative sequences. As shown 
in Table  5, 178 non-phosphoglycerylation sites were randomly selected for training 
dataset and 74 for independent testing dataset, respectively.

Fig. 6  The analytical flowchart of the identification of protein phosphoglycerylation sites

Table 5  Data statistics of  training and  testing datasets after  the  removal of  homologous 
sequences using CD-HIT program

Sequence identity cut-off Number of phosphoglycerylation sites Number of non-
phosphoglycerylation 
sites

Raw data 150 3997

90% 107 3031

80% 104 2610

70% 98 2319

60% 96 2040

50% 93 1845

40% 89 1318

Training data 89 178

Independent testing data 37 74
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Features extraction and encoding

After the sequence extraction process, we focused on the analysis of sequence-based fea-
tures, and then each sequence fragment was encoded based on the investigated features. 
The following sequence-based features are widely employed for analysis and prediction 
of various types of PTM sites in the enormous amount of research [18, 20, 21]: amino 
acid composition (AAC), positively charged amino acid composition (PCAAC), amino 
acid pair composition (AAPC), BLOSUM62 scoring matrix (B62) and position-specific 
scoring matrix (PSSM). In this study, the phosphoglycerylated sequences should be 
transformed into numeric vectors based on the above features to construct a supervised 
learning model.

The composition of amino acid (AAC) is a widely-used feature for calculating the 
frequencies of each amino acid in a given protein sequence [22]. There are 21 types of 
amino acids that need to be considered for feature encoding, including 20 native and 1 
unnatural amino acid. The composition of amino acid pairs (AAPC) is another sequence 
based feature introduced by Park and Kanehisa [23], transforms a sequence fragment 
into a 441-dimensional vector, which includes 441 elements specifying the numbers of 
occurrences of amino acid dipeptides normalized with the total number of dipeptides 
in a sequence fragment. The scoring matrix for amino acid substitutions, also known 
as BLOSUM62 (B62) matrix, was built based on the frequencies of amino acid substi-
tutions in clusters of proteins that with less than 62% identity between two sequences. 
With reference to our previous work [24], each fragment was represented by a matrix 
of (2n + 1) × w elements, where 2n + 1 represents the length of the sequence fragment 
and w stands for 21 elements including 20 types of amino acids and one for the non-
existing residue. Position-specific scoring matrix (PSSM) is a matrix which contains the 
evolutionary information of considered proteins calculated from the probability matrix 
and the background probabilities. In this work, the PSSM profiles of each phosphoglyc-
erylated protein were derived by using PSI-BLAST search against the non-redundant 
database of protein sequences from NCBI [25, 26]. The matrix consists of (2n + 1) × 20 
elements where 2n + 1 represents the length of the sequence fragment and 20 stands for 
the sums of position specific scores for each type of amino acid.

In order to investigate the important features for the prediction of protein phospho-
glycerylation sites, the predictive power of each feature attribute is evaluated on the 
training data based on cross-validation. Additionally, to obtain the highest predictive 
accuracy, the hybridized-feature vectors were combined for improving predictive per-
formance on the classification between phosphoglycerylated and non-phosphoglycer-
ylated sites.

Selection of the best hybrid feature sets

F-score is most typically used for feature selection, which is defined as the weighted har-
monic mean of both the precision and the recall of the test [27]. There is an 842-dimen-
sional feature vector made up of sequential and statistical features, which was composed 
by three types of features including AAC, AAPC and PSSM. By referring to the CNN-
SuccSite method [20], all the features were sorted and ranked according to F-score on 
training dataset prior to construction of predictive models. Furthermore, the sequential 
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forward selection (SFS) [28] is a type of stepwise regression which involves beginning 
with an empty model and testing the addition of each variable, then adding the vari-
ables one at a time until none improves the model to a statistically significant extent. 
Finally, we determined the final combination of hybrid feature sets using SFS based on 
the F-score ranking results.

Construction of predictive models and performance measurement

In this study, the training dataset was composed of 89 phosphoglycerylation sites and 
178 non-phosphoglycerylation sites, which used for model construction by using 
WEKA software. Based on the binary classification, there were three types of learning 
algorithms such as LIBSVM [29], Random Forests (RF) [30] and Decision Tree (DT) 
[31], which were used to build the predictive models for discriminating the phospho-
glycerylation sites from non-phosphoglycerylation sites. For the LIBSVM classifier, the 
radial basis function (RBF) was adopted as the kernel function, which determined by 
a gamma parameter while the cost parameter was used to modulate the softness of the 
hyper-plane [29]. Random forests (RF) is an ensemble learning method for classifica-
tion and regression by combining multitude of decision trees, and each tree depends on 
the values of a random feature sets sampled independently [30]. Random forest is then 
considered as an appropriate classifier to handle moderately imbalanced dataset refer to 
previous study [32]. Decision tree (DT) is a tree-like model in which each internal node 
represents a “test” on an attribute, each branch represents the outcome of the test, and 
each leaf node represents a class label [31]. J48 is a Java implementation of C4.5 decision 
tree algorithm integrated in WEKA software, the constructed decision tree was used as 
the model for classification.

To avoid overfitting, five-fold cross-validation was organized to examine the capabil-
ity of the investigated features in classification between phosphoglycerylation sites and 
non-phosphoglycerylation sites, which was carried out for each feature set to evaluate 
the predictive performance. The training dataset was randomly split into five subgroups, 
the model was trained using 4 of the subgroups and the resulting model was validated on 
the remaining part of the data, and tests each subset only once, and then the process was 
repeated five times. The performance measure reported by five-fold cross-validation is 
then the average of the values computed in the loop. To estimate the predictive perfor-
mance of the model, the following measures were used, sensitivity (Sn), specificity (Sp), 
accuracy (Acc), and Matthews Correlation Coefficient (MCC):

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FP + TN + FN

MCC =
(TP × TN )− (FP × FN )

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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