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Abstract: The coupling strength between two-dimensional (2D) materials and substrate plays a vital
role on thermal transport properties of 2D materials. Here we systematically investigate the influence
of vacuum thermal annealing on the temperature-dependence of in-plane Raman phonon modes in
monolayer graphene supported on silicon dioxide substrate via Raman spectroscopy. Intriguingly,
raising the thermal annealing temperature can significantly enlarge the temperature coefficient of
supported monolayer graphene. The derived temperature coefficient of G band remains mostly
unchanged with thermal annealing temperature below 473 K, while it increases from −0.030 cm−1/K
to −0.0602 cm−1/K with thermal annealing temperature ranging from 473 K to 773 K, suggesting
the great impact of thermal annealing on thermal transport in supported monolayer graphene. Such
an impact might reveal the vital role of coupling strength on phonon scattering and on the thermal
transport property of supported monolayer graphene. To further interpret the thermal annealing
mechanism, the compressive stress in supported monolayer graphene, which is closely related to
coupling strength and is studied through the temperature-dependent Raman spectra. It is found that
the variation tendency for compressive stress induced by thermal annealing is the same as that for
temperature coefficient, implying the intense connection between compressive stress and thermal
transport. Actually, 773 K thermal annealing can result in 2.02 GPa compressive stress on supported
monolayer graphene due to the lattice mismatch of graphene and substrate. This study proposes
thermal annealing as a feasible path to modulate the thermal transport in supported graphene and to
design future graphene-based devices.

Keywords: monolayer graphene; temperature-dependent in-plane Raman phonon modes; temperature
coefficient; thermal annealing; compressive stress

1. Introduction

As an important member in the family of two-dimensional (2D) atomic layer materials,
graphene owns unique physical and chemical properties, which make it a promising
candidate for various applications such as optoelectronic and high-frequency electronic
devices [1–6]. However, the realization of these applications is hindered by several critical
issues resulting from the fact that the thickness of graphene is much smaller than its average
phonon mean free path (50~200 nm) [7–10]. Among those issues, power dissipation has
become a constantly existing challenge on account of the improving packing density in
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integrated circuits nowadays, which puts a strict limitation on device performance and
leads to data error or damages devices [7,10]. Practically speaking, graphene-based devices
often operate under current saturation conditions and a huge amount of Joule heat is
generated therein, resulting in a high local temperature and rigorous interaction between
electron–phonon, phonon–phonon and the phonon interfaces [11]. As a matter of fact,
the carrier mobility of graphene is largely restricted by the acoustic and optical phonon
scattering [12]. Especially, the influence of phonon scattering on carrier mobility can be
altered by local temperature, which largely depends on the heat dissipation efficiency of
graphene devices. Thus, understanding the thermal transport characteristics of graphene
is a necessary step in overcoming the power dissipation challenge in graphene devices.

Theoretical and experimental studies suggest that much effort has been put into
power dissipation by designing a special pattern, introducing surface encapsulation and
enhancing the coupling strength through current annealing [13,14]. Among them, ther-
mal annealing has been used as an effective means to modulate the thermal transport
characteristics [14,15]. Former literature reported that thermal annealing can bring strain
and enhance the coupling strength between graphene and substrate [15], and the stress is
closely related with coupling strength between graphene and substrate during the thermal
annealing process. Besides, it is known that the sp2 bonds in graphitic carbon can endure
extremely high mechanical strains and present interesting electromechanical properties [16].
Additionally, the remarkable strain effects on optical, electronic and thermal properties
have been observed in honeycomb structure CNTs and graphene [16,17]. In general, the
thermal transport including out-of-plane and in-plane properties can both be regulated
by altering the strain resulting from the variation of coupling strength between graphene
and substrate in theory and in experiments, which is highly affected by the residual H2O
molecules at the graphene–substrate interface. The phonon dispersion can be modified
by altering the coupling strength between graphene and substrate, especially for flexural
acoustic (ZA) phonons, which are the main carriers of interfacial thermal transport (out-of-
plane) in supported graphene [18]. In addition, the impact of coupling strength on in-plane
thermal transport of graphene supported on an SiO2/Si substrate with an ultra-thin sild
oxide layer (8 nm and 10 nm) has been experimentally characterized via an optothermal
Raman technique [15]. As the coupling strength becomes stronger, the in-plane thermal
conductivity (κ) gets reduced, which is ascribed to the enhancement of interface–phonon
scattering and the mismatch of thermal expansion strains between graphene and substrate.
As is known to all, the thermal transport in graphene can be depicted through the relation-
ship of Raman peak positions versus ambient temperatures, and laser- or electrical-heating
Raman thermometry is based on the acquisition of a temperature coefficient between Ra-
man peak shift and temperature variation. In other words, the Raman peak shift induced
by ambient temperature change can serve as an effective probe to comprehend the thermal
expansion of lattice constant and phonon–interface scattering [19–21]. Therefore, a thermal
annealing-related temperature-dependent Raman spectrum is vital for understanding the
thermal transport and power dissipation of graphene devices. Although the thermal trans-
port properties of graphene have been studied via Raman spectroscopy [22–24], there is
limited literature on thermal annealing and temperature-dependent Raman spectrum for
graphene supported on thicker SiO2 substrate (300 nm) so far.

In this work, the temperature-dependent Raman phonon modes were investigated
for monolayer graphene supported on Si/SiO2 substrate (300 nm) after different thermal
annealing processes via Raman thermometry. Specifically, the Raman peak position of
supported monolayer graphene with no thermal annealing is redshifted, as the ambient
temperature ranges from 193 K to 303 K, deriving the corresponding temperature coef-
ficient of −0.030 cm−1/K. This may be attributed to the phonon softening during the
ambient temperature increase. However, a discrepancy of temperature coefficient can
be observed among supported monolayer graphene samples after vacuum thermal an-
nealing at various annealing temperatures. For the lower annealing temperatures (373 K,
473 K), the temperature coefficients of annealed sample are comparable to that of pristine
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monolayer graphene. When the annealing temperature increases from 473 K to 773 K, a
large discrepancy takes place in the temperature coefficients ranging from −0.030 cm−1/K
to −0.0602 cm−1/K. The discrepancy could be attributed to the enhancement of strain
induced by coupling strength and phonon–interface scattering. Moreover, the compressive
stress on supported monolayer graphene through various thermal annealing processes
are characterized by Raman spectroscopy. The compressive stress induced by thermal
annealing exhibits a similar tendency, with the temperature coefficient under these thermal
annealing processes, indicating the evident regulation from thermal annealing on thermal
transport of supported monolayer graphene. After annealing at 773 K, the compressive
stress runs up to 2.02 GPa, implying an enormous lattice mismatch between graphene
and substrate. Our finding provides an insight into the thermal annealing of supported
graphene and paves a new way to solve the thermal challenge in graphene-based devices.

2. Materials and Methods

The monolayer graphene was firstly prepared on SiO2/Si wafer with p-type-doping by
traditional micromechanical exfoliated methods from the bulk graphite (Shanghai Onway
Technology Co., Ltd., Shanghai, China). Characterized by optical microscopy (LV100D
system, Nikon, Tokyo, Japan), the monolayer graphene was collected due to the discrepancy
in optical contrast for graphene with different layers. The thickness of graphene was
ulteriorly identified by Raman spectra (WITEC 300R Raman spectrophotometer). The
temperature-dependent Raman spectra were also conducted (Renishaw spectrometer,
Wotton-under-Edge, UK) with laser power of 1 mW and 50× long working objective. In
the measurement, 532 nm exciting laser was focused, with the radius of 1 µm. The sample
including graphene and a substrate located at a special seal cavity with transparent glass on
the top and the temperature can be altered via the heat accessory holder (Linkam, Epsom,
UK) with temperature accuracy ± 0.1 K. The temperature variation in the sample ranges
from 303 K to 213 K through injecting the liquid nitrogen continuously. The monolayer
graphene sample was annealed at the temperature ranging from 373 K to 773 K for 2 h
in vacuum atmosphere (1.0 × 10−1 Pa) by quartz tube furnace (GSL-1500X-50). The
temperature ramp was 2 ◦C/min in the beginning and the sample naturally cooled down
to the room temperature, which can minimize the damage.

3. Results and Discussion

Graphene owns a typical honeycomb lattice structure [25], as illustrated in Figure 1a.
The monolayer graphene flake can be seen from the optical image in Figure 1b, ascribed to
the poor optical absorption of this atomic level thin graphene flake on Si/SiO2 substrate.
After approximate identification of flake thickness by optical microscopy, Atomic force
microscopy (AFM)and Raman spectroscopy to the red marked region in Figure 1b were
also performed to get an accurate layer number of the graphene flake. According to
the AFM image and height profile illustrated in Figure 1c, the flake thickness is about
0.32 nm, indicating that the graphene flake is monolayered. In the meantime, two obvious
feature peaks located at 1584 cm−1 and 2673 cm−1 can be observed in the Raman spectrum
(Figure 1d), assigned to in-plane vibrational G band and two phonon 2D bands, respectively.
Based on the magnified 2D band in the inset of Figure 1d, the sharp and symmetric
shaped 2D band can be fitted to one single Lorentz peak. Besides, the full width at
half maximum (FWHM) of the examined 2D band is about 30 cm−1, in agreement with
monolayer graphene characteristics [26]. In contrast, we also present the 2D band spectra
of bilayer and trilayer graphene flakes in Figure S1 and Table S1. The FWHM for bilayer
graphene is about 54 cm−1 while it is 59 cm−1 for trilayer graphene. The FWHM deviations
of 2D band between these multiple layered graphene flakes are attributed to the variation
in their electronic band structures. For this reason, the 2D band can be used as a sensitive
probe to identify the number of graphene layers [27]. Furthermore, the thickness of
graphene flake could also be distinguished by the intensity ratio of the 2D band against
the G band [28,29]. Herein, it is found that the intensity of 2D band is twofold than that
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of G band, which testifies that the graphene flake is monolayered again. In a word, the
graphene flake supported on Si/SiO2 substrate is monolayered judged by its optical image,
AFM height profile and Raman spectrum.
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Figure 1. Basic characterizations of supported monolayer graphene. (a) Crystalline structure;
(b) Optical image; the scale bar is about 10 µm. (c) AFM image, inset is its affiliated height profile
and the scale bar is about 10 µm; (d) The Raman spectrum, inset is the magnified Raman 2D band.

To comprehend thermal annealing and thermal transport of supported monolayer
graphene, temperature-dependent Raman spectroscopy was conducted for supported
monolayer graphene flakes with various thermal annealing treatments (with thermal
annealing temperature 373 K, 473 K, 673 K, 773 K). The Raman spectra in Figure 2 shows
that the G band is shifted to a lower frequency as the ambient temperature ranges from
193 K to 303 K during Raman measurement, and the red shift of G band is universal for
these diversely annealed graphene flakes. The red shift can be ascribed to phonon-softening
induced by the increase of ambient temperature [30]. Comparison among Figure 2a–e
reveals the alteration in Raman mode of supported monolayer graphene, which is clearly
made by different thermal annealing temperatures. Overall, an obvious discrepancy of
redshift can be seen in G band for the graphene flakes, which is the same case with the
2D band in Figure S2. Unlike pristine monolayer graphene, a larger redshift of the G band
can be observed in the annealed monolayer graphene, due to the variation of strain and
coupling strength between monolayer graphene and the substrate induced by thermal
annealing. To understand the contribution of thermal annealing on thermal transport
property, the values of G band redshift were summarized as a function of thermal annealing
temperature illustrated in Figure 2f. The values for thermal annealing temperatures at
373 K and 473 K are comparable to the pristine value. When the annealing temperature
increases from 473 K to 773 K, a large discrepancy occurs in the G band redshift, which
uncovers the unusual influence of thermal annealing on thermal transport in supported
monolayer graphene.
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Figure 2. The temperature-dependent Raman spectra of G band for supported monolayer graphene
flakes with various thermal annealing processes. (a) Pristine; (b) Annealing at 373 K; (c) Annealing
at 473 K; (d) Annealing at 673 K; (e) Annealing at 773 K; (f) The evolution of G band redshift as a
function of thermal annealing temperature.

The Raman peak shifts are closely related to thermal transport in graphene. Former
experimental studies show that the measurement of thermal transport, including in-plane
thermal conductivity and interface thermal conductivity, is based on either 2D peak shift
or G peak shift via Raman thermometry [2,9,23,24]. Thus, we investigate the Raman peak
shifts of G band in detail to understand the thermal transport of supported monolayer
graphene. Figure 3 shows the extracted G band positions versus Raman ambient tempera-
tures for a series of thermal annealing graphene flakes. It can be observed that the G peak
positions of all the supported monolayer graphene flakes are linear against Raman ambient
temperatures. The relation of G band peak position versus ambient temperature may be
linearly fitted as [7,31]

ω(T) = ω0 + χT (1)

where ω0 is the G peak position at 0 K and χ is the first-order temperature coefficient
of the G band. The χ of G band is equal to the slope in fitting peak position and ambi-
ent temperature. It is noticed that some data points are different to the fitting curves in
Figure 3a–e, which is possibly ascribed to the local temperature variation in the Raman
cooling stage. The Raman temperature coefficient χ varies with thermal annealing tem-
perature in Figure 3f. χ for 373 K and 473 K annealing processes are comparable to the
pristine value. Nevertheless, a sharp rise in χ (−0.0602 cm−1/K) can be observed for
773 K thermal annealing temperature, which is twice than that of the unannealed pristine
monolayer graphene (−0.03 cm−1/K). The reason for this tendency will be discussed in
the following sections. The observed enhancement in Raman temperature coefficients
may be contributed to by the anharmonicity scattering effect of phonon and the thermal
expansion during ambient temperature increase [30]. The similar phenomenon has also
been observed in χ of 2D band (Figure S3).
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673 K; (e) Annealing at 773 K; (f) The extracted temperature coefficients of monolayer graphene
under different annealing temperatures.

To pinpoint the root reason for the observed enhancement in temperature coefficient
and to interpret the discrepancy induced by thermal annealing, we then attempt to investi-
gate the thermal annealing mechanism from coupling strength of supported monolayer
graphene and substrate. It is known that the thermal annealing can significantly enhance
the degree of coupling strength for monolayer graphene supported on Si/SiO2 substrate
due to the removal of H2O molecules. According to a previous report, the coupling strength
is associated with strain [15]. Little strain results from the weak coupling strength during
the thermal annealing process. As studied in previous reports [32,33], the water molecules
from moisture in the atmosphere is easily trapped inside graphene and the substrate
during mechanical exfoliation, resulting in the existence of water molecules at the inter-
face between graphene and substrate. Generally, the interlayer water molecules between
graphene and substrate exist as long as the graphene is mechanically exfoliated. Thus, there
exist a few H2O molecules between graphene and substrate for the initially mechanical
exfoliated graphene flake, as depicted in the schematic image (Figure 4a). Considering the
lower adhesion energy of graphene/water/SiO2 compared to graphene/SiO2, these water
molecules can be easily removed via thermal annealing. Thereby, a notable increase in
coupling strength and strain would occur in the contact area between monolayer graphene
and substrate, accompanied by the removal of water molecules and the enhancement of
interfacial-phonon scattering. Except for strain, the ability of p-type charge carrier transfer
and substrate doping also decreases during the thermal annealing process, as ascribed to
the reduced reactivity of graphene. Based on the discussion mentioned above, strain, p-type
charge carrier density or substrate doping may be the main reason for the enhancement of
temperature coefficient. To completely exclude the influence of the substrate doping effect,
we characterized the temperature-dependent Raman spectroscopy to monolayer graphene
supported on a BN substrate, as presented in Figure S6. The temperature coefficient of
monolayer graphene on BN substrate (0.031 cm−1/K) is comparable to that on Si/SiO2
substrate (0.030 cm−1/K), indicating that the temperature coefficient shows no obvious
reliance on the type of substrate. Additionally, previous literature shows that the ratio of
Raman 2D and G peak shift induced by thermal annealing can serve as an effective probe
to reveal the roles of p-type charge carrier density and strain [15]. Thus, we also plotted the
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Raman peak positions of G and 2D band as a function of ambient temperature in Figure 4b
and the two distinctive slopes are consistent with previous reports [34,35]. Table S2 sum-
marizes the extracted temperature coefficients of Raman G and 2D band for supported
monolayer graphene flakes upon different thermal annealing processes, respectively. The
ratio of temperature coefficient for G and 2D band ( ∆ω2D

∆ωG
) is approximately 2, which does

not change with various thermal annealing processes (annealing at 373 K, 473 K, 673 K,
773 K), indicating that strain is the dominant role here, instead of p-type charge carrier
density [15].
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Additionally, the rising of temperature coefficient is believed to be ascribed to strain
instead defects upon 673 K and 773 K annealing, because there exists little or no D peak
in the Raman spectrum (Figure S4). As reported in a previous study, the intrinsic an-
harmonicity and thermal expansion strain make joint efforts for the Raman peak shift
induced by thermal annealing [36]. Thus, we have ∆ωtotal = ∆ωinstrinsic + ∆ωstrain, as
illustrated in Figure 4c. For monolayer graphene flakes annealed at 373 K and 473 K, the
contribution of strain on Raman peak shifts is small, indicating weak coupling strength
between monolayer graphene and substrate. For those, the Raman peak shifts are mainly
ascribed to intrinsic anharmonicity. In other words, the relatively lower thermal annealing
temperature plays a negligible role on the coupling strength and generates little or no
strain. In contrast, the higher thermal annealing temperatures (673 K and 773 K) bring great
enhancement in temperature dependency of Raman peak shift, which should be ascribed to
the additional impact from ∆ωstrain besides ∆ωinstrinsic. This tendency is the same as that
in Figures 2f and 3f. Theoretical research testifies that the enlarged temperature coefficient
arises from the opposite thermal expansions of graphene (negative) and the substrate
(positive) [15].

In order to identify the strain upon different thermal annealing processes, we have
systematically analyzed the G band of supported monolayer graphene flakes after thermal
annealing. The evolution of G band in different thermal annealing processes is shown
in Figure 5a–d. An obvious finding is that the G bands of all the supported monolayer
graphene flakes are shifted to higher frequencies after annealed in a vacuum. Furthermore,
a larger discrepancy of blue shift can be observed for supported monolayer graphene as the
thermal annealing temperature increases. The G band blue shift keeps almost unchanged
upon lower thermal annealing temperatures (373 K, 473 K), while it rises sharply as the
thermal annealing temperature rises from 473 K to 773 K. According to the literature and
discussion above, the blue shift of the G band can be attributed to compressive stress or
p-type charge doping upon the thermal annealing process [16]. To tell the true mechanism
of thermal annealing, we also analyze the bandwidth of G band. As shown in Figure 5a–d,
the bandwidth also fluctuates around 3 cm−1, which is smaller than the bandwidth of
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10 cm−1 induced by charge doping [37,38]. Thus, the charging doping should be excluded
in our experiment, which is the same as was discussed earlier in Figure 4. On the other hand,
the 2D band blueshift is further evidence to identify the presence of p-type charge doping
or substrate doping, as reported by Yan et al. [38] and Pisana et al. [37] It was found that
there was a very small influence in p-type charge doping on 2D band blueshift. However,
the 2D band is blueshifted by ~15 cm−1 in Figure S5 and Table S2 in our experiment.
Consequently, the large blueshift induced by thermal annealing cannot be attributed to
p-type charge doping or substrate doping. Thus, the compressive stress should be the main
reason for the blueshift of G and 2D band in supported monolayer graphene upon different
thermal annealing temperatures.
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Figure 5. The G band Raman spectra measured at room temperature of supported monolayer
graphene after thermal annealing at different temperatures. (a–d) The Raman spectra annealing at
373 K, 473 K, 673 K, 773 K; (e) The relationship between G band blue shift and thermal annealing
temperature; (f) The calculated compressive stress on monolayer graphene after different thermal
annealing processes.

The compressive stress is originated from the lattice mismatch at graphene and sub-
strate interface induced by thermal annealing. Therefore, the generated stress should be
biaxial. By analyzing the blue shift of Raman G band, the value of biaxial compressive
stress can be estimated. In hexagonal system, the strain ε induced by biaxial stress σ can be
described with the following equation [16,39,40],

εxx
εyy
εzz
εyz
εzx
εxy

=


S11 S12 S13 0 0 0
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S13 S13 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
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σ
σ
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0
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Considering the x and y axes in graphene plane and the z axis perpendicular to the
plane, we get εxx = εyy = (S11 + S12)σ, εzz = 2S13 σ, εyz = εzx = εxy = 0. As the shear
strain equals to zero, the secular equation can be simplified as∣∣∣∣ A

(
εxx + εyy

)
− λ B

(
εxx − εyy

)
B
(
εxx − εyy

)
A
(
εxx + εyy

)
− λ

∣∣∣∣ = 0 (3)

where λ = ω2
σ − ω2

0, ωσ and ω0 is the frequencies of Raman E2g phonon (G mode) upon
stressed and unstressed conditions. The solution for this equation can be written as

λ = A
(
εxx + εyy

)
= 2Aεxx = 2A(S11 + S12)σ (4)

Thus,

ωσ − ω0 =
λ

ω0τ + ω0
≈ λ

2ω0
=

A(S11 + S12)σ

ω0
= ασ (5)

where α is the stress coefficient. Since A = −1.44 × 107cm−2 and graphite elastic constants
S11 = 0.98 × 10−12 Pa−1 and S11 = 0.16 × 10−12 Pa−1, and ω0 = 1580 cm−1, the estimated
stress coefficient α is ~7.47 cm−1/GPa. Figure 5f shows the calculated compressive stress
of supported monolayer graphene upon different thermal annealing process according
to the estimated α. This result clearly indicates that raising annealing temperature can
lead to the enhancement of compressive stress. As the monolayer graphene anneals at
773 K, the generated compressive stress is appropriately 2.02 GPa, which is much larger
than that of pristine monolayer graphene. The calculated compressive stress is close to
a previous report [16]. Such a phenomenon proves that the enhanced compressive stress
has a great influence on the thermal transport characteristics of supported monolayer
graphene, as discussed in a previous section. However, the compressive stress at lower
thermal annealing temperature stages (373 K, 473 K) shows a slower variation, sharing the
same tendency of temperature coefficient variation in our experiment.

The relationship between compressive stress and annealing temperature can be fitted as:

σ = −0.0155 +
(

2.36 × 10−3
)

T +
(

5.17 × 10−6
)

T2 (6)

where σ and T represent the compressive stress and temperature, respectively. This
enhanced compressive stress upon thermal annealing mainly comes from the fact that
monolayer graphene is easily compressed or expanded owing to the ultra-thin thickness of
monolayer graphene (0.325 nm). It is worth noting that the compressive stress induced by
thermal annealing can improve the thermal transport of monolayer graphene significantly.
These results are similar to our earlier discussion on the variation of temperature coefficient,
further demonstrating the important compressive stress effect on thermal transport of
graphene. Therefore, stress should be the main reason affecting the thermal transport of
monolayer graphene upon different annealing temperature.

4. Conclusions

In summary, we systematically investigated the thermal annealing temperature-
dependent phonon modes of monolayer graphene supported on substrate by Raman
spectroscopy with ambient temperature ranging from 193 K to 303 K. As the ambient
temperature rises up, the Raman peak position of G mode is redshifted due to phonon
softening. Moreover, such a redshift is observed commonly for monolayer graphene
samples upon different thermal annealing treatment. Especially for 773 K annealing, the
temperature coefficient suddenly surges to −0.0602 cm−1/K, which is twofold than that
of pristine monolayer sample without any thermal annealing. The influence from ther-
mal annealing on the temperature coefficient of supported monolayer graphene might
be attributed to the increased coupling strength and enhanced compressive stress. As an
evidence, the corresponding Raman analysis also shows that the compressive stress in
annealed monolayer graphene can reach up to 2.02 GPa. Our finding proposes thermal
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annealing as an alternative route to regulate the thermal transport and heat dissipation of
supported graphene and other 2D material devices.
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10.3390/nano11102751/s1, Figure S1: The Raman spectra of different layer graphene, Figure S2:
The temperature-dependent Raman spectra of 2D band for supported monolayer graphene flakes
with various thermal annealing processes, Figure S3: The temperature coefficients of 2D band
for supported monolayer graphene flakes with various thermal annealing processes, Figure S4:
The Raman spectra of supported monolayer graphene with various thermal annealing process,
Figure S5: The Raman spectra of supported monolayer graphene after thermal annealing at different
temperatures, Figure S6: The temperature-dependent Raman spectra of monolayer graphene on BN,
Table S1: the full width at half maximum (FWHM) of 2D band for different layer graphene, Table S2:
The summary of Raman peak shift.
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