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ABSTRACT 7 

Mutations are the source of novel genetic diversity but can also lead to disease and 8 

maladaptation. The conventional view is that mutations occur randomly with respect to their 9 

environment-specific fitness consequences. However, intragenomic mutation rates can vary 10 

dramatically due to transcription coupled repair and based on local epigenomic modifications, 11 

which are non-uniformly distributed across genomes. One sequence feature associated with 12 

decreased mutation is higher expression level, which can vary depending on environmental 13 

cues. To understand whether the association between expression level and mutation rate 14 

creates a systematic relationship with environment-specific fitness effects, we perturbed 15 

expression through a heat treatment in Arabidopsis thaliana. We quantified gene expression to 16 

identify differentially expressed genes, which we then targeted for mutation detection using 17 

Duplex Sequencing. This approach provided a highly accurate measurement of the frequency of 18 

rare somatic mutations in vegetative plant tissues, which has been a recent source of 19 

uncertainty in plant mutation research. We included mutant lines lacking mismatch repair 20 

(MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may 21 

drive biased mutation accumulation. We found wild type (WT) and BER mutant mutation 22 

frequencies to be very low (mean variant frequency 1.810-8 and 2.610-8, respectively), while 23 

MMR mutant frequencies were significantly elevated (1.1310-6) These results show that 24 

somatic variant frequencies are extremely low in WT plants, indicating that larger datasets will 25 

be needed to address the fundamental evolutionary question as to whether environmental 26 

change leads to gene-specific changes in mutation rate.  27 

 28 

SIGNIFICANCE 29 

Accurately measuring mutations in plants grown under different environments is important for 30 

understanding the determinants of mutation rate variation across a genome. Given the low rate 31 

of de novo mutation in plant germlines, such measurements can take years to obtain, hindering 32 

tests of mutation accumulation under varying environmental conditions. We implemented 33 

highly accurate Duplex Sequencing to study somatic mutations in plants grown in two different 34 

temperatures. In contrast to plants with deficiencies in DNA mismatch repair machinery, we 35 
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found extremely low mutation frequencies in wild type plants. These findings help resolve 36 

recent uncertainties about the somatic mutation rate in plant tissues and indicate that larger 37 

datasets will be necessary to understand the interaction between mutation and environment in 38 

plant genomes.   39 
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INTRODUCTION 40 

Mutations in DNA sequences accumulate over time and produce the variation that allows 41 

populations to adapt to novel or changing environments. In this sense, mutation is the ultimate 42 

source of evolutionary innovation. At the same time, mutations are often deleterious (Eyre-43 

Walker and Keightley 2007), and somatic mutations can cause disease, setting up an interesting 44 

dynamic where selection may favor alleles that lower mutation rates, even though mutational 45 

input is required for adaptation and evolution (Zhang 2023).  46 

The textbook view of mutation and adaptation is that mutations occur randomly with 47 

respect to their environment-specific fitness consequences. This principle was established in 48 

early investigations by Max Delbrück and Salvador Luria, who found that mutations in bacteria 49 

that confer phage resistance were equally likely to occur regardless of whether bacteria were 50 

grown in the presence of phage (Luria and Delbrück 1943). In other words, a phage-containing 51 

environment creates selection for genetic variants responsible for resistance but does not 52 

induce mutations to specifically occur at those loci. After subsequent decades of study, 53 

mutations are still widely considered to be random in this respect even though both the type 54 

and location of mutations are now known to have non-uniform distributions across genomes. 55 

For example, transition substitutions are far more common than transversions in most 56 

organisms across the tree of life. This bias in the mutation spectrum arises through the simple 57 

properties of DNA bases and chemical damage, but it has important consequences for the 58 

relationship between fitness effects and the probability of mutations. Due to the structure of 59 

the genetic code, transversions are more likely than transitions to be nonsynonymous (i.e. result 60 

in amino acid changes) and, therefore, have harmful fitness effects. As such, the average fitness 61 

effect of mutations is lower than it would be if all types of nucleotide substitutions occurred 62 

with equal probability (Eyre-Walker and Keightley 2007). 63 

Mutation rates can also vary depending on genomic location. For example, mutational 64 

gradients arise in mammalian mitochondrial genomes because regions near replication origins 65 

are single-stranded (and more vulnerable to mutation causing damage) for longer periods 66 

during DNA replication (Sanchez-Contreras et al. 2021). Variation in intragenomic mutation rates 67 

can also occur at smaller scales, such is in Arabidopsis thaliana where mutations are enriched in 68 
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intergenic sequences compared to genes (Ossowski et al. 2010; Belfield et al. 2018; Weng et al. 69 

2019) and in introns compared to exons (Monroe et al. 2022, 2023a; Quiroz et al. 2023; 70 

Staunton et al. 2023). Because mutations in coding sequences are more likely to have functional 71 

consequences, this biased distribution of mutations should again result in lower average fitness 72 

effects than if mutations were uniformly distributed across the genome. 73 

The probability of a mutation, therefore, cannot be considered independent of the 74 

fitness consequences of that mutation. However, to challenge the textbook view that mutations 75 

occur randomly with respect to environment-specific fitness effects, gene-specific mutational 76 

biases would have to systematically vary with changes in the environment. One potential 77 

mechanism that could create such a relationship between environment and mutation bias is the 78 

coupling of DNA repair surveillance with transcription machinery, which results in lower 79 

mutation rates for highly expressed genes (Supek and Lehner 2017; Oztas et al. 2018; Huang et 80 

al. 2018; Huang and Li 2018; Gonzalez-Perez et al. 2019; Monroe et al. 2022). Therefore, 81 

environmental changes that increase a gene’s expression level should lower its mutation rate. In 82 

addition, highly expressed genes are known to experience stronger selection (Zhang and Yang 83 

2015), so genes may be most protected from mutation in environments where they are most 84 

functionally important. Alternatively, transcription may be mutagenic, as increased DNA damage 85 

associated with exposure of single-stranded DNA to mutagens can potentially overpower the 86 

increased protection of actively transcribed genes (Kim et al. 2007; Jinks-Robertson and 87 

Bhagwat 2014; Seplyarskiy et al. 2023).  88 

 A challenge associated with addressing how local mutation rates vary with environment 89 

is the difficulty of measuring mutations in experimental settings. Historical estimates of 90 

mutation relied on comparisons of synonymous substitutions between populations or species. 91 

Because these substitutions do not result in a change in amino acid, they are expected to 92 

experience minimal selection and thus approximate mutational input, though in reality 93 

synonymous sites do experience selection due to codon usage bias (Grantham et al. 1980; 94 

Hershberg and Petrov 2008) and other mechanisms (Bailey et al. 2021). It is inherently difficult 95 

to measure mutation rates more directly in large multicellular organisms because their long 96 

generations require many individuals and/or large amounts of time for sufficient mutations to 97 
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occur, making methods such as mutation accumulation lines and parent-offspring trio 98 

sequencing (Lynch et al. 2016; Tatsumoto et al. 2017) expensive and time-consuming. 99 

 An alternative and potentially complementary approach to mutation accumulation and 100 

trio sequencing studies is to detect the mutations that accumulate in an organism’s somatic 101 

tissues (Gundry and Vijg 2012; Moore et al. 2021; Monroe et al. 2022; Quiroz et al. 2023; 102 

Schmitt et al. 2023; Staunton et al. 2023; Satake et al. 2023; Goel et al. 2024). This approach 103 

benefits from the fact that many more cell lineages can be tracked than just the germline. 104 

Inclusion of somatic (vegetative) mutations in recent Arabidopsis studies led to the 105 

identification of thousands of mutations, which increased power to test for relationships 106 

between local mutation rates and various sequence features, such as GC content, DNA 107 

methylation, histone modifications and expression level (Monroe et al. 2022). However, this 108 

approach appears to have been inaccurate because low frequency somatic variants can be 109 

difficult to distinguish from sequencing errors, and reanalysis of the somatic mutation calls 110 

showed that many of the putative mutations arose from technical artefacts (Liu and Zhang 111 

2022; Monroe et al. 2023a; Wang et al. 2023; Monroe et al. 2023b). Therefore, the actual 112 

frequency of somatic mutations in vegetative plant tissue remains an open question.  113 

 Measurements of low frequency somatic mutations can be obtained using a high-fidelity 114 

sequencing technology to distinguish mutational signal from noise (Sloan et al. 2018). For 115 

example, Duplex Sequencing is an Illumina-based method in which unique molecular identifiers 116 

(UMIs) are included in adaptors and attached to both ends of DNA fragments before library 117 

amplification (Schmitt et al. 2012; Kennedy et al. 2014). After sequencing, the UMIs are used to 118 

cluster families of reads that originated from each strand of a given DNA fragment so that a 119 

double-stranded consensus sequence can be created that is virtually error free (< 5-8 errors 120 

per base pair; Kennedy et al. 2014). 121 

 Our goal in this study was to test if the pattern of local mutation rate variation across a 122 

genome depends on environmental effects on gene expression levels. We also wanted to 123 

determine whether low-frequency somatic mutations in plant tissues could provide a robust 124 

signal for addressing this type of question. Therefore, we perturbed gene expression by growing 125 

Arabidopsis under different temperatures. We identified differentially expressed (DE) genes with 126 
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RNA-seq, which we then targeted for low-frequency somatic mutation detection using Duplex 127 

Sequencing coupled with hybrid capture. We included mutant lines msh2 and ung, which 128 

respectively lack mismatch repair (MMR) and base excision repair (BER) capabilities, in order to 129 

understand how repair mechanisms may drive biased mutation accumulation (Cordoba-Canero 130 

et al. 2010; Belfield et al. 2018). We also included hsp70-16 mutant lines, which are deficient for 131 

a key heat shock protein, as a means to endogenously manipulate gene expression and 132 

potentially interact with our temperature treatment (Ran et al. 2020). As expected, we found 133 

significant increases in variant frequencies in the MMR deficient lines. In wild type (WT) lines 134 

and other mutant lines, measured mutation frequencies were too low to quantify relationships 135 

between mutation rates and environment-specific gene expression levels. Therefore, our results 136 

support the conclusion that earlier estimates of somatic variant frequencies were inflated 137 

(Monroe et al. 2023a; Wang et al. 2023) and indicate that much larger datasets will be needed 138 

to test for environment-specific changes in mutation biases. 139 

 140 

RESULTS 141 

To test if environment specific changes in gene expression impact mutation, we performed 142 

mutation detection on a targeted set of Arabidopsis genes that were DE in plants grown at 20°C 143 

vs. 30°C. We first generated and analyzed RNA-seq data to identify genes in six categories: 1) 144 

increased expression at 30°C compared to 20°C in WT plants, 2) increased expression at 20°C 145 

compared to 30°C in WT plants, 3) constitutively high expression in WT plants at both 20°C and 146 

30°C, 4) constitutively low expression in WT plants at both 20°C and 30°C, 5) genes that had 147 

increased expression at 30°C vs. 20°C in WT plants (like category 1) and also had an interaction 148 

between WT and hsp70-16, and 6) genes that had increased expression at 30°C vs. 20°C in WT 149 

plants (like category 2) and also had an interaction between WT and hsp70-16 (Table S1). The 150 

sequences of the DE genes were used to create a custom probe-set for hybrid capture of Duplex 151 

Sequencing libraries. 152 

 Duplex Sequencing coverage of the genes and 250 bp of flanking sequence in the probe-153 

set ranged from 74.7 to 109.4 (Figure S1), and the average probe-set coverage across all 154 
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libraries was 193.1-fold higher than the genome background. In total, we obtained 1.89 Gb of 155 

Duplex Sequencing coverage of our region of interest across the 24 libraries (Table S2) 156 

 We then looked for the presence of single nucleotide variants (SNVs) and short indels 157 

within the 339 genes covered in the probe-set. Mutant alleles already present in the parents of 158 

the assayed sets of full-sib plants have the potential to bias estimates of de novo mutation 159 

frequencies but should be readily identifiable. For a homozygous parent, they would be present 160 

in all Duplex Sequencing reads of all the replicates of a given genotype. For a heterozygous 161 

parent, they would segregate in a 1:2:1 Mendelian ratio and account for roughly 50% of the 162 

reads for all replicates of a given genotype (as each replicate represents a pool of five sibling 163 

plants). We identified just three apparent fixed SNVs (Table S3), which were removed for 164 

downstream analyses. In contrast, we identified 41 fixed indels, over half of which were in the 165 

msh2 background (Table S4). One gene (AT5G39190) had five sites that appeared to be 166 

segregating SNVs in all 24 replicates. We suspected this might be caused by a cryptic gene 167 

duplication which was not captured in the TAIR 10.2 reference genome (Jaegle et al. 2023). 168 

Indeed, when we realigned the reads to the improved Col-CC genome (Reiser et al. 2023), the 169 

mutation calls in AT5G39190 were absent. As such, reads mapping to AT5G39190 were 170 

disregarded in downstream analyses. The rest of the SNVs we identified were unique to each 171 

replicate and all were present at a frequency of no more than 17.64% (the average variant 172 

frequency across all mutations was 2.27%), suggesting that these are low frequency somatic 173 

variants that arose during the experiment and were present in a subset of the sampled 174 

vegetative tissue. 175 

 Among the six WT biological replicates, we detected a single indel and just six SNVs, one 176 

in each replicate (Figure 1). As such, there was very limited statistical power to test for the 177 

effects of temperature or expression level on mutation frequency in WT plants. Similarly, we 178 

detected few or no SNVs and indels in the hsp70-16 and the ung mutant lines (Figure 1; File S1, 179 

S2). In contrast, variant frequencies were significantly elevated in the msh2 mutant lines 180 

(compared to WT plants), where we detected 271 indels and 180 SNVs (Figure 1; two-way 181 

ANOVA with Tukey’s test, p < 0.0001). The mutations in the msh2 lines were distributed 182 

relatively evenly across the temperature treatments, as we found that temperature did not 183 
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influence either SNV or indel frequency (Figure 1; two-way ANOVA, p = 0.99). In the msh2 lines, 184 

deletions were 8.5-fold more common than insertions (Table S5; two-way ANOVA, p < 0.0001). 185 

We observed significant differences among SNV classes in msh2 SNV spectrum (Figure 2; two-186 

way ANOVA, p <0.0001), which was dominated by CG→TA transitions. The next most common 187 

types of substitutions were AT→GC transitions and CG→AT transversions. We compared the 188 

msh2 mutation frequencies in the constitutively lowly expressed (group 3 in Table S1) vs 189 

constitutively highly expressed (group 4 in Table S1) genes and found no significant differences 190 

(paired t-test; Table S6), though we did observe a trend towards higher indel frequencies in 191 

constitutively highly expressed genes at 30°C. We did not analyze the SNV spectra or indel bias 192 

in WT, ung, or hsp70-16 lines because the small number of sampled mutations precluded a 193 

statistically meaningful comparison.  194 

 195 

DISCUSSION 196 

 In this study we took a novel approach to studying plant mutation by utilizing high 197 

fidelity Duplex Sequencing to measure low-frequency somatic variants in a targeted region of 198 

the A. thaliana nuclear genome. Variants in unopened floral bud tissue of WT plants were 199 

present at very low frequencies (Figure 1), which were near the detection threshold of Duplex 200 

Sequencing (Kennedy et al. 2014; Wu et al. 2020). Although we did not have enough power to 201 

address our prediction that increases in gene expression would correlate with decreases in 202 

mutation rates in WT plants, the results are nonetheless of interest given recent debates about 203 

the frequency of somatic mutations in plant tissues (Monroe et al. 2022; Liu and Zhang 2022; 204 

Monroe et al. 2023a; Wang et al. 2023; Monroe et al. 2023b). Our results support the 205 

conclusion that the high error rate of Illumina short-read sequencing makes it difficult to reliably 206 

discern sequencing errors from extremely rare WT somatic mutations. That said, we are 207 

skeptical of directly comparing the variant frequencies we measured in unopened floral buds 208 

with those obtained in differentiated leaves (Monroe et al. 2022, 2023a) given recent evidence 209 

showing substantial variation in somatic mutation rates depending on plant tissue (Goel et al. 210 

2024).   211 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.31.578196doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.31.578196
http://creativecommons.org/licenses/by-nc-nd/4.0/


We also surveyed variant frequencies in ung mutant plants and did not observe a 212 

difference between WT and ung lines. Given that ung plants have previously been shown to 213 

accumulate more uracil in DNA (presumably to the loss of base-excision repair activity on 214 

deaminated cytosines) than WT plants (Cordoba-Canero et al. 2010), we interpret the lack of a 215 

difference between WT and ung lines as evidence that actual WT mutation frequencies may be 216 

below the detection threshold of Duplex Sequencing. However, it is also possible that the 217 

similarly low mutation rates in WT and ung reflect the lack of a true biological difference, which 218 

may be possible if redundant pathways exist that prevent uracils in DNA from becoming CG→TA 219 

transitions. 220 

In contrast, we found significantly elevated variant frequencies in msh2 mutants 221 

compared to WT lines (Figure 1). MSH2 is known to function in mismatch repair (MMR) and 222 

mutation accumulation experiments with msh2 mutant lines have established that the germline 223 

SNV rate is 132 to 204-fold greater than the WT SNV rate (Ossowski et al. 2010; Jiang et al. 224 

2014; Belfield et al. 2018). Here, we found that the average msh2 SNV frequency was 27-fold 225 

greater than the average WT SNV frequency (Figure 1). Though somatic variant frequencies 226 

measured with Duplex Sequencing are not directly comparable to germline mutation rates 227 

assayed with mutation accumulation experiments, the smaller magnitude of the difference 228 

between msh2 vs. WT in our dataset may be interpreted as further evidence that the actual WT 229 

variant frequency is beneath the detection threshold of Duplex Sequencing. Alternatively, the 230 

smaller difference between WT and msh2 reported here could be evidence that MMR is 231 

particularly important for buffering against mutation in germline plant tissues, which is 232 

supported by elevated expression of MSH2 and other mismatch repair genes in meristematic 233 

tissues (Klepikova et al. 2016). 234 

Variant frequencies in the msh2 mutant lines showed no significant difference in plants 235 

grown at 20°C vs. 30°C. This finding contrasts with a recent mutation accumulation study that 236 

found elevated germline mutation rates in WT plants grown at 29°C compared to those grown 237 

at 23°C (Belfield et al. 2021) and another study that documented increases at 28°C and 32°C 238 

compared to 23°C (Lu et al. 2021). One potential explanation of this result is that heat stress 239 

may be mutagenic in WT plants because it impairs MMR since in the absence of MMR there is 240 
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no apparent heat effect. However, this interpretation would be at odds with the fact that the 241 

genome-wide distribution of mutations in the heat-stressed plants mirrors the distribution of 242 

WT plants grown at standard temperature, not of mismatch repair mutants (see Figure 3 of 243 

(Belfield et al. 2021). The Duplex Sequencing variant frequencies in the msh2 mutant lines also 244 

did not vary significantly between lowly expressed vs. highly expressed genes at either 20°C or 245 

30°C (Figure 1). This result is consistent with the model that MMR provides special protection to 246 

actively transcribed genes (Belfield et al. 2018; Huang et al. 2018; Huang and Li 2018). However, 247 

we present this interpretation cautiously in the absence of WT data to test for an impact of 248 

expression when MMR is functional. 249 

In summary, we took a novel approach to studying plant mutations by using Duplex 250 

Sequencing and hybrid capture to obtain a highly accurate snapshot of somatic variants in 251 

targeted regions of the A. thaliana genome. We designed our experiment to test if 252 

environmental conditions alter mutation rates in a gene-specific fashion. However, 253 

the low rate of mutations in WT plants prevented testing for how expression levels impact 254 

mutation rates. Nonetheless, the link between increased expression and decreased mutation in 255 

plants is well documented (Oztas et al. 2018; Monroe et al. 2022; Quiroz et al. 2023), as is the 256 

fact that gene expression is environmentally determined (Richards et al. 2012), so by logical 257 

extension environmental conditions must  drive mutation rates and related fitness 258 

consequences. However, whether the magnitude of such an effect is biologically meaningful in 259 

shaping mutation and evolution remains an important, unanswered question. Though mutation 260 

accumulation and parent-offspring sequencing are time- and resource-intensive experiments, 261 

they are both increasingly feasible due to continued declines in the cost of DNA sequencing 262 

(Ossowski et al. 2010; Weng et al. 2019; Monroe et al. 2022). Conducting such experiments 263 

under contrasting environments (Jiang et al. 2014; Belfield et al. 2021; Lu et al. 2021) to 264 

measure the correlation between expression and mutation seems to be the key to 265 

understanding how environments impact the types of mutations that organisms accumulate.  266 

 267 

MATERIALS AND METHODS 268 
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All plants were grown in environmentally controlled growth chambers (75% humidity) under a 269 

long-day photoperiod (16 hrs light, 8 hrs dark) with irradiance of 185 µmol m−2 sec−1 at constant 270 

temperatures (either 20°C or 30°C, as specified below). Prior to planting, seeds were stratified 271 

for 5 days in sterile ddH20. Arabidopsis thaliana ecotype Col-0 was used as the WT line. Existing 272 

mutant lines were obtained from the Arabidopsis Biological Resource Center (Table S7) and 273 

seedlings were screened with allele-specific PCR markers to identify plants that were 274 

homozygous for the mutant alleles used in this study (msh2, ung, hsp70-16; Table S8). 275 

Sibling plants (roughly 35 for each genotype and each temperature treatment) were 276 

planted in 2.5-inch pots. Both temperature treatments were initiated in chambers (Convarion 277 

models PGR15 (20°C) and PGCFLEX (30°C)) at 20°C because elevated ambient temperatures 278 

(30°C) can inhibit seed germination (Silva-Correia et al. 2014). After 5 days, the temperature was 279 

turned up for the 30°C treatment and kept at 20°C for the other treatment. When the plants 280 

had reached stage 6.5 of development (where ~50 % of flowers have opened) (Boyes et al. 281 

2001), we performed DNA and RNA extractions on unopened floral buds from laterally 282 

branching florets. The 30°C plants reached developmental stage 6.5 at 31 days while the 20°C 283 

plants reached developmental stage 6.5 at 41 days, consistent with faster plant development at 284 

elevated ambient temperatures (Silva-Correia et al. 2014).  285 

For the RNA extractions, plant material was collected from the unopened floral buds of 3 286 

laterally branching florets from 3 WT and 3 hsp70-16 plants in each temperature treatment. The 287 

harvested tissues were immediately placed into liquid nitrogen and homogenized for 10 288 

seconds at 30 beats/sec with the Qiagen TissueLyser, before being processed with the Qiagen 289 

RNeasy Plant Mini Kit, according to manufacturer’s instructions. The RNA samples were then 290 

sent to Novogene and RNA-Seq libraries were made using the NEBNext Ultra II Directional RNA 291 

Library Prep Kit with the NEBNext Poly(A) mRNA Magnetic Isolation Module. The RNA-Seq 292 

libraries were sequenced on a NovaSeq 6000 using the PE150 strategy to generate 29 to 54 293 

million read pairs per library (see Table S9). 294 

Tissue was harvested for DNA sequencing and mutation detection at the same time as 295 

the tissue for RNA extraction, from siblings of the plants used for RNA extraction. For each 296 

replicate in the DNA extractions, plant material was pooled from 5 siblings from the unopened 297 
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floral buds of 3 laterally branching florets from 5 plants per each replicate, with 3 replicates per 298 

genotype (WT, hsp70-16, msh2, ung) per temperature treatment. The floret tissue was 299 

homogenized for 10 seconds at 30 beats/sec with the Qiagen TissueLyser, before being 300 

processed with the DNeasy Plant Mini Kit from Qiagen. 301 

The RNA-seq reads were analyzed to detect DE genes at 20°C vs. 30°C. First, the adaptors 302 

were removed with Cutadapt version 4.0 with Python 3.9.16 (Martin 2011). Then the reads 303 

were mapped to the TAIR10.2 reference genome with HISAT2 (version 2.2.1; (Kim et al. 2019). 304 

Read counts were generated with HTSeq-count version 2.0.2 (Anders et al. 2014), and DESeq2 305 

models (Love et al. 2014) were implemented to identify genes that were differentially expressed 306 

or constitutively highly or lowly expressed. 307 

We created a custom probe-set to enrich the sequences of DE genes via hybrid capture 308 

so that we could perform mutation detection with Duplex Sequencing. We sent the sequences 309 

of 400 DE genes (plus 250 nt of flanking sequence on the end of each gene) to the probe design 310 

team at Arbor Bioscience, which flagged 61 of the genes as unsuitable for hybrid capture 311 

because they were > 25 % soft-masked for repeats in a BLAST search against the Arbor 312 

Biosciences eudicot database. The remaining 339 genes (listed in supplementary file 2) and 313 

flanking sequences spanned a total length of 855,123 nt. Sets of 80-nt probes were 2 tiled 314 

across the target sequence at approximately every 40 nt. The probes were biotinylated so that 315 

probe-bound library molecules can be captured with streptavidin-coated magnetic beads.  316 

We created Duplex Sequencing libraries from the 24 DNA samples (3 replicates  4 317 

genotypes  2 temperature treatments), following our previously described library preparation 318 

protocols (Wu et al. 2020; Waneka et al. 2021), except that in this case the amount of input 319 

DNA was increased to 500 ng because the target sequence comprises a small fraction (< 1%) of 320 

the total-cellular DNA sample. Once DNA samples had been fragmented via ultrasonication, 321 

end-repaired, A-tailed, adaptor-ligated, and treated with a cocktail of damage removal enzymes 322 

(Wu et al. 2020), we amplified 0.73 ng of DNA (per reaction) for 13 PCR cycles with New England 323 

Biolabs Q5 High-Fidelity Polymerase and dual-indexed primers. We then created 3 pools by 324 

combining 350 ng of each amplified library as the Arbor Biosciences hybrid-capture reactions 325 

have enough capacity for 8 libraries in each pool. We performed the overnight hybrid-capture 326 
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reaction at 65°C, according to the manufacturer’s instructions (Arbor Biosciences MyBaits Kit 327 

Manual v. 5.02). We assessed enrichment efficiency and library concentrations through qPCR (as 328 

previously described; (Waneka et al. 2021)) before amplifying the enriched pools for an 329 

additional 9 cycles to obtain sufficient library amounts for sequencing. 330 

Duplex Sequencing libraries were sequenced with PE150 reads on an Illumina NovaSeq 331 

6000 S4 Lane (Novogene) to generate 87 to 123 million read pairs per library (Table S10). 332 

Processing of the Duplex Sequencing reads to was performed with our previously described 333 

pipeline (Wu et al. 2020), which trimmed adaptor sequences, created duplex consensus 334 

sequences based on the presence of shared barcodes, mapped the consensus sequences to the 335 

entire TAIR10.2 reference genome. Each duplex consensus sequences is composed of at least 6 336 

Illumina reads (at least 3 originating from each strand of a DNA fragment). Alignment files were 337 

then parsed to identify duplex consensus sequences that contain  SNVs and short indels. Since 338 

Duplex Sequencing is highly accurate (< 5-8  errors per base pair; Kennedy et al. 2014) we 339 

require just a single duplex consensus to support a putative mutation. Comparisons of coverage 340 

in the probe-set vs. outside the probe-set were performed with Samtools version 1.6 (Li et al. 341 

2009). For variant frequency calculations, we excluded the first or last 10 bps of a read because 342 

we have previously identified elevated mutation frequencies at read ends (Wu et al. 2020). 343 

 344 

 345 

DATA AVAILABILITY 346 

The raw reads are available via the NCBI Sequence Read Archive under accessions 347 

SRR27564102-SRR27564113 (RNA-seq libraries) and SRR27693810-SRR27693833 (Duplex 348 

Sequencing libraries). Duplex Sequencing datasets were processed with a previously published 349 

pipeline (https://github.com/dbsloan/duplexseq) (Wu et al. 2020).  350 
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FIGURES 355 

 356 

Figure 1. Mutation frequencies in WT vs mutant lines at 20°C and 30°C. Log10 mutation 357 

frequencies for single nucleotide variants (SNVs) and insertions/deletions (INDELs) calculated as 358 

the number of events (SNVs or INDELs) divided by the duplex sequencing coverage of the probe-359 

set. A floor of 2.5-8 was applied to the y-axis for data visualization. P-values are from a 360 

Tukey’s test on a two-way ANOVA performed in R with the emmeans package (version 1; (Lenth 361 

et al. 2021).  362 
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364 

Figure 2. Mutation spectrum for WT and mutant plants at 20 °C and 30 °C. Log10 mutation 365 

frequencies for different types of single nucleotide variants were calculated as the number of 366 

events divided by the nucleotide-specific duplex sequencing coverage of the probe-set. A floor 367 

of 2.510-8 was applied to the y-axis for data visualization.  368 
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SUPPLEMENTARY FIGURES 370 

 371 

 372 

Figure S1. Duplex Sequencing coverage of the probe-set (panel 1), the 250 bps flanking the 373 

probe-set (panel 2) and the rest of the genome, outside of the probe-set (panel 3). 374 
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SUPPLEMENTARY TABLES 376 

 377 

Table S1. Differentially expressed genes from the RNA-seq analysis identified with DESeq2 378 

Category Genotype Comparison p-value Log fold 

change  

Average 

normalized 

cover of each 

treatment 

Number of 

genes 

Included 

in 

probe-

set 

Genes 

retained 

after 

arbor 

repeat 

filtering  

1 WT Increased exp. at 

30°C 

0.05 > 2 Minimum 

coverage > 5 

683 100 

with 

greatest 

LFC 

84 

2 WT Increased exp. at 

20°C 

0.05 < -2 Minimum 

coverage > 5 

350 100 

with 

lowest 

LFC 

80 

3 WT  Constitutive low exp. 0.05 50 genes with 

LFC closest to 

0 

50 genes with 

lowest 

coverage 

(ranges from 

129 to 400 

50 50 44 

4 WT Constitutive high 

exp. 

0.05 50 genes with 

LFC closest to 

0 

50 genes with 

highest 

coverage 

(ranges from 

8384 to 68053 

50 50 45 

5 WT vs. 

HSP70-16 

Interaction between 

genotype and temp 

0.05 >2 Minimum 

coverage > 5 

106 (39 of 

which are 

also in 

group 1) 

92 with 

highest 

LFC 

81 

6 WT vs 

HSP70-60 

Interaction between 

genotype and temp 

0.05 <-2 Minimum 

coverage > 5 

8 (5 of 

which are 

also in 

group 2) 

All 8  5 

total       400 339 

 379 
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Table S2. Duplex Sequencing coverage for each replicate 381 

Sample Mean Depth of Coverage Total Duplex Seq. Data (bp) 

WT 20°C A 86.86 74273348 

WT 20°C B 92.16 78809954 

WT 20°C C 82.40 70459706 

WT 30°C A 81.46 69660673 

WT 30°C B 95.39 81571700 

WT 30°C C 93.77 80187868 

HSP70-16 20°C A 82.31 70384149 

HSP70-16 20°C B 74.75 63917524 

HSP70-16 20°C C 93.94 80328860 

HSP70-16 30°C A 93.65 80085644 

HSP70-16 30°C B 81.50 69690981 

HSP70-16 30°C C 98.70 84396810 

MSH2 20°C A 105.53 90244630 

MSH2 20°C B 95.50 81667422 

MSH2 20°C C 107.69 92087225 

MSH2 30°C A 95.50 81666433 

MSH2 30°C B 87.40 74739952 

MSH2 30°C C 93.40 79871709 

UNG 20°C A 98.30 84059203 

UNG 20°C B 93.33 79804898 

UNG 20°C C 75.23 64327096 

UNG 30°C A 109.44 93588299 

UNG 30°C B 93.79 80203757 

UNG 30°C C 106.23 90842455 
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Table S3. Putative fixed SNVs removed before downstream analysis of Duplex Sequencing data 384 

Genotype Chromosome Position Substitution 

type 

Shared among 

all replicates 

ung 2 2016156 AT→GC yes 

wild-type 2 14827204 CG→AT yes 

msh2 4 14827204 CG→AT yes 

 385 
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Table S4. Putative fixed indels removed before downstream analysis of Duplex Sequencing data 387 

Chrom Pos Indel Type Genotype 

Number of 

Reps (of 6) 

Indel 

Length Indel Seq 

Chrom1 2243387 I MSH2 6 1 G 

Chrom1 2243387 I WT 6 1 G 

Chrom1 2243387 I UNG 6 1 G 

Chrom1 2243387 I HSP70 6 1 G 

Chrom1 2269740 D MSH2 6 1 A 

Chrom1 2270545 D MSH2 5 1 T 

Chrom1 2437835 D MSH2 5 1 T 

Chrom1 5291180 D MSH2 6 1 T 

Chrom1 6591532 I MSH2 6 1 A 

Chrom1 6591532 I WT 6 1 A 

Chrom1 6591532 I UNG 6 1 A 

Chrom1 6591532 I HSP70 6 1 A 

Chrom1 8551177 I MSH2 6 1 G 

Chrom1 8551177 I WT 6 1 G 

Chrom1 8551177 I UNG 6 1 G 

Chrom1 8551177 I HSP70 6 1 G 

Chrom1 11646952 D MSH2 6 1 T 

Chrom1 13533273 I MSH2 6 3 AGA 

Chrom1 13533273 I WT 6 3 AGA 

Chrom1 13533273 I UNG 6 3 AGA 

Chrom1 13533273 I HSP70 6 3 AGA 

Chrom1 17886514 D MSH2 6 1 A 

Chrom1 23734915 D MSH2 6 1 A 

Chrom1 26640491 D MSH2 6 1 A 

Chrom2 11236090 D MSH2 4 1 A 

Chrom2 11567248 I MSH2 4 1 T 

Chrom2 11567248 I WT 6 1 T 

Chrom2 11567248 I UNG 6 1 T 

Chrom2 11567248 I HSP70 6 1 T 

Chrom2 17464171 D MSH2 6 1 T 

Chrom3 4833763 D MSH2 6 1 A 

Chrom3 8412456 D MSH2 4 1 T 

Chrom3 18338647 D MSH2 6 1 T 

Chrom4 13742764 D MSH2 6 1 T 
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Chrom4 16470637 I MSH2 6 1 T 

Chrom4 16470637 I WT 6 1 T 

Chrom4 16470637 I UNG 6 1 T 

Chrom4 16470637 I HSP70 6 1 T 

Chrom5 2974730 D MSH2 4 1 T 

Chrom5 7718829 D MSH2 6 1 T 

Chrom5 25010019 D MSH2 6 1 A 

 388 
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Table S5. Indel mutations in msh2 mutant lines 390 

Sample Deletions Insertions 

MSH2 20°C A 44 7 

MSH2 20°C B 33 2 

MSH2 20°C C 33 5 

MSH2 30°C A 47 4 

MSH2 30°C B 43 5 

MSH2 30°C C 47 6 

total 247 29 
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Table S6. Paired t-test results of group 3 vs group 4 mutation rates in msh2- lines (two-tailed) 393 

Temp Mutation class Group 3 ave. 

variant frequency 

Group 4 ave. 

variant frequency 

P value 

20 °C SNV 1.0210-07 1.0410-07 0.9771 

30 °C SNV 7.2510-08 9.4710-08 0.6815 

20 °C INDEL 1.1910-07 1.3810-07 0.1615 

30 °C INDEL 1.1710-07 1.7210-07 0.0695 
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Table S7. Mutant lines used, all sourced from ABRC 396 

Gene AGI Mutant Allele Ref 

HSP70-16 AT1G11660 SALK_028829 (Ran et al. 2020) 

MSH2 AT3G18524 SALK_002708 (Belfield et al. 2018) 

UNG AT3G18630 CS308297 (Cordoba-Canero et 

al. 2010) 
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Table S8. PCR primers used to identify mutant alleles in the three mutant lines 399 

Gene/line Fwd Primer Rev Primer 

HSP70-16 

WT 

TACGCACTCACTTGCATTCAC TGTGTTATCGCAGTTGCAAAG 

HSP70-16 

Mut 

ATTTTGCCGATTTCGGAAC TGTGTTATCGCAGTTGCAAAG 

MSH2 WT TCACCACGATGATGTCAAGAG AGGAGCTGTCAAAAGGAGCTC 

MSH2 Mut ATTTTGCCGATTTCGGAAC AGGAGCTGTCAAAAGGAGCTC 

UNG WT ACTTGGAGAAGGTAAAGCAATTCA CCATACAAAATATAATACACCACCACTC 

UNG Mut ACTTGGAGAAGGTAAAGCAATTCA ATATTGACCATCATACTCATTGC 
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Table S9. Read counts for the 12 RNA-seq libraries  402 

Sample Count of read pairs  

HSP70-16 20°C  A 29689895 

HSP70-16 20°C  B 32052311 

HSP70-16 20°C  C 33450418 

HSP70-16 30°C  A 32567642 

HSP70-16 30°C  B 31456737 

HSP70-16 30°C  C 29678098 

WT 20°C  A 30417658 

WT 20°C  B 54410188 

WT 20°C  C 42449872 

WT 30°C  A 34353207 

WT 30°C  B 36605678 

WT 30°C  C 37953073 
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Table S10. Read counts for the 24 Duplex Sequencing libraries 405 

Sample Count of read-pairs 

HSP70-16 20°C   A 102214316 

HSP70-16 20°C   B 88105828 

HSP70-16 20°C   C 106355604 

HSP70-16 30°C   A 88061502 

HSP70-16 30°C   B 99506728 

HSP70-16 30°C   C 112263590 

MSH2 20°C   A 106838516 

MSH2 20°C   B 90724220 

MSH2 20°C   C 111544972 

MSH2 30°C   A 115206890 

MSH2 30°C   B 93741162 

MSH2 30°C   C 111444292 

UNG 20°C   A 113380236 

UNG 20°C   B 110455064 

UNG 20°C   C 108883106 

UNG 30°C   A 91537708 

UNG 30°C   B 87766824 

UNG 30°C   C 123532620 

WT 20°C   A 100905496 

WT 20°C   B 102443086 

WT 20°C   C 116973524 

WT 30°C   A 97650342 

WT 30°C   B 105779540 

WT 30°C   C 110474398 

 406 
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