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Abstract: gem-Hydrogenation of propargyl alcohol deriva-
tives with [CpXRu(MeCN)3]PF6 (Cp

X= substituted cyclopen-
tadienyl) as catalysts affords cationic pianostool ruthenium
carbene complexes which are so electrophilic that they attack
a tethered olefin to furnish cyclopentene products; cyclo-
propanation or metathesis do not compete with this novel
transformation. If the transient carbenes carry appropriate
propargylic substituents, however, they engage in ([2,3]-
sigmatropic) rearrangements to give enol esters (carbonates,
carbamates, sulfonates) or alkenyl halides. Both pathways are
unprecedented in the vast hydrogenation literature. The
proposed mechanistic scenarios are in line with labeling
experiments and spectroscopic data; most notably, PHIP
NMR spectroscopy (PHIP=parahydrogen induced polar-
ization) provides compelling evidence that the reactions are
indeed triggered by highly unorthodox gem-hydrogenation
events.

After more than a century of intense research into all
aspects of catalytic hydrogenation in academic and industrial
laboratories,[1–7] our group managed to find a fundamentally
new reactivity mode. gem-Hydrogenation is distinguished by
the delivery of both H-atoms of H2 to the same C-atom of
an alkyne with formation of a methylene group; the adjacent
position is concomitantly transformed into a discrete metal
carbene entity.[8] The original discovery was made using
[Cp*RuCl(cod)], [Cp*RuCl]4 or [Cp*Ru(MeCN)3]PF6 as
catalyst, which afford electrophilic pianostool ruthenium
half-sandwich complexes of the Fischer-carbene type.[9,10] A
second system employing [(NHC)(η6-cymene)MCl2] (M=

Ru, Os; NHC=N-heterocyclic carbene) is photochemically
driven; it opens an unconventional hydrogenative entry into
“second generation” Grubbs carbenes for use in olefin
metathesis.[11,12]

For the likely involvement of excited states, the mecha-
nism of this photochemical gem-hydrogenation reaction is

intricate and by no means fully understood. In contrast,
combined experimental, spectroscopic and computational
studies allow a fairly detailed picture to be drawn of the way
how the [Cp*Ru]-based catalysts exert their function
(Scheme 1).[8,10] The ruthenium atom serves as a carbophilic
Lewis acid that renders the bound alkyne in a loaded
complex of type A[13] sufficiently activated for a first hydro-
gen transfer from H2 initially ligated as σ-complex.[10,14]

Either end of the resulting metallacyclopropene B is then
capable of accepting the second H-atom: whereas delivery
to the Cα-atom ultimately affords the corresponding trans-
alkene (B!E!F),[14] transfer to Cβ completes the actual
gem-hydrogenation event (B!C). For a regular internal
alkyne, these processes have similar barriers and therefore
usually run in parallel;[10] substituents on the triple bond or
at the propargylic position, however, can provide sufficient
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Scheme 1. Mechanism of the innately intertwined trans-hydrogenation
and gem-hydrogenation of internal alkynes; the dotted lines indicate
those steps that need to be blocked or outperformed downstream of
gem-hydrogenation in order to harness genuine carbene reactivity;
Cp*=pentamethylcyclopentadienyl.
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bias for gem-hydrogenation to become the predominant or
even exclusive pathway.

The ability to generate pianostool ruthenium carbenes C
in situ by catalytic hydrogenation is enabling; it allowed us
to discover entirely new transformations, including hydro-
genative cyclopropanation, hydrogenative metathesis, vari-
ous hydrogenative heterocycle syntheses, and hydrogenative
C� H insertion.[10,15–18] Except for a few cases, these reactions
were effected with [Cp*RuCl]4 as the catalyst,

[19] which is
commercial and easy to use. Yet, NMR data clearly showed
that other (substituted) cyclopentadienyl rings, which are
less electron-rich than Cp*, favor gem-hydrogenation over

Scheme 2. Hydrogenative cyclopropanation versus hydrogenative cyclo-
isomerization (C3 (10 mol%), CH2Cl2, RT).

Scheme 3. Control experiments.

Scheme 4. Use of pH2 proves the formation of a chiral-at-metal
ruthenium carbene complex by alkyne gem-hydrogenation under
catalytic conditions; the excerpts show the hyperpolarized signals in
the methylene region (1.9-3.7 ppm) after excitation with a π/4 pulse
(top) and after using an OPSY filter (bottom),[30] which are attributed to
complex 14a formed by gem-hydrogenation.

Scheme 5. Tentative mechanism of the hydrogenative cycloisomeriza-
tion (arbitrary numbering).
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the competing trans-hydrogenation to a larger extent and
hence likely provide additional opportunities.[20,21] As out-
lined below, this is indeed the case.

Reactions of metal carbenes with olefins other than
cyclopropanation or metathesis are exceedingly rare.[22,23]

While gem-hydrogenation of enyne 1a with complex
[Cp*RuCl]4 (C1) afforded the expected cyclopropane 3 in
high yield,[15,17] switch to the cationic precatalyst [Cp*Ru-
(MeCN)3]PF6 (C2) led to a surprisingly different result in
that the cyclopentene derivative 4a was formed as the major
product (3:4a=18:82, NMR). The outcome could be further
optimized by recourse to the even less electron rich
complexes [CpRu(MeCN)3]PF6 (C3)[24] or [CpTRu-
(MeCN)3]PF6 (C4),

[25] in which the donor ability of the
cyclopentadienyl ligand is reduced by conjugation to an
ester substituent; their use allows cyclopropanation to be
completely suppressed and product 4a to be isolated in
analytically pure form in 93% yield. The additional exam-
ples shown in Scheme 2 illustrate the scope.

Since we are unaware of any precedent, several control
experiments were carried out to gain insights into the
mechanism of this catalytic carbocycle synthesis (Scheme 3).
First, it was shown that cyclopentene 4a is not a secondary
product derived from cyclopropane 3 by downstream ring-
opening: no evolution was observed and the compound
recovered unchanged in 96% yield after 18 h reaction time.
As the molecular formula of 4a suggests, cyclopentene
formation proceeds only in the presence H2; under Ar
atmosphere, enyne 1a was slowly converted into a complex
mixture, from which only cycloheptadiene 11 could be
isolated and characterized. It is reasonable to assume that
this compound is the result of π-acid catalysis,[26] in which

coordination of the [CpRu]+ fragment to the triple bond
engenders an outer-sphere attack by the tethered alkene
moiety. The resulting homoallyl cation F is one resonance
extreme of a multi-faceted non-classical carbocation/carbene
intermediate that stabilizes itself, inter alia, in form of
product 11.[27,28] Additional control experiments showed that
the silyl ether in 1a also plays an important role, in that the
analogous methyl ether derivative 1d gave the cyclohexene
derivative 12 as the major product admixed with cyclo-
pentene 4d.[29] Particularly relevant is the outcome of the
reaction of [D]-1b labeled at the internal position of the
olefin, which furnished product [D]-4b, in which the label
has migrated by one positon to the C-atom derived from the
olefin terminus; within the error bar of 1H NMR (ca. �2%),
no deuterium is lost during this 1,2-shift.

All attempts to characterize the putative intermediate 2
derived from 1 (or related enynes) by spectroscopic means
were to no avail. Therefore, indirect evidence was sought to
support the notion that the reaction is triggered by gem-
hydrogenation. To this end, compound 13a devoid of the
tethered olefin serving as the trap for the emerging cationic
carbene was hydrogenated using parahydrogen (pH2) and
the reaction monitored by PHIP NMR spectroscopy
(PHIP=parahydrogen induced polarization),[31–33] which is
known to be exquisitely sensitive and has proven highly
informative during our previous investigations.[9,10,20] As
expected, the characteristic hyperpolarized signals of a
methylene group formed by regioselective gem-hydrogena-
tion were detected when the reaction was performed with
either catalytic [CpRu(MeCN)3]PF6 (C3, see the Supporting
Information) or the ester-bearing complex C5[34] (Scheme 4).
The distinctive “down-up” pattern of the antiphase signals
proves the methylene character of the site formed in the
actual hydrogenation event. For the underlying physics,[31–33]

this spectroscopic fingerprint implies that both hydrogen
atoms derive from the same molecule of H2 and must have
been transferred in an (essentially) concerted step. More-
over, the large 2J coupling constant shows that the two H-
atoms are diastereotopic and the adjacent carbene center of
14a hence chiral-at-metal. This situation is best explained by
assuming a donor/acceptor interaction between the silyl
ether and the ruthenium center that locks the reactive
intermediate in form of a cyclic array and prevents free
rotation about the newly formed single bond from
occurring.[35] Additional information was gained when the
PHIP spectra were “cleared” by application of the OPSY
pulse sequence (OPSY=only parahydrogen
spectroscopy).[30] A notably better signal-to-noise ratio was
observed with C5 as catalyst, which suggests that the ester
substituent on the ancillary cyclopentadienyl ring renders
the corresponding cationic pianostool carbene intermediate
14a somewhat more stable and hence longer-lived on the
NMR timescale than that derived from the parent complex
[CpRu(MeCN)3]PF6 (C3) (see the Supporting Information),
perhaps as a result of a stronger O···Ru interaction.[36]

Based on these experimental data, we propose that the
hydrogenative cyclopentene synthesis commences with for-
mation of a ruthenium carbene intermediate G that is highly
electrophilic by virtue of the positive charge and the fairly

Scheme 6. Hydrogenative rearrangements; unless stated otherwise, all
reactions were performed with C5 as the catalyst; [a] with C3 as the
catalyst; [b] with 20 mol% of C3; [c] yield of the pure E-isomer after flash
chromatography; E:Z=7:3 (crude product).
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poor electron donor ligands that it carries (Cp or CpCOOMe

instead of Cp*; R3SiO- instead of MeO- as the steering
substituent) (Scheme 5).[20] Previous computations at the
CCSD(T)/def2-TZVPP level of theory showed that piano-
stool ruthenium carbene complexes invariably react with
tethered olefins to give “kite-shaped” metallacycles of type
H in the first place, in which all three C-atoms entertain
bonding interactions with the metal;[17] in the present case,
formation of such an intermediate comes along with
delocalization of the positive charge.[37] As this intermediate
evolves and a Ru� C2 bond is forming, the H-atom is forced
to migrate to the adjacent terminal position, as proven by
the labeling experiment. This 1,2-H shift can formally be
rationalized by considering carbocation H’, which, however,
must not be mistaken for a discrete intermediate but only
represents a resonance extreme of the Lewis structure.[38]

Decoordination of the metal fragment from I releases the
product and closes the catalytic cycle. The overall outcome
likely reflects the kinetic preference for the formation of a

five-membered ring by 5-exo-trig cyclization, which has also
been observed in related transformations.[39]

Additional evidence for the intervention of an excep-
tionally electrophilic intermediate comes from some of the
limitations encountered when exploring the scope of the
reaction. It is pointed out that all successful examples
compiled in Scheme 2 comprise a carbocyclic ring formed by
gem-hydrogenation/cycloisomerization; actually, placement
of an oxygen or nitrogen linker in between the alkyne and
alkene site in a substrate of type 1 resulted in decomposi-
tion. Though tentative, it is reasonable to assume that the
presence of such innately nucleophilic sites adjacent to the
emerging electrophilic carbene might explain the failure.
Conversely, one could perceive opportunities to trap the
putative reactive intermediate by properly placed substitu-
ents in a productive manner. In line with this notion,
hydrogenation of the propargylic acetate derivative 15a,
preferentially with the aid of C5 as catalyst, cleanly
furnished the corresponding enol acetate 17a as the result of

Figure 1. Excerpt of the OPSY NMR spectra of reaction mixtures derived from substrates of type 15, which invariably show that the catalytic
formation of pianostool ruthenium carbenes by gem-hydrogenation precedes [2,3]-sigmatropic rearrangement or cycloisomerization.
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a [2,3]-sigmatropic rearrangement of the transient cationic
ruthenium carbene intermediate 16a (Scheme 6).[40–42] The
reaction scaled well (89%, 1.47 g of product) and proved
more flexible with regard to the steering substituent (ether,
silyl ether, acetal) than the hydrogenative cycloisomerization
outlined above (cf. 17a–d). Moreover, groups other than
carboxylic acid esters are equally prone to hydrogenative
rearrangement, including carbonates (20a,b), carbamates
(21), and a weakly nucleophilic sulfonate (22). Even a
propargylic bromide could be engaged in an analogous 1,2-
shift without competing hydrogenolytic cleavage, as illus-
trated by the formation of alkenyl bromide 23, although the
corresponding chloride (unreactive) and iodide (decomposi-
tion) proved inadequate. In line with earlier results on
hydrogenative heterocycle syntheses,[16] a substrate bearing a
malonate terminus readily cycloisomerized to the trisubsti-
tuted furan derivative 25 by attack of the ester carbonyl
group onto the electrophilic carbene species. Attempted
transpositions of a propargylic thioether, silane, or phospho-
nate, however, basically met with failure.

Once again, PHIP spectra provide compelling evidence
for gem-hydrogenation as the decisive trigger and hence
help to rule other conceivable scenarios out.[43] Figure 1
shows the relevant methylene region of the OPSY spectra
recorded upon hydrogenation of a set of substrates with C5
as the catalyst: in each case, the characteristic PHIP-
enhanced AB-pattern of the CH2-group of a reactive
intermediate of type 16 was detected, which derives from
geminal delivery of both H-atoms of H2 to the same C-atom
of the corresponding alkyne substrate 15. This observation
also implies that gem-hydrogenation must be remarkably
facile and that the turnover-limiting step of the catalytic
transformation lies downstream of carbene formation.

In summary, two unprecedented hydrogenation reac-
tions are described, which rely on the ability of [CpXRu]-
complexes to catalyze geminal transfer of H2 to a triple bond
with formation of a discrete ruthenium pianostool carbene
flanked by a methylene group. Upon deliberate upregula-
tion of the electrophilicity by proper choice of the ancillary
CpX ligand on a cationic ruthenium fragment, these reactive
intermediates do not engage a tethered alkene in cyclo-
propanation or metathesis any longer, as previously de-
scribed by our group using [Cp*RuCl]4 as the catalyst

[15,17]

but lead to cycloisomerization. Alternatively, polar substitu-
ents at the propargylic position are able to migrate onto the
carbene site to give valuable enol ester or alkenyl halide
derivatives. These new transformations increase the portfo-
lio of gem-hydrogenation and encourage further investiga-
tions into this perplexing yet arguably enabling mode of
hydrogen transfer and orthogonal gateway to metal carbene
chemistry.
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