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Abstract

Introduction

Oxylipins are bioactive oxidation products derived from n-6 and n-3 polyunsaturated fatty

acids (PUFAs) in the linoleic acid and α-linolenic desaturation pathways.

Purpose

This study determined if carbohydrate intake during prolonged and intensive cycling coun-

tered post-exercise increases in n-6 and n-3 PUFA-derived oxylipins.

Methods

The research design utilized a randomized, crossover, counterbalanced approach with

cyclists (N = 20, overnight fasted state, 7:00 am start) who engaged in four 75-km time trials

while ingesting two types of bananas (Cavendish, Mini-yellow), a 6% sugar beverage, and

water only. Carbohydrate intake was set at 0.2 g/kg every 15 minutes, and blood samples

were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise.

Oxylipins were measured with a targeted liquid chromatography-multiple reaction monitor-

ing mass spectrometric method.

Results

Significant time effects and substantial fold-increases (immediately post-exercise/pre-exer-

cise) were measured for plasma levels of arachidonic acid (ARA), eicosapentaenoic acid

(EPA), docosahexaenoic acid (DHA), and 43 of 45 oxylipins. Significant interaction effects

(4 trials x 8 time points) were found for plasma ARA (P<0.001) and DHA (P<0.001), but not

EPA (P = 0.255), with higher post-exercise values found in the water trial compared to the

carbohydrate trials. Significant interaction effects were also measured for 12 of 45 oxylipins.
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The data supported a strong exercise-induced increase in plasma levels of these oxylipins

during the water trial, with carbohydrate ingestion (both bananas types and the sugar bever-

age) attenuating oxylipin increases, especially those (9 of 12) generated from the cyto-

chrome P-450 (CYP) enzyme system. These trials differences were especially apparent

within the first three hours of recovery from the 75-km cycling bout.

Conclusions

Prolonged and intensive exercise evoked a transient but robust increase in plasma levels of

oxylipins, with a significant attenuation effect linked to acute carbohydrate ingestion for 28%

of these, especially those generated through the CYP enzyme system.

Trial registration

ClinicalTrials.gov, U.S. National Institutes of Health, NCT02994628

Introduction

Oxylipins are bioactive oxidation products derived from n-6 and n-3 polyunsaturated fatty

acids (PUFAs) in the linoleic acid and α-linolenic desaturation pathways [1–3]. Oxylipins are

not stored due to their potency, and are instead synthesized de novo in a tightly regulated

manner [4]. Membrane phospholipid PUFAs are first released by phospholipase A2 (PLA2) in

response to cell activation from various stress-related stimuli including injury or inflamma-

tion. Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzyme sys-

tems metabolize the released PUFAs into numerous and diverse oxylipins that act as autocrine

and paracrine lipid mediators by binding to cell surface G protein-coupled receptors or to

multiple intracellular and nuclear receptors such as peroxisome proliferator-activated recep-

tor-γ (PPAR- γ) [4].

Recent advances in mass spectrometry equipment and analytical capacities have increased

awareness of the vital regulatory roles of oxylipins in numerous physiological processes includ-

ing cardiac function, vascular tone, blood coagulation, innate immune function, and inflam-

mation [1,2,5]. The influence of various exercise workloads and diet interventions, obesity,

and various disease states on oxylipin generation is an emerging field of scientific endeavor

[6–10]. There is a growing awareness that metabolic, lifestyle, environmental, and physiologi-

cal stresses can turn oxylipins from beneficial signaling agents into mediators of immune dys-

function, chronic inflammation, and other unfavorable responses [1,11–13].

Exercise-induced inflammation, oxidative stress, and muscle tissue injury result in a robust

immune response involving granulocytes, monocytes, macrophages, and lymphocytes [14].

Limited evidence indicates that oxylipins are involved to some degree in regulating the tran-

sient immune and physiological responses to acute exercise bouts [15–18]. Each of the 12

PUFAs in the linoleic and ALA pathways is mobilized strongly from adipose tissue stores dur-

ing intensive and prolonged exercise [19–23]. At the same time, a large number of exercise-

related oxylipins are produced, many of which are stable enough to be measured in plasma

during several hours of recovery.

In the first paper from this study, we reported that carbohydrate intake from bananas and

the sugar beverage compared to water was associated with higher post-exercise plasma glucose

and fructose, and lower biomarkers for inflammation including leukocyte counts, plasma 9-

and 13-hydroxy-octadecadienoic acid (9+13 HODES), and IL-6, IL-10, and IL-1ra [24].

Carbohydrate and post-exercise oxylipins
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Carbohydrate compared to water intake also resulted in an extensive reduction in post-exer-

cise shifts in numerous lipid super-pathway metabolites including ketones, glycerol, long-

chain fatty acids, and 9,10 dihydroxy-octadecenoic acid (9,10-DiHOME) [20,24]. Linoleic acid

is a direct precursor to 9+13 HODEs and 9,10-DiHOME which are stable and abundant oxyli-

pin products in human plasma. 9+13 HODEs have emerged as important indicators of oxida-

tive stress and inflammation following stressful exercise and in a wide variety of pathological

conditions [22–25].

We sought to determine if carbohydrate intake during exercise countered other PUFA-

derived oxylipins, a likely finding given their important immune and inflammation regulatory

roles. One potential mechanism for the influence of carbohydrate intake on lipid-related

metabolites during exercise is the associated increase in insulin that inhibits tissue triacylgly-

cerol lipase, hormone sensitive lipase, and PLA2, thus reducing triacylglycerol breakdown and

the release of free fatty acids into circulation [26,27]. Prolonged exercise increases PLA2 activ-

ity in muscle tissue, and the potential countermeasure influence of acute carbohydrate inges-

tion through related increases in insulin and other factors should result in a reduced release of

oxylipins and inflammatory lipid mediators.

Materials and methods

The protocol for this trial and supporting Consolidated Standards of Reporting Trials (CON-

SORT) checklist are available as Protocol S1 and Checklist S1, and were also included in the

first publication [24]. Participants signed informed consent and study procedures were

approved (24 February 2016, with closure on 11 November 2016) by the Institutional Review

Board at Appalachian State University. Data were collected at the Human Performance Labo-

ratory at the North Carolina Research Campus in Kannapolis, NC. The study was first submit-

ted to ClinicalTrials.gov on November 24, 2015, but due to a communication error between

the IRB office and the primary investigator, the ClinicalTrials.gov submission was not cor-

rected, approved, and posted until December 16, 2016. The authors confirm that all ongoing

and related trials for this intervention are registered.

Information regarding study participants (N = 20 male and female cyclists, ages 22–50

years) and the research design were included in the first publication [24]. Briefly, this study uti-

lized a randomized, crossover, counterbalanced approach with overnight fasted cyclists who

engaged in the four 75-km time trials (2-week washout) while ingesting two types of bananas

with similar carbohydrate content (Cavendish, mini-yellow), a 6% sugar beverage, and water

only (Fig 1). Carbohydrate intake was set at 0.2 g/kg every 15 minutes. The volume of mini-yel-

low banana consumed was adjusted for the 5.4% higher sugar content, and the 6% sugar bever-

age was formulated with the same ratio of sucrose, fructose, and glucose (2:1:1) measured in

freeze-dried Cavendish bananas pre-, mid- and post-study (Ultra-High Performance Liquid

Chromatography, Refractive Index Detection, Agilent 1200 series, Santa Clara, CA). Blood

samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exer-

cise. The pre-exercise, 21 h- and 45 h-post-exercise samples were obtained from participants at

~7:00 am in an overnight fasted and rested state. No other restrictions on eating or exercise

habits were applied during the two recovery days. During the 10-week period when data were

being collected, participants maintained their typical training regimen, and avoided the use of

vitamin and mineral supplements, herbs, and medications.

Oxylipin analysis

Oxylipins were analyzed using a recently published liquid chromatography-multiple reaction

monitoring-mass spectrometry (LC-MRM-MS) method which measures 131 endogenous

Carbohydrate and post-exercise oxylipins
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oxylipins [28]. Briefly, 5 μL mixtures of deuterated oxylipin standards (Cayman Chemical,

Ann Arbor, MI, USA) were spiked into 200 μL aliquot of human plasma collected from each

study participant. The sample mixture was cleaned with 96-well HLB SPE cartridges (30 mg,

Fig 1. Study participant flow diagram. WAT = water trial; MIY = mini-yellow banana trial; CAV = Cavendish banana

trial; SUG = sugar beverage trial. Four study participants randomized into the study failed to complete all four arms of

the study (three due to changes in personal schedules and one to a training-related injury).

https://doi.org/10.1371/journal.pone.0213676.g001
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Waters, Milford, MA) to remove proteins. The resultant eluents were dried and reconstituted

in 50 μL of 50% methanol for the following LC-MRM-MS analysis.

LC-MRM-MS analysis was performed on a Vanquish UHPLC coupled with a Quantiva tri-

ple quadrupole mass spectrometer (Thermo Fisher Scientific, Haverhill, MA). A HSS T3 col-

umn (100 x 2.1 mm, 1.8 μm, Waters, Milford, MA) was employed for separation of analytes.

MS parameter settings for MRM transitions and electrospray ionization as well as LC separa-

tion gradient settings were described in detail previously [28].

LC-MRM-MS datasets were processed with TraceFinder 4.1 (ThermoFisher Scientific), and

the auto-integrated peaks were inspected manually. Concentrations of each oxylipin were

determined from calibration curve of each analyte, which was constructed by normalizing to

the selected deuterated internal standards followed by linear regression with 1/x weighting. A

total of 45 oxylipins were quantified with less than 5% missing data, and 0.001 (mean LOQ for

oxylipins with missing data) was substituted for missing values. Table 1 provides a list of the

abbreviations and formal names for the 45 oxylipins, the fatty acid substrate, and the associated

enzyme system. See also S1 Table.

Statistical analysis

Data are presented as mean±standard error (SE). The study participant number (N = 20) pro-

vided 84% power to detect a difference with an effect size 0.7 at alpha 0.05 using two sided

paired t-tests. Data were checked for normality of the residuals using Q-Q plots. Oxylipin data

were analyzed using the generalized linear model (GLM), and a 4 (condition) x 8 (time)

repeated-measures ANOVA, within-participants design (IBM SPSS Statistics for Windows,

Version 24.0, IBM Corp, Armonk, NY, USA). Changes over time within conditions were con-

trasted between trials using paired t-tests, with the alpha level set at P�0.0125. Principle compo-

nent analysis (PCA) and heatmap analysis of the data were performed with the R programming

language (https://www.r-project.org/, version 3.3.1). The pheatmap package (1.0.8) was used to

generate the heat map using Z scores (https://cran.r-project.org/web/packages/pheatmap/).

Results

The analysis included 20 male cyclists (14 males, 6 females) who successfully adhered to all

aspects of the study design. Study participant characteristics and performance data for the four

75-km cycling bouts are described in the first paper published in this journal [24]. Briefly, the

average age of the study participants was 39.1±2.4 years, with a VO2max of 46.9±1.9 ml.kg.-1

min-1 and body fat of 19.3±1.5%, with no significant differences between male and female

cyclists. Performance times (180±4.4 minutes, average of the four trials), absolute oxygen con-

sumption (2.50±0.9 L/min), heart rates (141±3.0 beats/minute), the rating of perceived exer-

tion (RPE) (13.6±0.3), and plasma volume shift (-11.1±1.3%) did not differ during the two

banana and sugar beverage trials compared to the water condition.

Fig 2 depicts the PCA analysis for samples across the four trials during the first 1.5 h recov-

ery. The data indicate a distinct difference between the water trial and the three carbohydrate

trials (two banana trials and the sugar beverage trial).

Fig 3 depicts the fold-increases (immediately post-exercise/pre-exercise) for plasma levels

of ARA, EPA, DHA, and 45 oxylipins. Significant time effects (P<0.05) were measured for

each except 5-oxo-ETE (P = 0.139) and tetranor PGDM (P = 0.267).

Fig 4 depicts trial differences over time for three of the oxylipin substrate lipids: ARA, EPA,

and DHA. Significant interaction effects were found for plasma ARA (P<0.001) and DHA

(P<0.001), but not EPA (P = 0.255), with higher post-exercise values found in the water trial

compared to the carbohydrate trials.

Carbohydrate and post-exercise oxylipins
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Table 1. Abbreviations, formal names, substrate sources, and enzyme systems for the 45 oxylipins detected in this analysis.

Abbreviation Formal name Substrate Enzyme system

5-iso PGF2αVI (8ß)-5,9α,11α-trihydroxy-prostadienoic acid ARA Nonenzymatic

PGFM 13,14-dihydro-15-keto-prostaglandin F2α ARA COX/Nonenzymatic

TxB2 thromboxane B2 ARA COX

tetranor-PGDM 9α-hydroxy-dioxodihydrotetranor-prostandioic acid ARA COX

12-HHTrE 12-hydroxy-heptadecatrienoic acid ARA COX

18-HEPE 18-hydroxy-eicosapentaenoic acid EPA COX

5-HETE 5-hydroxy-eicosatetraenoic acid ARA LOX

8-HETE 8-hydroxy-eicosatetraenoic acid ARA LOX

9-HETE 9-hydroxy-eicosatetraenoic acid ARA LOX

11-HETE 11-hydroxy-eicosatetraenoic acid ARA LOX

12-HETE 12-hydroxy-eicosatetraenoic acid ARA LOX

15-HETE 5-hydroxy-eicosatetraenoic acid ARA LOX

tetranor 12-HETE 8-hydroxy-hexadecatrienoic acid ARA LOX

5-oxo-ETE 5-oxo-eicosatetraenoic acid ARA LOX

9-oxo-ODE 9-oxo-octadecadienoic acid Linoleic Acid LOX

13-oxo-ODE 13-oxo-octadecadienoic acid Linoleic Acid LOX

9-HODE 9-hydroxy-octadecadienoic acid Linoleic Acid LOX

13-HODE 13-hydroxy-octadecadienoic acid Linoleic Acid LOX

5-HETrE 5-hydroxy-eicosatrienoic acid Dihomo-γ-Linolenic Acid LOX

8-HETrE 8-hydroxy-eicosatrienoic acid Dihomo-γ-Linolenic Acid LOX

15-HETrE 15-hydroxy-eicosatrienoic acid Dihomo-γ-Linolenic Acid LOX

9-HOTrE 9-hydroxy-octadecatrienoic acid α-Linolenic Acid LOX

13-HOTrE 13-hydroxy-octadecatrienoic acid α-Linolenic Acid LOX

5-HEPE 5-hydroxy-eicosapentaenoic acid EPA LOX

12-HEPE 12-hydroxy-eicosapentaenoic acid EPA LOX

15-HEPE 15-hydroxy-eicosapentaenoic acid EPA LOX

4-HDoHE 4-hydroxy-docosahexaenoic acid DHA LOX

8-HDoHE 8-hydroxy-docosahexaenoic acid DHA LOX

10-HDoHE 10-hydroxy-docosahexaenoic acid DHA LOX

13-HDoHE 13-hydroxy-docosahexaenoic acid DHA LOX

14-HDoHE 14-hydroxy-docosahexaenoic acid DHA LOX

16-HDoHE 16-hydroxy-docosahexaenoic acid DHA LOX

17-HETE 17-hydroxy-eicosatetraenoic acid ARA CYP

20-HETE 20-hydroxy-eicosatetraenoic acid ARA CYP

8,9-DiHETrE 8,9-dihydroxy-eicosatrienoic acid ARA CYP

11,12-DiHETrE 11,12-dihydroxy-eicosatrienoic acid ARA CYP

14,15-DiHETrE 14,15-dihydroxy-eicosatrienoic acid ARA CYP

20-COOH-AA 20-carboxy arachidonic acid ARA CYP

18-HETE 18-hydroxy-eicosatetraenoic acid ARA CYP

19-HETE 19-hydroxy-eicosatetraenoic acid ARA CYP

9,10-DiHOME 9,10-dihydroxy-octadecenoic acid Linoleic Acid CYP

12,13-DiHOME 12,13-dihydroxy-octadecenoic acid Linoleic Acid CYP

9,10-EpOME 9,10-epoxy-octadecenoic acid Linoleic Acid CYP

20-HDoHE 20-hydroxy-docosahexaenoic acid DHA CYP

19,20-DiHDPA 19,20-dihydroxy-docosapentaenoic acid DHA CYP

https://doi.org/10.1371/journal.pone.0213676.t001
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The heat map (Fig 5) displays plasma oxylipin responses to exercise (ratios using pre-exer-

cise values) in each of the four trials. Z scores were used to display the data across rows. Signifi-

cant interaction effects using repeated measures ANOVA were measured for 12 of 45

oxylipins, and the data support a strong exercise-induced increase in plasma levels of these

oxylipins during the water trial, with carbohydrate ingestion (both bananas and the sugar bev-

erage) attenuating oxylipin increases, especially those (9 of 12) generated from the CYP

enzyme system. Of the 9 CYP-generated oxylipins attenuated post-exercise during the carbo-

hydrate trials, six were from ARA (18-HETE, 20-HETE, 20-COOH-AA, 8,9-DiHETrE,

Fig 2. PCA analysis of data during the first 1.5 h recovery from 75-km cycling. A). Immediately post-exercise; B). 0.75 h post-exercise;

C). 1.5 h post-exercise. The data support a distinct difference between the water trial and the three carbohydrate-based trials.

Blue = water trial; Red = sugar beverage trial; Green = Cavendish banana trial; Yellow = Mini-yellow banana trial.

https://doi.org/10.1371/journal.pone.0213676.g002

Fig 3. Ratio values (immediate post-exercise/pre-exercise) for N = 45 oxylipins, ARA, EPA, and DHA using data from the water trial. Significant time

effects (P<0.05) were measured for each except 5-oxoETE (P = 0.139) and tetranor PGDM (P = 0.267).

https://doi.org/10.1371/journal.pone.0213676.g003

Carbohydrate and post-exercise oxylipins
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Fig 4. A) Arachidonic acid (ARA; 20:4n-6), interaction effect, P<0.001; B) Eicosapentaenoic acid (EPA; 20:5n-3),

interaction effect, P = 0.255; C) docosahexaenoic acid (DHA; 22:6n-3), interaction effect, P<0.001. �P<0.0125, change

from pre-exercise in the water trial compared to the carbohydrate trials (sugar beverage, Cavendish and Mini-yellow

bananas combined). The X axis is on a continuous time scale, with blood sampling time points noted by the markers

on the line graphs. Lunch was served after the 1.5 h blood sample (i.e., at 4.25 h on the time scale).

https://doi.org/10.1371/journal.pone.0213676.g004

Carbohydrate and post-exercise oxylipins
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11,12-DiHETrE, 14,15-DiHETrE), two from DHA (20-HDoHE, 19,20-DiHDPA), and one

from linoleic acid (12,13-DiHOME).

Figs 6 and 7 depict trial differences over time for 6 of the 9 CYP-generated oxylipins. These

data support strong trial differences between the water and carbohydrate trials, especially

within the first three hours post-exercise.

Discussion

As reported previously [24], regardless of the carbohydrate source (bananas or the 6% sugar

beverage), carbohydrate intake at a rate of 0.2 g/kg every 15 minutes during 75 km cycling was

associated with higher post-exercise plasma glucose and fructose, reduced plasma cortisol lev-

els, diminished perturbation in lipid-related metabolites, and lower inflammation as assessed

by total leukocyte and neutrophil counts, 9+13 HODEs, and plasma IL-6, IL-8, IL-10, and IL-

1ra. In this analysis, we hypothesized that carbohydrate intake during exercise would attenuate

post-exercise increases in plasma levels of n-6 and n-3 PUFA oxylipins. The data supported

large post-exercise increases in plasma concentrations for 43 of 45 oxylipins, with a substantial

attenuation linked to carbohydrate intake (bananas and sugar beverage) for 28% of these, espe-

cially those generated from the CYP enzyme system. The carbohydrate influence was evident

during the first three hours of recovery from the 75-km cycling bout.

The oxylipin response to exercise is a new area of scientific endeavor, and the data from this

study indicate that prolonged and intensive aerobic exercise causes large increases in a diverse

range of plasma oxylipins generated from linoleic acid, dihomo-γ-linolenic, ARA, α-linolenic,

EPA, and DHA substrates through COX, LOX, and CYP enzyme systems. Post-exercise

Fig 5. Heat map displaying oxylipin responses to exercise (ratios using pre-exercise values) in each of the four

trials using Z scores. The data support a strong exercise-induced increase in plasma oxylipins during the water trial,

with carbohydrate ingestion attenuating oxylipin increases, especially those generated from the P-450 cytochrome

enzyme system. � P<0.05, interaction effect.

https://doi.org/10.1371/journal.pone.0213676.g005
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Fig 6. A) 18-HETE; B) 20-COOH-AA; C) 8,9-DiHETrE. �P<0.0125, change from pre-exercise in the water trial

compared to the carbohydrate trials (sugar beverage, Cavendish and mini-yellow bananas combined). The X axis is on

a continuous time scale, with blood sampling time points noted by the markers on the line graphs. Lunch was served

after the 1.5 h blood sample (i.e., at 4.25 h on the time scale).

https://doi.org/10.1371/journal.pone.0213676.g006
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Fig 7. A) 11,12-DiHETrE; B) 14,15-DiHETrE; C) 19,20 DiHDPA. �P<0.0125, change from pre-exercise in the water

trial compared to the carbohydrate trials (sugar beverage, Cavendish and mini-yellow bananas combined). The X axis

is on a continuous time scale, with blood sampling time points noted by the markers on the line graphs. Lunch was

served after the 1.5 h blood sample (i.e., at 4.25 h on the time scale).

https://doi.org/10.1371/journal.pone.0213676.g007
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plasma concentrations were highest for oxylipins generated from linoleic acid including

9,10-EpOME, 13-HODE, 9-HODE, 12,13-DiHOME, 9,10-DiHOME, 9-oxo-ODE, and

13-oxo-ODE, ARA (12-HETE, 20-COOH-AA, and 15-HETE), DHA (14-HDoHE), EPA

(12-HEPE), and α-linolenic acid (13-HOTrE). 9+13-HODEs are stable oxidized metabolites

that are secreted by a variety of cells and have been linked to multiple pathological conditions

[22,23,25]. 9+13-HODEs function as biomarkers for both oxidative stress and inflammation,

and respond to lifestyle interventions such as weight loss. 9,10- and 12,13-DiHOMEs are

PPAR ligands with wide-ranging effects including stimulation of neutrophil chemotactic activ-

ity [29,30]. The HODEs and DiHOMEs can be detected using global metabolomics because of

their high plasma concentrations, with targeted lipidomics required for most of the other oxy-

lipins measured in this study.

In accordance with other studies, the largest number of oxylipins following 75-km cycling

came from the n-6 PUFA substrate ARA, and these eicosanoids included at least 15 varieties of

HETEs and DiHETrEs from LOX and CYP enzymes [15–17,31]. Although more exercise-

based research is needed, the HETEs and DiHETrEs may have multiple potential roles during

exercise recovery including the regulation of leukocyte migration and chemotaxis, macro-

phage efferocytosis and tissue repair, inflammation, PPAR activation, vascular tone, and plate-

let regulation [1,32]. The post-exercise fold increases in plasma oxylipins measured in this

study far exceeded what has been reported following leg resistance exercise (3 leg exercises, 3

sets, 8–10 repetitions) [16].

The LC-MS/MS measurement system and assay utilized in this study can measure plasma

oxylipin concentrations down to the 1 pg/ml level [28]. Despite having standards for most of

the important specialized pro-resolving mediators (SPMs), none were detected in pre- and

post-exercise samples except for a small number with maresin-1 (post-exercise). Although

omega-3-derived SPMs have a well-defined role in inflammation resolution, these oxylipins

may not accumulate in the plasma or tissue during and following exercise. SPMs are involved

in the movement and function of neutrophils and macrophages [5]. Neutrophils accumulate

in muscle tissue soon after intensive exercise, rapidly undergo apoptosis, and are cleared by

macrophages [14,33]. This process involves the simultaneous integration of many different sig-

naling processes, of which SPMs are just one. Our data indicate that SPMs do not accumulate

in plasma even after prolonged and intensive cycling, and more research is needed at the mus-

cle tissue level to determine if SPMs play a role in inflammation resolution in endurance-

trained study participants.

COX enzymes generate a variety of prostaglandins and thromboxanes from ARA, EPA,

adrenic acid, and dihomo-γ-linolenic acid including 1-, 2-, 3- and dihomo-2-series prosta-

noids [2]. ARA is the substrate utilized by the COX pathway to generate PGG2 which is quickly

converted to PGH2, and then other oxylipins including PGD2, PGE2, PGI2, PGA2, PGF2α,

PGB2, PGI2, TxA2, TxB2, and multiple downstream metabolites. Despite the importance of

prostaglandins and thromboxanes as signaling molecules in muscle during recovery from

intensive exercise [17,18], and the accurate and reliable LC-MRM-MS system used in this

study, only four COX-ARA metabolites were detectable in plasma including TxB2 (the inactive

metabolite of TxA2), PGFM (rapidly metabolized from PGF2α), tetranor PGDM (major metab-

olite of PGD2), and 12-HHTrE (produced from PGH2 with TxA2). A variety of prostaglandins

have been measured in post-exercise muscle biopsy samples, with some reporting elevations in

plasma for PGE2 and other prostaglandins using ELISA-based methods [17]. LC-MRM-MS is

the best current methodology for measuring COX-ARA metabolites [28], and our data indi-

cate that little accumulation of these metabolites occurred in human plasma following the

cycling bout. We previously reported that banana ingestion during 75-km cycling increased

post-exercise plasma levels of banana metabolites that were linked to a reduction in COX-2
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mRNA expression in cultured THP-1 monocytes [24]. We expected to see reductions in

plasma COX-ARA metabolites in the banana versus water and carbohydrate trials, but the

data did not support this hypothesis, in part due to the limited presence of these metabolites in

plasma following vigorous and prolonged cycling.

Carbohydrate intake strongly countered the mobilization of ARA and DHA, and the gener-

ation of oxylipins through the CYP enzyme system following the 75-km cycling bout. This is a

novel finding that will require additional research to determine underlying mechanistic path-

ways. The findings imply that PLA2 and CYP activities were reduced with carbohydrate intake

during and after exercise when blood sugars and insulin were higher, and inflammatory cyto-

kines such as IL-6 and IL8 were lower, compared to the water trial. PLA2 is a group of enzymes

that hydrolyze phospholipids to yield fatty acids and lysophospholipids, and are the initial,

rate-limiting step of ARA metabolism leading to the production of bioactive lipid mediators

[34]. Cytosolic PLA2 (cPLA2) exhibits preference for hydrolysis of ARA from phospholipid

substrates, and expression is induced through a number of signaling pathways activated by

acute exercise including MAPK/ERK (mitogen-activated protein kinases/ extracellular signal-

regulated kinases), and transcriptional activators such as nuclear factor-kappa B (NF-κB) and

proinflammatory cytokines [35,36]. Post-exercise plasma ARA levels were significantly

reduced with carbohydrate intake, and these data imply that PLA2 activity was attenuated, per-

haps in part due to higher glucose and insulin levels as extrapolated from diabetes-based inves-

tigations [26,37]. In a previous study conducted by our research group utilizing the same

exercise model, we showed that serum insulin levels increased 29% after 75-km cycling with

carbohydrate compared to a decrease of 28% with water only [20].

The epoxyeicosatrienoic acids (EETs) are formed by the metabolism of ARA by a specific

subset of CYP enzymes called epoxygenases. The EETs are rapidly converted to dihydroxy-

eicosatrienoic acids (DiHETrEs) by soluble epoxide hydrolase (sEH), and is consistent with

our findings that showed no accumulation of EETs in the cyclists’ post-exercise plasma [38].

The influence of exercise on CYP epoxygenases and sEH is currently unknown, but the data

from this study suggest increased sEH activity with exercise that can be largely negated

through carbohydrate intake. In comparison to the cardio-protective and anti-inflammatory

actions of EETs, DiHETrEs exert proinflammatory effects and promote the chemotaxis

response of human monocytes to MCP-1 [39]. Thus the sizeable countermeasure effect of car-

bohydrate intake on post-exercise plasma levels of DiHETrEs is consistent with other related

anti-inflammatory responses (e.g, reductions in blood neutrophils, IL-6, and other cytokines).

EETs play a role in reducing, resolving, and limiting inflammation, and EET activity may

increase with carbohydrate intake during exercise as less is converted by sEH to DiHETrEs.

The activation of EET activity through sEH inhibition is an active area of research due to other

related benefits in glucose metabolism, insulin sensitivity, endothelial function, and lipid

metabolism [10].

Conclusions and application

Prolonged and intensive exercise evoked a transient but robust increase in plasma levels of

numerous and diverse oxylipins, with a strong attenuation effect linked to acute carbohydrate

ingestion for those generated through the CYP enzyme system. The data support both exercise

and carbohydrate intake influences on PLA2, CYP epoxygenases, and sEH enzyme activities,

but this must be verified in future investigations. There are multiple proposed roles for oxyli-

pins during recovery from prolonged and intensive exercise, and the large effect of acute car-

bohydrate ingestion in lowering CYP-generated lipid mediators (including DiHETrEs) may

promote EET anti-inflammatory responses and improved metabolic recovery. SPMs were not
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detected reliably in the plasma samples of the cyclists, calling into question their importance in

resolving inflammation after heavy exertion.
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