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Several domains of cognitive function, e.g., verbal memory, information processing,

fluency, attention, and executive function are impaired in patients with schizophrenia.

Cognitive impairments in schizophrenia have attracted interests as a treatment target,

because they are considered to greatly affect functional outcome. Electrophysiological

markers, including electroencephalogram (EEG), particularly, event-related potentials,

have contributed to psychiatric research and clinical practice. In this review, we provide

a summary of studies relating electrophysiological findings to cognitive performance in

schizophrenia. Electrophysiological indices may provide an objective marker of cognitive

processes, contributing to the development of effective interventions to improve cognitive

and social outcomes. Further efforts to understand biological mechanisms of cognitive

disturbances, and develop effective therapeutics are warranted.
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INTRODUCTION

Cognitive impairments are considered as a fundamental feature of schizophrenia (1). Patients with
the illness present disturbances across several cognitive domains, such as executive function, some
types of memory, attention, fluency, and information processing/speed (2, 3). Cognitive function
predicts social function more accurately than psychotic symptoms, and has been drawing attention
as target of treatment (4, 5).

TheMeasurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)
Consensus Cognitive Battery (MCCB) (6) and the Brief Assessment of Cognition in Schizophrenia
(BACS) (7) have been developed to evaluate disturbances of cognitive function in schizophrenia.
Also, as an interview-based multidimensional assessment tool of social function, the Specific Level
of Functioning Scale (SLOF) has been implemented (8). In fact, social functioning, as measured by
the SLOF, has been shown to be correlated with cognitive function, as measured by the BACS in
patients with schizophrenia (9).

There is evidence for the role of electrophysiological measures as an objective marker of
neuropsychological performance (10–13). In fact, electrophysiological responses generally precede
behavior-based cognitive performances, and are also useful to predict treatment outcome regarding
cognitive disturbances (10, 14, 15). This paper provides selective reviews of studies on the
relationships among cognitive function, electrophysiological findings, and treatment response in
patients with schizophrenia.
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ELECTROPHYSIOLOGICAL EVIDENCE IN

SCHIZOPHRENIA

Spontaneous Electroencephalogram (EEG)
In general, functional neuroimaging techniques measuring blood
flow and metabolism, such as functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and
Single photon emission computed tomography (SPECT) may
not directly differentiate between activation and inhibition of
a specific brain region (16). On the other hand, EEG consists
of components of electrical activities that are inhibitory (e.g.,
slow “delta” frequencies), excitatory (e.g., fast “beta” frequencies)
or steady-state (mid-range “theta” and “alpha” frequencies) in
nature (16). Also, EEG has an advantage in terms of time
resolution compared to other techniques to evaluate brain
functions.

Imaging of electrophysiological activity, such as EEG,
is feasible and cost-effective. For example, Pascual-Marqui
et al. developed the low-resolution brain electromagnetic
tomography (LORETA) (16), which is a source localization
analytic estimator. The purpose of current source localization
is to overcome the volume conductance problem in EEG
analyses and cope with the reference confounding effects (16).
Neuroleptic-naïve patients with first-episode schizophrenia have
been reported to demonstrate hyperactivity of delta band
in the frontal-prefrontal area and hypoactivity of middle
range band (theta and alpha) in the left temporal parietal
area by means of LORETA (16). These findings support
the concept that cognitive disturbances of schizophrenia are
generated by inhibition of frontal and left temporal areas
(17).

Functional deviations of frontal lobes are reflected by
disturbances of executive function and working memory in
schizophrenia (18, 19). In fact, a meta-analysis of studies
using fMRI and PET reports reduced activation in dorsolateral
prefrontal cortex and anterior cingulate cortex during executive
functioning task performance in patients with schizophrenia
(18). The dysfunction related to auditory verbal hallucinations
(20) is consistent with the role for the left temporal lobe in
auditory perception and language processing (21, 22).

Inhibited activities of the left temporal area in schizophrenia
are also demonstrated by using PET (23). Further, dysfunction of
fronto-temporal connectivity has been reported in schizophrenia
(24), consistent with Fletcher et al. suggesting the role
for this anatomical complex in the psychopathology of
schizophrenia (17). Accordingly, an fMRI study reported
the relation of fronto-temporal connectivity with cognitive
functions, including working memory (25). The reduction of
blood flow and metabolism in the frontal and left temporal
areas in schizophrenia was supported by Pascual-Marqui et al.
(16) who found inhibition of electrical activities in these brain
regions.

On the other hand, there is a report that mid-fast band
frequencies were not altered in medicated-free patients with
schizophrenia (26), although delta band activities were increased.
In this line, an increase in the delta activity was noted in frontal
areas, left inferior temporal gyrus, and parahippocampal gyrus

of neuroleptic-naïve patients with schizophrenia, as revealed by
LORETA (27).

Event-Related Potentials
Event-related potentials (ERPs) are linked in time with physical
and mental events, and are typically extracted from the
scalp-recorded EEG by means of signal averaging (28). ERP
components, such as P50, mismatch negativity (MMN), and
P300, provide neural activities associated with sensory-perceptual
and cognitive events in the order of milli-seconds (29). P50 and
MMN reflects attention-independent (pre-attentive) automatic
information processes, while P300 has been used as a measure
of attentive information processes (30).

P50 is a pre-attentional component recorded about 50ms after
the presentation of an auditory stimulus in the conditioning-
testing paradigm. Its amplitude is suppressed when a second click
sound is presented 500ms after an initial click (31). The P50
suppression is thought to reflect a sensory gating mechanism
aimed at protecting against information overload (32). A meta-
analysis study has reported robust P50 suppression deficits in
schizophrenia (33). Specifically, deficits of P50 suppression have
been linked to poor performance on tests of cognitive domains,
such as attention (34–36), working memory (11, 36), processing
speed (11, 34), and executive function (35). These associations
suggest that impaired P50 sensory gating provides a targets of
interventions to alleviate cognitive disturbances of schizophrenia
(11).

MMN is typically recorded in the condition where a subject
is instructed to divert attention from stimuli generated by the
auditory oddball task (37). MMN is generated when a stimulus
violates the invariance or regularity of the recent auditory past.
For example, MMN is recorded when an deviant stimulus that
differs in frequency, duration, intensity, or location is presented
among repeatedly presented standard stimuli (38). MMN is
considered to provide an index of (1) auditory sensory or echoic
memory, and (2) context-dependent information processing at
the level of the primary and secondary auditory cortices (38).
Parameters of MMN, e.g., amplitudes and latencies, are thought
to reflect the first step in a chain of events leading to the conscious
detection of differences between auditory stimuli and variance in
the auditory environment (38).

Reduction ofMMN amplitudes in patients with schizophrenia
shows a large effect size as demonstrated by meta-analysis (38).
Specifically, patients with chronic schizophrenia show a decrease
in MMN current density in the right medial frontal gyrus,
right cingulate gyrus, and right paracentral lobule (39). Altered
MMN amplitudes have been associated with impairment of
cognitive functions, such as attention (12, 40, 41), processing
speed (41, 42), verbal learning (40, 43), verbal fluency (44), and
executive function (42). Also, its amplitudes have been linked to
functional outcomes (45–47). Overall, pre-attentive information
processes serve as a gateway to higher cognitive and psychosocial
functioning (12). Further, the ability ofMMN to reflect functional
outcomes have been reported to be better than those of behavior-
based cognitive performances and social cognition (15). These
considerations further support the utility of MMN as a marker
of treatment effects on social functioning.
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P300 is typically recorded when a subject is required to pay
attention to infrequent stimuli in an auditory oddball task (48).
Amplitudes of P300 waveforms, thought to reflect cognitive
processes such as directed attention and the contextual updating
of working memory (31), are reduced, and the latency of P300
are delayed in patient with schizophrenia (33). Altered P300
activities have been reported to correlate with clinical symptoms
of schizophrenia (37). By means of LORETA, current sources of
P300 were estimated to reside in the bilateral medial frontal and
medial parietal cortex, bilateral superior temporal gyrus, right
temporo-parietal junction, and left lateral prefrontal cortex (37).

P300 amplitudes have been shown to positively correlate with
performance on tests of verbal learning (49), organization and
discriminability of memory (13), attention (50), verbal fluency
(49), and executive function (49). Also, prolonged latency of
P300 has been associated with performance on tests of verbal
learning (13) and verbal fluency (51). It is important that these
domains of cognition are related with functional capacity and
real-world functions (9, 52). Further, a correlation has been
reported between P300 amplitudes and functional capacity (53).
These considerations support the potential utility of P300 as a
biomarker to predict treatment response (53).

ELECTROPHYSIOLOGICAL CHANGES

DURING TREATMENT

Spontaneous EEG
Using above-mentioned electrophysiological markers, some
studies have reported the effect of treatment on cognitive
disturbances of schizophrenia. Repetitive transcranial magnetic
stimulation produced the following changes in patients with
schizophrenia (54); (1) an increase in delta band activities
in bilateral anterior cingulate gyrus, (2) a decrease in beta-
1 and beta-3 band in the middle temporal lobe ipsilateral to
the site of stimulation, and (3) an increase in beta-2 band in
the middle temporal and inferior parietal lobule on the right
side. In the same study (54), brain metabolism using 18FDG-
PET was simultaneously measured. While the change of current
density of beta bands activities was in accordance with the
PET findings, that of delta band was not correlated with brain
metabolism (54).

ERPs
Using traditional ERP methods, some authors have investigated
the effect of atypical antipsychotic drugs on cognitive function
in schizophrenia. As to P50 suppression, treatment with
quetiapine of antipsychotic-naïve first-episode patients improved
the sensory gating deficits (55). In addition, some atypical
antipsychotics, such as clozapine (56, 57) and risperidone (58),
showed efficacy for the recovery of P50 suppression.

In treatment studies for the deficits of MMN in schizophrenia,
aripiprazole has been reported to increaseMMN amplitudes (59).
On the other hand, other atypical antipsychotic drugs, such as
clozapine (60), risperidone (61), and olanzapine (62) have been
shown not to affect MMN amplitudes. Further study on the
ability of medication to alleviate altered MMN parameters in the
illness is warranted.

In the P300 study, a controlled double-blind trial investigated
the effect of clozapine or haloperidol on ERPs, including P300
and MMN, in chronic schizophrenia (60). Treatment with
clozapine, but not haloperidol was associated with an increase
in P300 amplitudes (60). In another study, clozapine similarly
increased P300 amplitudes, and also enhanced performance on
working memory tasks (63). On the other hand, the effect
of olanzapine on P300 has not been consistent (62, 64–66).
Perospirone did not significantly affect P300 in schizophrenia
(67).

Using three dimensional images of current density of ERPs in
the brain, we reported the ability of treatment with olanzapine
for 6 months to enhance P300 current density in the left STG,
yielding a distribution pattern of the current density similar to
that in healthy control subjects (68). A later study confirmed
treatment with olanzapine was associated with increase of P300
current source density in the left STG (69). Importantly, the
degree of increase of P300 in the left STG was positively
correlated with improvement in negative symptoms and verbal
learning memory, while improvement of quality of life was
associated with an increase of P300 in the left prefrontal cortex
(69). On the other hand, treatment with perospirone was found
to improve P300 current density in the left prefrontal cortex,
which was related with improvement of daily-living skills, as
measured by the script task (70). These findings suggest LORETA
imaging of P300 is a useful indicator of treatment response in
some aspects of the psychopathology and functional outcomes of
schizophrenia.

CLINICAL IMPLICATIONS

Early intervention into schizophrenia and related conditions
has been suggested to improve the prognosis of patients.
Accordingly, shorter duration of untreated psychosis has
been associated with better long term outcomes (71).
Electrophysiological measures may be useful to evaluate the risk
for developing psychosis. For example, P300 amplitudes are
reduced in the prodromal stage (72, 73). Specifically, treatment
with perospirone in an ultra-high risk case immediately before
the onset of schizophrenia was shown to “normalize” cognitive
function and social outcomes 3 years later. Importantly these
neuropsychological and clinical events were preceded by
improvement of P300 amplitudes (14). Also, MMN amplitudes
have been shown to identify high-risk individuals who
later develop overt schizophrenia (44, 74). Taken together,
electrophysiological indices may provide a sensitive marker to
evaluate treatment effects, including those related to cognitive
function, and in some cases, predict the risk of psychosis.

CONCLUSIONS

In this review, we have provided a summary of studies
relating electrophysiological findings to cognitive performance
in schizophrenia. Electrophysiological indices may provide an
objective marker of cognitive processes, contributing to the
development of effective treatment of cognitive and social
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outcomes. Further efforts to understand electrophysiological
mechanisms of cognitive disturbances, and develop effective
therapeutics are warranted.
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