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Cognitive processes such as decision-making, rate calculation and planning

require an accurate estimation of durations in the supra-second range—

interval timing. In addition to being accurate, interval timing is scale invar-

iant: the time-estimation errors are proportional to the estimated duration.

The origin and mechanisms of this fundamental property are unknown.

We discuss the computational properties of a circuit consisting of a large

number of (input) neural oscillators projecting on a small number of

(output) coincidence detector neurons, which allows time to be coded by

the pattern of coincidental activation of its inputs. We showed analytically

and checked numerically that time-scale invariance emerges from the neural

noise. In particular, we found that errors or noise during storing or retrieving

information regarding the memorized criterion time produce symmetric,

Gaussian-like output whose width increases linearly with the criterion time. In

contrast, frequency variability produces an asymmetric, long-tailed Gaussian-

like output, that also obeys scale invariant property. In this architecture,

time-scale invariance depends neither on the details of the input population,

nor on the distribution probability of noise.
1. Introduction
The perception and use of durations in the seconds-to-hours range (interval

timing) is essential for survival and adaptation, and is critical for fundamental

cognitive processes such as decision-making, rate calculation and planning of

action [1]. The classic interval timing paradigm is the fixed-interval (FI) pro-

cedure in which a subject’s behaviour is reinforced for the first response (e.g.

lever press) made after a pre-programmed interval has elapsed since the pre-

vious reinforcement. Subjects trained on the FI procedure typically start

responding after a fixed proportion of the interval has elapsed despite the

absence of any external time cues. A widely used discrete-trial variant of FI pro-

cedure is the peak-interval (PI) procedure [2,3]. In the PI procedure, a stimulus

such as a tone or light is turned on to signal the beginning of the to-be-timed

interval and in a proportion of trials the subject’s first response after the cri-

terion time is reinforced. In the remainder of the trials, known as probe trials,

no reinforcement is given, and the stimulus remains on for about three times

the criterion time. The mean response rate over a very large number of trials

has a Gaussian shape whose peak measures the accuracy of criterion time esti-

mation and the spread of the timing function measures its precision. In the

vast majority of species, protocols and manipulations to date, interval timing

is both accurate and time-scale invariant, i.e. time-estimation errors increase lin-

early with the estimated duration [4–7] (figure 1). Accurate and time-scale

invariant interval timing was observed in many species [1,4] from invertebrates

to fish, birds and mammals such as rats [8] (figure 1a), mice [11] and humans

[9] (figure 1b). Time-scale invariance is stable over behavioural (figure 1b),

lesion [12], pharmacological [13,14] (figure 1c) and neurophysiological

manipulations [10] (figure 1d ).

One of the most influential interval timing paradigms assumes a pace-

maker–accumulator clock (pacemaker-counter) and was introduced by
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Figure 1. Accurate and time-scale invariant interval timing. (a) The response rate of rats timing a 30 s (left) or 90 s interval (right) overlap (centre) when the vertical axis is
normalized by the maximum response rate and the horizontal axis by the corresponding criterion time; redrawn from [8]. (b) Time-scale invariance in human subjects for 8
and 21 s criteria; redrawn from [9]. (c) Systemic cocaine (COC) administration speeds-up timing proportional (scalar) to the original criteria, 30 and 90 s; redrawn from [8]. (d )
The hemodynamic response associated with a subject’s active time reproduction scales with the timed criterion, 11 versus 17 s; redrawn from [10]. An important feature of the
output function is its asymmetry, which is clearly visible in (c). Although all output functions have a Gaussian-like shape they also present a long tail. (Online version in colour.)
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Treisman [15]. According to Treisman [15], the interval

timing mechanism that links internal clock to external behav-

iour also requires some kind of store of reference times and

some comparison mechanism for time judgement. The

model was rediscovered two decades later and became the

scalar expectancy theory (SET) [5,16]. SET also assumes that

interval timing emerges from the interaction of three abstract

blocks: clock, accumulator (working or short-term memory)

and comparator. The clock stage is a Poisson process whose

pulses are accumulated in the working memory until the

occurrence of an important event, such as reinforcement. At

the time of the reinforcement, the number of clock pulses

accumulated is transferred from the working (short-term)

memory and stored in a reference (or long-term) memory.

According to the SET, a response is produced by computing

the ratio between the value stored in the reference memory

and the current accumulator total. To account for the scalar

property of interval timing, i.e. the variability of responses

is roughly proportional to the peak time, Gibbon [17]

showed that a Poisson distribution for the accumulator

requires a time-dependent variance in the ’decision and

memory factors as well as in the internal clock. These

additional sources will be seen to dominate overall variance

in performance’ (p. 191), emphasizing the important role of

cognitive systems in time judgements. For such reasons,

SET was considered more a general theory of animal cogni-

tion than strictly a theory of animal timing behaviour [18].

Another influential interval timing model is the behaviour-

al timing (BeT) theory [19,20]. BeT assumes a ‘clock’ consisting

of a fixed sequence of states with the transition from one

state to the next driven by a Poisson pacemaker. Each state

is associated with different classes of behaviour, and the

theory claims these behaviours serve as discriminative
stimuli that set the occasion for appropriate operant responses

(although there is not a one-to-one correspondence between

a state and a class of behaviours). The added assumption

that pacemaker rate varies directly with reinforcement rate

allows the model to handle some experimental results not cov-

ered by SET, although it has failed some specific tests (see [21]

for a review).

A handful of neurobiologically inspired models explain

accurate timing and time-scale invariance as a property of the

information flow in the neural circuits [22,23]. Buonomano &

Merzenich [24] implemented a neural network model with

randomly connected circuits representing cortical layers 4

and 3 in order to mimic the temporal-discrimination task in

the tens to hundreds of milliseconds range. Durstewitz

hypothesized that the climbing rate of activity observed

experimentally, e.g. from thalamic neurons recordings [25],

may be involved in timing tasks [26]. Durstewitz [26] used

a single-cell computational model with a calcium-mediated

feedback loop that self-organizes into a biophysical configur-

ation which generates climbing activity. Leon & Shadlen [27]

suggested that the scalar timing of subsecond intervals may

also be addressed at the level of single neurons, though

how such a mechanism accounts for timing of supra-second

durations is unclear. A solution to this problem was offered

by Killeen & Taylor [28] who explained timing in terms of

information transfer between noisy counters, although the

biological mechanisms were not addressed.

Population clock models of timing are based on the repea-

table patterns of activity of a large neural network that allow

identification of elapsed time based on a ‘snapshot’ of neural

activity [29,30]. In all population clock models, timing is an

emergent property of the network in the sense that it relies

on the interaction between neurons to produce accurate
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Figure 2. The neurobiological structures involved in interval timing and the corresponding simplified SBF architecture. (a) Schematic of some neurobiological struc-
tures involved in interval timing. The colour-coded connectivities among different areas emphasize appropriate neuromodulatory pathways. The two main areas
involved in interval timing are frontal cortex and basal ganglia. (b) In our implementation of the SBF model, the states of the Nin cortical oscillators (input neurons)
at reinforcement time T are stored in the reference memory as a set of weights wi. During test trials, the working memory stores the state of FC oscillators vi(t) and,
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timing over a time-scale that far exceeds the longest firing

period of any individual neuron. The first population clock

model was proposed by Mauk and co-workers [7,31,32] in

the context of the cerebellum. Such models consist of possible

multiple layers of recurrently connected neural networks, i.e.

networks of all-to-all coupled neurons that make it possible

for a neuron to indirectly feedback onto itself [30]. Depending

on the coupling strengths, the recurrent neural networks can

self-maintain reproducible dynamic patterns of activity in

response to a certain input. Such autonomous and reproduci-

ble patterns of neural activity could offer a reliable model for

timing. Another advantage of the population clock models is

that for weak couplings the network cannot self-maintain

reproducible patterns of activity but instead produces

input-dependent patterns of activity. Such a model was

recently proposed for sensory timing [30]. Similar firing

rate models were used by Itskov et al. [33] to design a large

recurrently connected neural network that produced precise

interval timing. By balancing the contribution of the determi-

nistic and stochastic coupling strengths they showed that the

first layer of such a population clock model can produce

either a reproducible pattern of activity (associated with a

timing ‘task’) or desynchronized pattern of activity that

cannot keep track of long time-intervals (‘home cage’) [33].

The rate model of Itskov et al. [33] was also capable of extract-

ing accurate interval timing information from a second layer

with no recurrent excitation and only a global, non-specific

recurrent inhibition. The second layer was driven by both

the output of the previous layer (through sparse and

random connections) and noise [33].

Finally, a quite different solution was offered by Meck

and co-workers [4,34] (figure 2a), who proposed the striatal

beat frequency (SBF) in which timing is coded by the coinci-

dental activation of neurons, which produces firing beats

with periods spanning a much wider range of durations

than single neurons [35]. As Matell & Meck [34] suggested,

the interval timing could be the product of multiple and

complementary mechanisms. They suggested that the same
neuroantomical structure could use different mechanisms

for interval timing.

Here, we showed analytically that in the context of the

proposed SBF neural circuitry, time-scale invariance emerges

naturally from variability (noise) in models’ parameters. We

also showed that time-scale invariance is independent of

both the type of the input neuron and the probability distri-

bution or the sources of the noise. We found that the

criterion time noise produces a symmetric Gaussian output

that obeys scalar property. On the other hand, the frequency

noise produces an asymmetric Gaussian-like output with a

long tail that also obeys scalar property.
2. The striatal beat frequency model
(a) Neurobiological justification of a striatal beat

frequency model
Our paradigm for interval timing is inspired by the SBF

model [4,34], which assumes that durations are coded by

the coincidental activation of a large number of cortical

(input) neurons projecting onto spiny (output) neurons in

the striatum that selectively respond to particular reinforced

patterns [36–38] (figure 2a).

(i) Neural oscillators
A key assumption of the SBF model is the existence of a set of

neural oscillators able to provide the time base for the interval

timing network. There is strong experimental evidence that

oscillatory activity is a hallmark of neuronal activity in various

brain regions, including the olfactory bulb [39–41], thalamus

[42,43], hippocampus [44,45] and neocortex [46]. Cortical oscil-

lators in the alpha band (8–12 Hz [47,48]) were previously

considered as pacemakers for temporal accumulation [49], as

they reset upon occurrence of the to-be-remembered stimuli

[50]. In the SBF model, the neural oscillators are loosely

associated with the frontal cortex (FC; figure 2a).
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(ii) Working and long-term memories
Among the potential areas involved in storing brain’s states

related to salient features of stimuli in interval timing trials

are the hippocampus (see [51] and references therein) and

the striatum, which we mimic in our simplified neural

circuitry (figure 2a).

(iii) Coincidence detection with spiny neurons
Support for the involvement of the striato-frontal dopamin-

ergic system in timing comes from imaging studies in

humans [52–55], lesion studies in humans and rodents

[56,57], and drug studies in rodents [58,59] all pointing

towards the basal ganglia (BG) as having a central role in inter-

val timing (see also [60] and references therein). Striatal firing

patterns are peak-shaped around a trained criterion time, a pat-

tern consistent with substantial striatal involvement in interval

timing processes [61]. Lesions of striatum result in deficiencies

in both temporal-production and temporal-discrimination pro-

cedures [62]. There are also neurophysiological evidences that

striatum can engage reinforcement learning to perform pattern

comparisons (reviewed by Sutton & Barto [63]). Another

reason we ascribed the coincidence detection to medium

spiny neurons is due to their bistable property that permits

selective filtering of incoming information [64,65]. Each striatal

spiny neuron integrates a very large number of afferents

(between 10 000 and 30 000) [36,37,65], of which a vast majority

(� 72%) are cortical [47,66].

(iv) Biological noise and network activity
The activity of any biological neural network is inevitably

affected by different sources of noise, e.g. channel gating fluc-

tuations [67,68], noisy synaptic transmission [69] and

background network activity [70–72]. Single-cell recordings

support the hypothesis that irregular firing in cortical inter-

neurons is determined by the intrinsic stochastic properties

(channel noise) of individual neurons [73,74]. At the same

time, fluctuations in the presynaptic currents that drive corti-

cal spiking neurons have a significant contribution to the

large variability of the interspike intervals [75,76]. For

example, in spinal neurons, synaptic noise alone fully

accounts for output variability [75]. Additional variability

affects either the storage (writing) or retrieval (reading) of cri-

terion time to or from the memory [77,78]. Another source of

criterion time variability comes from considerations of how

animals are trained [79,80]. In this paper, we were not con-

cerned with the biophysical mechanisms that generated

irregular firing of cortical oscillators nor did we investigate

how reading/writing errors of criterion time happened. We

rather investigated whether the above assumed variabilities

in the SBF model’s parameters can produce accurate and

time-scale invariant interval timing.

(b) Numerical implementation of a striatal beat
frequency model

(i) Neural oscillators
Neurons that produce stable membrane potential oscillations

are mathematically described as limit cycle oscillators, i.e.

they pose a closed and stable phase space trajectory [81].

Because the oscillations repeat identically, it is often con-

venient to map the high-dimensional space of periodic

oscillators using a phase variable that continuously covers
the interval (0, 2p). Phase oscillator models have a series of

advantages: (i) they provide analytical insights into the

response of complex networks; (ii) any neural oscillator can

be reduced to a phase oscillator near a bifurcation point

[82]; and (iii) they allow numerical checks in a reasonable

time. All neurons operate near a bifurcation, i.e. a point

past which the neuron produces large membrane potential

excursions—called action potentials [81].

In this SBF-sin implementation, the cortical neurons,

presumably localized in the FC (figure 2a), are represented

by Nin (input) phase oscillators with intrinsic frequencies

fi(i ¼ 1, . . . , Nin) uniformly distributed over the interval

( fmin, fmax), projecting onto Nout (output) spiny neurons [34]

(figure 2b). A sine wave is the simplest possible phase oscillator

that mimics periodic transitions between hyperpolarized and

depolarized states observed in single-cell recordings. For

analytical purposes, the membrane potential of the ith cortical

neuron was approximated by a sine wave vi(t) ¼ acos(2pfit),
where a is the amplitude of oscillations. We also implemented

an SBF-ML network in which the input neurons are conduc-

tance-based Morris–Lecar (ML) model neurons with two

state variables: membrane potential and a slowly varying pot-

assium conductance [83,84] (see electronic supplementary

material, section A for detailed model equations).

(ii) Working and long-term memories
The memory of the criterion time T is numerically modelled

by the set of state parameters (or weights) wij that character-

ize the state of cortical oscillator i during the FI trial j. In our

implementation of the noiseless SBF-sin model, the weights

wij / viðTjÞ, where Tj is the stored value of the criterion

time T in the FI trial j. The state of FC oscillators i at the

reinforcement time Tj was implemented as the normalized

average over all memorized values Tj of the criterion

time: wi ¼
PNmem

j¼1 viðTjÞ=norm, where we used norm ¼

max
PNmem

j¼1 viðTjÞ
� �

� Nmem such that the normalized weight

is bounded jwij � 1 (figure 2b). We found no difference between

the response of the SBF model with the above weights or the

positively defined weight wi ¼
PNmem

j¼1 ð1þviðTjÞÞ=2 norm.

(iii) Coincidence detection with spiny neurons
The comparison between a stored representation of an event,

e.g. the set of the states of cortical oscillators at the reinforce-

ment (criterion) time wi, and the current state vi(t) of the same

cortical oscillators during the ongoing test trial is believed to

be distributed over many areas of the brain [85]. Based on

neurobiological data, in our implementation of the striato-

cortical interval timing network, we have a ratio of 1000 : 1

between the input (cortical) oscillators and output (spiny)

neurons in the BG (figure 2b). The output neurons, which

mimic the spiny neurons in the BG, act as coincidence detec-

tors: they fire when the pattern of activity (or the state of

cortical oscillators) wi(t) at the current time t matches the

memorized reference weights wi. Numerically, the coinci-

dence detection was modelled using the product of the two

sets of weights:

outðtÞ ¼
XNin

i¼1

wiviðtÞ: ð2:1Þ

The purpose of the coincidence detection given by equation

(2.1) is to implement a rule that produces a strong output
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when the two vectors wi and vi(t) coincide and a weaker

responses when they are dissimilar. Although there are

many choices, such as sigmoidal functions (which involve

numerically expensive calculations owing to exponential

functions involved), we opted for implementing the simplest

possible rule that would fulfil the above requirement, i.e. the

dot product of the vectors wi and vi(t). Without reducing the

generality of our approach, and in agreement with exper-

imental findings [66], for analytical analyses, we considered

only one output neuron (Nout ¼ 1) in equation (2.1).
(iv) Biological noise and network activity
Two sources of variability (noise) were considered in this SBF

implementation. (i) Frequency variability, which was mod-

elled by allowing the intrinsic frequencies fi to fluctuate

according to a specified probability density function pdff,

e.g. Gaussian, Poisson, etc. Computationally, the noise in

the firing frequency of the respective neurons was introduced

by varying either the frequency, fi (in the SBF-sin implemen-

tation), or the bias current Ibias required to bring the ML

neuron to the excitability threshold (in the SBF-ML

implementation). (ii) Memory variability was modelled by

allowing the criterion time T to be randomly distributed

according to a probability density function pdfT.
3. Results
(a) No time-scale invariance in a noiseless striatal beat

frequency model
In the absence of noise (variability) in the SBF-sin model, the

output given by equation (2.1) for Nout ¼ 1 is (see electronic

supplementary material, section B for detailed calculations):

out(tÞ ¼ cosða0ðt� TÞÞ sinðb0ðt� TÞÞ
2 sinðb0ðt� TÞ=NinÞ

; ð3:1Þ

where a0 ¼ p ( fmax þ fmin2 df ), b0 ¼ p ( fmax2 fmin), and

oscillators’ frequencies were equally spaced over the fre-

quency range [ fmin, fmax], i.e. fk ¼ fmin þ kdf with df ¼
( fmax2 fmin)/Nin and k ¼ 0, . . . , Nin2 1. The envelope of the

output function is given by the slowly oscillating function

sin(b0(t 2 T ))/(2sin(b0(t 2 T )/Nin)).
The width, sout, of the output function is determined

from the condition that the output function amplitude at

t ¼ T þ sout/2, i.e. out(t ¼ T þ sout/2), is half of its maxi-

mum possible amplitude, i.e. 1/2out(t ¼ T ). Based on

equation (3.1), we predicted theoretically that in the absence

of noise sout is independent of the criterion time and violates

time-scale invariance (see electronic supplementary material,

section B for detailed calculations).

To numerically verify the above predictions, the envelope

of the output function of a noise-free SBF-sin model was

fitted with a Gaussian whose mean and standard devia-

tions were contrasted against the theoretically predicted

values (figure 3a). The width of the envelope is constant

regardless of the criterion time and it matches the theoretical

prediction.

The above result regarding the emergence of time-scale

property from noise in the SBF-sin model can extend to any

type of input neuron. Indeed, according to Fourier’s theory,

any periodic train of action potentials can be decomposed

into discrete sine-wave components. It results that irrespective

of the type of input neuron, a noise-free SBF model cannot pro-

duce time-scale invariant outputs. We verified this prediction

by replacing the sine-wave oscillator inputs with biophysically

realistic noise-free ML neurons (figure 3b). Numerical simu-

lations confirmed that the envelope of the output function of

the SBF-ML model can be reasonably fitted by a Gaussian

(see [48,86,87]), but the width of the Gaussian output does

not increase with the timed interval (figure 3b), thus violating

the time-scale invariance (scalar property).

(b) Time-scale invariance emerges from criterion time
noise in the striatal beat frequency model

Many sources of noise (variability) may affect the functioning

of an interval timing network, such as small fluctuations in

the intrinsic frequencies of the inputs, and in the encoding

and retrieving the weights wi(T ) by the output neuron(s)

[34,35,86–88]. Here, we showed analytically that one noise

source is sufficient to produce time-scale invariance [34,48].

Without compromising generality, in the following, we exam-

ined the role of the variability in encoding and retrieval of the

criterion time by the output neuron(s). The cumulative effect

of all noise sources (trial-to-trial variability, neuromodulatory

inputs, etc.) on the memorized weights wi was modelled by
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the stochastic variable Tj distributed around T according to a

given pdfT. For Nout ¼ 1, the output function given by

equation (2.1) becomes (see electronic supplementary

material, section C for detailed calculations):

outðtÞ ¼ 1

2

XNin

i¼1

XNtrials

j¼1

cosð2p fiðt� TjÞÞ: ð3:2Þ

Based on the central limit theorem, the output function given

by equation (3.2), which is a sum of a (very) large number

Ntrials of stochastic variables Tj, is always a Gaussian, regard-

less of the pdfT of the criterion time. We used the estimated

value of stochastic output function given by equation (3.2)

and found that (see electronic supplementary material, sec-

tion C for detailed calculations): (i) the output function is

always Gaussian (based on the central limit theorem), (ii)

peaks at t0T ¼ T(1 þ gT) � T and (iii) the standard deviation

of the output function sout is proportional to the criterion

time T, i.e. obeys the scalar property.

(c) Particular case: infinite frequency range and time-
scale invariance in the presence of Gaussian noise
affecting the memorized criterion time

Although we already showed that the output function for the

SBF-sin model and arbitrary pdfT for the criterion time noise

is always Gaussian, produces accurate interval timing and

obeys scalar property, it is illuminating to grasp the meaning

of the theoretical coefficients in our general result by investi-

gating a biologically relevant particular case. If the criterion

time is affected by a Gaussian noise with zero mean and stan-

dard deviation sT, then one can show that (see electronic

supplementary material, section D for detailed calculations),

in the limit of a very large pool (theoretically infinite) of

inputs, the output function of the SBF-sin model is

outðtÞ ¼ 1

4TsT
ffiffiffiffiffiffi
2p
p e�ðt�TÞ2=2T2s2

T : ð3:3Þ

The output function given by equation (3.3) with the physically

realizable term centred at t ¼ T: (i) has a Gaussian (as predicted

by the central limit theorem), (ii) peaks at t ¼ T, i.e. produces

accurate timing and (iii) has a standard deviation

sout ¼ TsT ; ð3:4Þ

which obeys scalar property. We previously showed that for

arbitrary noise distributions affecting the criterion time, the
peak of the output function should be at t0T ¼ T(1þ gT). The

actual peak in the presence of the Gaussian noise is at t ¼ T,

which shows that in this particular case gT ¼ 0.

(d) Particular case: finite frequency range and time-
scale invariance in the presence of Gaussian noise
affecting the memorized criterion time

In our previous numerical implementations of the SBF model

[48,86,87], the frequency range was finite and coincides with

a band (8–12 Hz). Is the SBF model still performing accurate

and scalar interval timing under such a strong restriction? For

a finite range of frequencies ( fmin , f , fmax) with a very large

number of FC oscillators Nin, a more realistic estimation of

the output function from equation (3.2) is (see electronic

supplementary material, section E for detailed calculations):

outðtÞ � Erfð
ffiffiffi
2
p

p fmaxTsTÞ�Erfð
ffiffiffi
2
p

p fminTsTÞ
4TsT

ffiffiffiffiffiffi
2p
p e�ðt�TÞ2=2T2s2

T ;

ð3:5Þ

where Erf() is the error function. A major difference between

the equation (3.3), which is valid in the limit of an infinite

range of frequencies of the FC oscillators, and the equation

(3.5), which takes into account the fact that there is always

only a finite frequency range of FC oscillators, is the

frequency-dependent amplitude of the output function rep-

resented by the difference of the two Erf() functions.

Therefore, we proved that even for a finite frequency range

of the FC oscillators the output function given by equation

(3.5) is (i) Gaussian (ii) centred on the criterion time T, and

obeys scalar property with a width

sout ¼ Tsf : ð3:6Þ

We used the SBF-sin implementation to numerically verify

our theoretical prediction that sout ¼ Tsf over multiple trials

(runs) of this type of stochastic process and for different

values of T. The output functions (see continuous lines in

figure 4a) for T ¼ 10 s and T¼ 30 s are reasonably fitted by

Gaussian curves. Our numerical results show a linear relation-

ship between sout of the Gaussian fit of the output and T. We

found that the resultant slope of this linear relationship matched

the theoretical prediction given by sout ¼ Tsf . For example, for

sT ¼ 10% the average slope was 11.3%+4.5% with a coefficient

of determination of R2 ¼ 0.93, p , 1024. We also found that

for the SBF-ML the width of the Gaussian envelope increases
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linearly with the criterion time (figure 4b). For example, figure

4c shows the slope of the standard deviation sout versus cri-

terion time for different values of the standard deviation of

the Gaussian noise. Figure 4c shows not only that the scalar

property is valid, but it also shows that sout / sTT as we pre-

dicted theoretically. Indeed, for sT ¼ 0.05 the numerically

estimated proportionality constant is 0.068 (filled squares in

figure 4c, R2 ¼ 0.97) for sT ¼ 0.1 the slope is 0.129 (filled circles

in figure 4c, R2 ¼ 0.96) and for sT ¼ 0.2 the slope is 0.25 (filled

triangles in figure 4c, R2 ¼ 0.96).

(e) Time-scale invariance emerges from frequency
variance during probe trials in the striatal beat
frequency model

In addition to memory variance, frequency fluctuations owing

to stochastic channel noise or background networks activity

has received considerable attention. Here, we considered only

frequency variability during the probe trial and assumed that

there was no frequency variability during the FI procedure

while the weights wi were memorized. We also assumed that

there is no variability in the memorized criterion time, because

its effect on interval timing was already addressed in §3d.

The cumulative effect of all noise sources on the firing

frequencies during the probe trials was modelled by the stochas-

tic variable fij distributed around the frequency fi according to a

given pdff. Based on equation (2.1) with Nout ¼ 1, the output

function term centred around t ¼ T becomes (see electronic

supplementary material, section F for detailed calculations):

outðtÞ ¼ 1

2

XNin

i¼1

XNtrials

j¼1

cosð2pð fijt� fiTÞÞ: ð3:7Þ

Based on the central limit theorem, the output function given

by equation (3.7), which is the sum of a (very) large number

Ntrials of stochastic variables fij, is always a Gaussian, regard-

less of the pdff. We used the average value of the stochastic

equation (3.7) to estimate the output function and found

that (see electronic supplementary material, section F for

detailed calculations) it is always: (i) Gaussian (based on

the central limit theorem), (ii) peaks at t0f ¼ T/(1 þ gf ) � T
and (iii) has a standard deviation sout that increases linearly

with the criterion time T

sout ¼ Tð1þ gTÞsf ; ð3:8Þ

i.e. obeys scalar property.

( f ) Particular case: infinite frequency range and time-
scale invariance in the presence of Gaussian noise
affecting oscillators’ frequencies during probe trials

As in §2e, we used a Gaussian distribution pdff to explicitly

compute the theoretical coefficients in the above general

result. Briefly, by replacing the stochastic frequencies fij with

an appropriate Gaussian distribution fi(1þ Gauss(0, sf)j),

we found that the output function is (see electronic

supplementary material, section G for detailed calculations):

outðtÞ ¼ e�ðT=t�1Þ2=2s2
f

4sf t
ffiffiffiffiffiffi
2p
p ; ð3:9Þ

which looks like a Gaussian with a very long tail (figure 5a)

and peaks at t0f ¼ 2T=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

f

q
Þ. The skewness of the
output function increases with the standard deviation of

the frequency noise sf. For t , t0f, the half-width Dt1

increases with the standard deviation of the frequency

noise sf, although at a much slower rate than Dt2 for t . t0f

(figure 5b). This fact is reflected in a faster than linear increase

of the Dt2/Dt1 against sf (figure 5c). The quadratic fit over the

entire sf [ [0, 1] shown in figure 5c is given by Dt2/Dt1 ¼

(0.902+0.007) þ (3.74+0.03)sf þ (21.27+0.03)sf
2 with an

adjusted R2 ¼ 0.999. For reasonable standard deviation

of the frequency noise sf , 0.5, we found that Dt2=Dt1 ¼
ð0:967 + 0:003Þ þ ð3:03 + 0:01Þsf with an adjusted R2 ¼

0.999. As the output function given by equation (3.9) is no

longer symmetric with respect to the peak located at

t0f ¼ 2T=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

f

q
Þ, the width of the output function is

given sout ¼ t0f ðx2 � x1Þ, where x1 and x2 are the solutions

of the half-width equation out(x) ¼ 1/2out(1). We found

(figure 5d) that the width of the output function sout ¼
ð�0:025 + 0:002Þ þ ð2:707 + 0:009Þsf þ ð�0:974 + 0:008Þs2

f
with an adjusted R2 ¼ 0.9999 over the entire range sf [ [0, 1].

A reasonable approximation for standard deviation of the

frequency noise sf , 0.5 is linear sout ¼ (0.019+0.003) þ
(2.20+0.01)sf with an adjusted R2 ¼ 0.999. As a result, in

the presence of frequency variability during probe trials, we

predict theoretically that the SBF model (i) produces a

Gaussian-like output function with a long tail, (ii) produces

accurate interval timing (the output function is centred on

t0f ¼ 2T=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

f

q
Þ � T) and (iii) obeys scalar property

with sout / Tsf . We also noted that the peak time predicted

for an arbitrary pdff, i.e. t0f ¼ T/(1 þ gf) is identical with the

peak time in the particular case of Gaussian noise,

i.e. t0f ¼ 2T=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

f

q
Þ if gf ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

f

q
� 1Þ=2 � s2

f

for sf ,, 1.
(g) Particular case: finite frequency range and time-
scale invariance in the presence of Gaussian noise
affecting oscillators’ frequencies during probe trials

For a finite range of frequencies ( fmin , f , fmax) with a

very large number of FC oscillators Nin, a more realistic

estimation of the output function from equation (3.7) is

(see electronic supplementary material, section H for detailed

calculations):

outðtÞ �
Erfð

ffiffiffi
2
p

p fmaxsf tÞ � Erfð
ffiffiffi
2
p

p fminsf tÞ
4
ffiffiffiffiffiffi
2p
p

sf t
e�ðt�TÞ2=2s2

f t2

:

ð3:10Þ

A significant difference between equation (3.9), which is valid

in the limit of an infinite frequency range of the FC oscillators,

and equation (3.10), which takes into consideration that there

is always only a finite frequency range of the FC oscillators, is

the frequency-dependent factor in the output function rep-

resented by the difference of the two Erf() functions. The

output function in equation (3.10) resembles a Gaussian

with a long tail and obeys time-scalar invariance property.

We used both the SBF-sin and SBF-ML implementations

to numerically verify that (i) the output function resembles

a Gaussian with a long tail (figure 6a), and (ii) the width of

the output function increases linearly with the criterion

time (figure 6b). The output functions of the SBF-ML

implementation (see thin continuous lines in figure 6a) for
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T ¼ 10 s and T ¼ 30 s are reasonably fitted by Gaussian

curves (see thick continuous line for T ¼ 10 s and dashed

line for T ¼ 30 s in figure 6a). However, as predicted theoreti-

cally, the output has a long tail. The scalar property is indeed

valid, because the width of the output function linearly

increase with the criterion time (figure 6b).

Furthermore, we checked that the scalar property holds

not only for Gaussian noise, which allowed us to determine

an analytic expression for the long-tailed output function in

§4f, but also for uniform and Poisson noise.

4. Discussion
Computational models of interval timing vary largely with

respect to the hypothesized mechanisms and the assump-

tions by which temporal processing is explained, and by

which time-scale invariance or drug effects are explained.

The putative mechanisms of timing rely on pacemaker/accu-

mulator processes [5,6,89,90], sequences of behaviours [20],

pure sine oscillators [8,34,91,92], memory traces [21,93–97]

or cell and network-level models [27,98]. For example,

both neurometric functions from single neurons and ensem-

bles of neurons successfully paralleled the psychometric

functions for the to-be-timed intervals shorter than 1 s [27].

Reutimann et al. [99] also considered interacting populations
that are subject to neuronal adaptation and synaptic plasticity

based on the general principle of firing rate modulation in a

single cell. Balancing long-term potentiation (LTP) and long-

term depression (LTD) mechanisms are thought to modulate

the firing rate of neural populations with the net effect that

the adaptation leads to a linear decay of the firing rate over

time. Therefore, the linear relationship between time and

the number of clock ticks of the pacemaker–accumulator

model in SET [5] was translated into a linearly decaying

firing rate model that maps time and variable firing rate.

By and large, to address time-scale invariance, current behav-

ioural theories assume convenient computations, rules or coding

schemes. Scalar timing is explained as either deriving from com-

putation of ratios of durations [5,6,100], adaptation of the speed

at which perceived time flows [20] or from processes and distri-

butions that conveniently scale up in time [21,91,93,95,96].

Some neurobiological models share computational assumptions

with behavioural models and continue to address time-scale

invariance by specific computations or embedded linear relation-

ships [101]. Some assume that timing involves neural integrators

capable of linearly ramping up their firing rate in time [98],

whereas others assume LTP/LTD processes whose balance

leads to a linear decay of the firing rate in time [99]. It is unclear

whether such models can account for time-scale invariance in a

large range of behavioural or neurophysiological manipulations.
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Neurons are often viewed as communications channels

that respond even to the precisely delivered stimuli sequence

in a random manner consistent with Gaussian noise [102].

Biological noise was shown to play important functional

roles, e.g. enhance signal detection through stochastic reson-

ance [103,104] and stabilize synchrony [105,106]. Firing rate

variability in neural oscillators also results from ongoing cor-

tical activity (see [106,107] and references therein), which may

appears noisy simply because it is not synchronized with

obvious stimuli.

A possible common ground for all interval timing models

could be the threshold accommodation phenomenon that

allows stimulus selectivity [108,109] and promotes coincidence

detection [11]. Farries [110] showed that dynamic threshold

change in subthalamic nucleus (STn) that projects to the

output nuclei of the BG allows STn to act either as an integra-

tor for rate code inputs or a coincidence detector [110]

(figure 2). Interestingly, under both conditions, faulty (noisy)

processing explains time-scale invariance. For example, Killeen

& Taylor [28] explained scale invariance of counting in terms

of noisy information transfer between counters. Similarly,

here, we explained time-scale invariance of timing in terms

of noisy coincidence detection during timing. Therefore, it

seems that when BG acts either as a counter or as coincidence

detector, neural noise alone can explain time-scale invariance.

Our theoretical predictions based on an SBF model show

that time-scale invariance emerges as the property of a (very)

large and noisy network. Furthermore, we showed that the

output function of an SBF mode always resembles the Gaus-

sian shape found in behavioural experiments, regardless of

the type of noise affecting the timing network. We showed

analytically that in the presence of arbitrary criterion variabil-

ity alone the SBF model produces an output that (i) has a

symmetric and Gaussian shape, (ii) is accurate, i.e. the peak

of the output is located at t0T ¼ T(1 þ gT), where gT � 1 is

a constant that depends on the type of memory noise and

(iii) has a width that increases linearly with the criterion

time, i.e. obeys time-scale invariance property. The memory

variability is ascribed to storing or retrieving the represen-

tation of criterion time to and from the long-term memory

(figure 2b). We also showed analytically and verified
numerically that for a Gaussian noise affecting the memory

of the criterion time the output function of SBF-sin model is

analytic and its peak is at t0T ¼ T, which means that for Gaus-

sian noise gt ¼ 0 (figure 4a). All of the above properties were

also verified by replacing phase oscillators with biophysically

realistic ML model neurons (figure 4b,c).

We also showed analytically that, in the presence of arbi-

trary frequency variability alone, the SBF model produces an

output that (i) has a Gaussian-like shape (based on the central

limit theorem, (ii) is accurate, i.e. the peak of the output is

located at t0f ¼ T/(1 þ gf ), where gf � 1 is a constant that

depends on the type of frequency noise and (iii) has a

width sout ¼ T(1þgT)sf that increases linearly with the cri-

terion time, i.e. obeys time-scale invariance property. In the

presence of Gaussian noise, the output function is analytic,

asymmetric and Gaussian-like (figure 5a) with a skewness

that increases quadratically with the standard deviation of

the frequency noise (figure 5b). In addition to the fact that

the standard deviation of the output function is proportional

to the criterion time and, therefore, obeys the time-scale

invariance property, it also increases quadratically with the

standard deviation of the frequency noise (figure 5d ). For

Gaussian noise, the peak of the asymmetric, long-tailed

Gaussian-like output (figure 5a) resembles experimental

data that show a strong long tail in subjects’ responses

(figure 1c).

Our results regarding the effect of noise on interval

timing support and extend the speculation [34] by which

an SBF model requires at least one source of variance

(noise) to address time-scale invariance. Rather than being a

signature of higher-order cognitive processes or specific

neural computations related to timing, time-scale invariance

naturally emerges in a massively connected brain from the

intrinsic noise of neurons and circuits [4,27]. This provides

the simplest explanation for the ubiquity of scale invariance

of interval timing in a large range of behavioural, lesion

and pharmacological manipulations.
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