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Abstract

Background

Precise incidence prediction of Hepatitis infectious disease is critical for early prevention

and better government strategic planning. In this paper, we presented different prediction

models using deep learning methods based on the monthly incidence of Hepatitis through a

national public health surveillance system in China mainland.

Methods

We assessed and compared the performance of three deep learning methods, namely,

Long Short-Term Memory (LSTM) prediction model, Recurrent Neural Network (RNN) pre-

diction model, and Back Propagation Neural Network (BPNN) prediction model. The data

collected from 2005 to 2018 were used for the training and prediction model, while the data

are split via 5-Fold cross-validation. The performance was evaluated based on three met-

rics: mean square error (MSE), mean absolute error (MAE), and mean absolute percentage

error (MAPE).

Results

Among the year 2005–2018, 20,924,951 cases and 11,892 deaths were supervised in the

system. Hepatitis B (HB) is the most disease-causing incidence and death, and the propor-

tion is greater than 70 percent, while the percentage of the incidence and deaths is

decreased much in 2018 compared with 2005. Based on the measured errors and the

visualization of the three neural networks, there is no one model predicting the incidence

cases that can be completely superior to other models. When predicting the number of inci-

dence cases for HB, the performance ranking of the three models from high to low is LSTM,

BPNN, RNN, while it is LSTM, RNN, BPNN for Hepatitis C (HC). while the MAE, MSE and

MAPE of the LSTM model for HB, HC are 3.84*10−06, 3.08*10−11, 4.981, 8.84*10−06,

1.98*10−12,5.8519, respectively.
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Conclusions

The deep learning time series predictive models show their significance to forecast the Hep-

atitis incidence and have the potential to assist the decision-makers in making efficient deci-

sions for the early detection of the disease incidents, which would significantly promote

Hepatitis disease control and management.

Introduction

Hepatitis is an inflammation of the liver tissue, and it is a worldwide disease with a high mor-

tality rate [1], which can sometimes progress to fibrosis, cirrhosis or liver cancer. The most

common causes of hepatitis worldwide are viruses, while other causes involve heavy alcohol

use, toxins, autoimmune diseases, etc. [2]. There are five main types of viral hepatitis: type A,

B, C, D and E, while all of them cause liver disease in different ways [2]. Hepatitis A (HA) is an

infectious disease of the liver caused by Hepatovirus A, presents in the feces of infected people,

and is often transmitted via consumption of contaminated food or water (via fecal-oral route).

The incubation period of HA is around 2–6 weeks [3]. Hepatitis B (HB) is an infectious disease

caused by the hepatitis B virus affecting the liver, which is transmitted via exposure to infective

blood, semen, and other body fluids, while it can be transmitted from infected mother to baby

during pregnancy or childbirth. The incubation period of HB is about 30 to 180 days [4]. Hep-

atitis C (HC) is an infectious disease caused by the hepatitis C virus mainly influencing the

liver, which is mostly transmitted via infective blood, while less possibility via sexual transmis-

sion. The incubation period of HC is around 1 to 3 months [5]. Hepatitis D (HD) can only

infect people already infected with hepatitis B [6], while Hepatitis E (HE) is inflammation of

the liver caused by the infection from hepatitis E virus, which is mainly transmitted via con-

sumption of contaminated water or food (via fecal-oral route). The incubation period of HE is

about 15 to 60 days [7]. HA and HE behave similarly that do not lead to chronic hepatitis,

which are common in developing countries. HB and HC can be either acute or chronical,

while HB infection is most commonly self-limiting in adults and frequently leads to chronic

infection in kids, but HC is usually leads to chronic infection [8]. According to the World

Health Organization (WHO), viral hepatitis caused 1.34 million deaths, and the number of

deaths due to hepatitis is increasing, while the majority of the deaths are caused by chronic

liver disease (0.72 million by cirrhosis and 0.47 by hepatocellular carcinoma) in 2015 [9]. Hep-

atitis leads to more than a million deaths a year while most of the deaths are indirectly caused

by liver scarring or liver cancer [10]. In some underdeveloped areas, Hepatitis is still a life-

threatening infectious disease, while the occurrence of infectious diseases having their own

rules is often influenced by the speed of pathogen variation, accumulation of susceptibility,

and environmental changes [11]. Early identification of epidemic rules is vital for the preven-

tion and hepatitis control [12].

Therefore, public health surveillance systems are established to facilitate the monitoring of

infectious diseases, while the goal is to monitor and forecast the trends to minimize morbidity

and mortality [13]. Different statistical methods are proposed for predicting infectious disease

incidence [14–17]. Among these models, there are some drawbacks for time series analysis

and regression analysis to find out the epidemic rules due to their relationship complexity [12,

18]. Artificial neural networks (ANN) can approximately identify the rules due to the charac-

teristics of robustness, fault tolerance, and adaptive learning ability, thus they have been widely

adopted for time series forecasting to efficiently obtain nonlinear relationships from the data

[19, 20]. Among ANN models, there are three models are commonly adopted methods for
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classification and nonlinear regression problems: the back-propagation neural network

(BPNN), the recurrent neural network (RNN), and the long short-term memory (LSTM) [21–

23]. BPNN is a type of backward propagation of errors and multilayered feed-forward neural

networks, which is commonly adopted in engineering, weather prediction areas, etc.[24, 25].

There are also some scholars adopting BPNN to predict Hepatitis A incidence [12].

RNN is a sub-class of ANN using hidden variables as a memory to capture temporal depen-

dencies between system and control variables, which is widely adopted in sequence learning

problems [26] and language processing with good performance [27]. LSTM is a type of RNN

comprising a cluster of recurrent connected subnets to allow it can deal with the exploding

and vanishing gradient problems, which is widely used in handwriting recognition, and voice

recognition, etc. [28, 29]. Autoregressive integrated moving average(ARIMA), support vector

machine(SVM) and LSTM recurrent neural network were adopted to predict Hepatitis E and

compared [30]. A new method for the Hand-foot-mouth disease (HFMD) prediction using

GeoDetector and a LSTM is proposed to predict the incidence of HFMD [31]. A forecasting

model of the COVID-19 outbreak in Canada using state-of-the-art Deep Learning (DL) mod-

els is developed to predict the trends and possible stopping time of the current COVID-19 out-

break around the world [32]. A new artificial intelligence (AI) model, viz., Sentiment

Informed Time-series Analyzing AI (SITALA), trained on COVID-19 test positivity data and

news sentiment from over 2750 news articles for Harris county is introduced [33].

However, there is rare research focusing especially on the applicability of predicting infec-

tious diseases e.g., Hepatitis with RNN and LSTM. Therefore, motivated by the advantages of

the LSTM model, this paper aims to predict the Hepatitis incidence in mainland China. To

obtain the goal, BPNN, RNN and LSTM models have been used to predict Hepatitis disease

incidence, and the forecasting abilities of the models were compared to seek the best-matching

time series modeling technique for Hepatitis, which will be possible for the government to

forecast the trend of Hepatitis incidence and deaths and prepare effective intervention mea-

sures for Hepatitis prevention at an early stage.

In this paper, we described the epidemiological trend of hepatitis disease from 2005 years to

2018 years in China for the first time. We also introduced and compared three typical deep learn-

ing methods in the prediction of hepatitis incidence based on the infection surveillance data.

Materials and methods

Materials: CDC data

The Hepatitis monthly incidence data are gathered from the Chinese Center for Disease Preven-

tion and Control (CDC). The internet-based surveillance system of China was established in

2004 covering the largest surveillance population in the world. The Chinese Government

strengthened its overall public health disease surveillance following the establishment of the

national surveillance system, while the surveillance system covers 39 notifiable infectious diseases

reported to the network [34]. The incidence time series of Hepatitis A (HA), Hepatitis B (HB),

Hepatitis C (HC), Hepatitis E (HE), and Hepatitis U (other Hepatitis) in the whole country are

collected by CDC and published every month. The data we collected are from 2005 to 2018.

Neural networks based models

Artificial neural networks (ANN) were created to imitate the features of the biological neurons

in the human brain and nervous system, and they keep the biological concept of artificial neu-

rons [35]. ANN consists of initial input data, activation function, and producing output with

an output function, while the activation function can provide a smooth transition as input val-

ues modify [36]. The ANN is composed of connections, while each connection is indicated a
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weight as its related importance, which can provide the output of one neuron as the input of

another neuron [37]. In the Hepatitis forecasting modeling, the historical incidence is used as

the input neurons, while the related predicting incidence is obtained from the output neurons

once the ANN is properly trained. The ANN can learn the information involved in the histori-

cal incidence series via modifying the connection weights. There are several advantages that

ANN has for predicting time series data, e.g., having the capabilities to fully extract the com-

plex nonlinear relationships hidden in the time series data. Here are the theories of three types

of ANN:

Back-propagation neural networks (BPNN). BPNN is a type of feed-forward ANN, in

which the information transmits in only one direction from the input neurons through the

hidden neurons and to the output neurons. A single hidden layer BPNN includes an input

layer, a hidden layer and an output layer as shown in Fig 1.

The BPNN, which is a branch of ANN, is a type of feedforward neural network [38]. In this

network, the data moves in only one direction from the input neurons to the output neurons

through the hidden neurons, which have no cycles or loops. There are three layers in BPNN:

input layer, hidden layer and output layer. Each layer consists of some neurons. The neurons

in the forward layers are fed directly to the back layer via a series of weights ωi,j and ωj, in

which i = 1,2,. . .,n, j = 1,2,. . .m, while n represents the neuron number of the input layer and

m indicates the neuron number of the hidden layer. The architecture of a BPNN model can be

demonstrated as in Fig 1. In this paper, the Hepatitis incidence data are trained in the BPNN

model with a back-propagation algorithm, the training samples are stored in the input layer.

The outputs can be obtained via the related functions and connection weights between the

neurons in the different layers. During the training process in the BPNN model, the error

should meet the pre-set accuracy requirements. The weights between the neurons will be

adjusted automatically along the reverse direction of the BPNN until the minimum network

error up to the criterion [39].

For training the BPNN model, there are three major steps which involve forwardly feeding

the networks with the input data, computing the network error and back-propagating the

Fig 1. BPNN model.

https://doi.org/10.1371/journal.pone.0265660.g001
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error, adjusting the connection weights between the neurons.

Bj ¼
Xn

i¼0

oijxi þ yjði ¼ 0; 1; . . . ; n; j ¼ 1; 2; . . . ;mÞ

yj ¼ f ðBjÞðj ¼ 1; 2; . . . ;mÞ
ð1Þ

In which, ωi,j is the connection weights from neuron i in the input layer to neuron j the hid-

den layer, Bj represents the activation value of the jth neuron in the hidden layer, θj is an addi-

tional bias term, xi is the ith input while yj indicates the output of the jth neuron, f represents

the activation function of a neuron, which is often a sigmoid function.

f ðtÞ ¼
1

1þ e� x
ð2Þ

The output T of all output layer neurons can be described as:

T ¼ f ð
Xm

j¼0

oj; yjÞðj ¼ 0; 1; 2; . . . mÞ ð3Þ

In which wj is the connection weight from the neuron j in the hidden layer to the output neu-

ron, while yj is the output value of the neuron j in the hidden layer. The weights between the neu-

rons are random in the initial state, and they will be adjusted based on the BPNN training results.

Many approaches can be used for the weights adjustment, e.g., Newton’s method, Gauss-Newton’s

algorithm, steepest descent algorithm and Levenberg-Marquardt algorithm, etc.[40]. In this paper,

Levenberg-Marquardt algorithm is adopted since it inherits the advantages with speed and stability

from other methods. The frame TensorFlow with Python is used for implementing BPNN due to

its plentiful effective toolbox for neuron networks. The BPNN model and its corresponding train-

ing algorithms can be easily developed using the TensorFlow frame [41].

RNN models

The RNN is a type of ANN, which has better capabilities to capture temporal dependencies

especially benefits making t-step ahead predictions. The t time step forecasting depends on the

present state and all control actions in a time series t2{0,. . .,s−1}, similarly, predicting the time

step t-1 depends on the present state and all previous actions in time step t2{0,. . .,s−2}. The

structure of a basic RNN is demonstrated with compact and unfolded forms as Fig 2. Each

layer consists of a few cells, while each cell represents a time-step. The state of the previous

time-step s2{0,. . .,t−1} serves as the input for the time-step s+1. In each cell, there is N number

of hidden neurons encoding the state representation [42, 43]. A single RNN cell in a one-layer

RNN can be expressed mathematically as:

ht� 1 ¼ ox;hxt� 1 þ oh;hht� 1 þ b1

yt ¼ f ðht þ b2Þ
ð4Þ

In which, t2{1,. . .,s} is the time series index while s is the prediction horizon, ht indicates

the state of the cell in the hidden layer for the time-step t. xt-1 represents the inputs while yt

the outputs corresponding to the prediction time-step t. b1 and b2 are the bias, ωx,h and ωh,h

are the weight from the neuron in the input layer to the neuron in the hidden layer and the

neurons in the hidden layer respectively. f is the activation function, h0 is the initial state.

A deep RNN with l-layers greater than one layer still can be illustrated by Eq (4), while deep

RNN has the more enhanced capabilities to learn the features from the dynamical hierarchical

system. But RNN often takes a longer training time which prevents the data from having more
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parameters to train. An RNN is characterized by the values of ωx,h, ωh,h, b1 and b2, etc. for each

layer. These parameters are adjusted based on the training results via minimizing the forecast-

ing error of the RNN model through a user-defined loss function. During the training process,

a back-propagation through time algorithm is adopted to evaluate the gradient of the loss func-

tion as an optimizing algorithm to modify the connection weights among the neurons in dif-

ferent layers. The adaptive moment estimation algorithm (Adam) [44] is widely used as the

optimizing algorithm for RNN training.

LSTM models

LSTM is an RNN architecture used in the field of deep learning, while the cell of RNN is

shown in Fig 3(a). Compared with the standard feedforward neural networks, LSTM has feed-

back connections, which makes it has the capabilities to process single data points like images

and entire sequence data like speech or videos. The powerful characters make LSTM can pre-

dict diseases. A common LSTM consists of a cell, an input gate, an output gate and a forget

gate as shown in Fig 3(b), while the cell can remember values over arbitrary time intervals and

the data flow can be regulated into and out of the cell [31, 45].

Intuitively, the cell keeps track of the dependencies among the elements of the input

sequence. The input gate takes charge which new value flows into the cell. The forget gate is

responsible to determine which value remains in the cell while the output gate controls which

value should be sent to output activation, which is usually a logistic sigmoid function. In

LSTM models, the input gates are connected with the out gates, while a few are recurrent. The

connection weights will be adjusted during the training process which determines how the

three gates operate. The compact forms of LSTM can be illustrated mathematically as:

f t ¼ sgðofxt þ ufht� 1 þ bf Þ

it ¼ sgðoixt þ uiht� 1 þ biÞ

ot ¼ sgðooxt þ uoht� 1 þ boÞ

ð5Þ

In which the bolder variables represent vectors, b is bias vector, matrices ω and u are the

input and recurrent connection weights respectively, which will be adjusted from the training

process. The subscript i, o, f and c indicate input gate, output gate, forget gate and the memory

Fig 2. Basic recurrent neural network (RNN) model.

https://doi.org/10.1371/journal.pone.0265660.g002
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cell separately. t indicates the index of the time-step. xt is the input vector, ft is the activation

vector of the forget gate, it is the activation vector of the input/update gate, ot represents the

activation vector of the output gate. ht is the state vector in the hidden layer which is also the

output vector of the LSTM unit. ct is the cell state vector. σg is an activation function with a sig-

moid function.

ct ¼ f t � ct� 1 þ it � σcðocxt þ ucht� 1 þ bcÞ

ht ¼ ot � shðctÞ
ð6Þ

In which the operator o represents the Hadamard product [46], the initial values are h0 = 0

and c0 = 0. σc is an activation function with hyperbolic tangent function, while σh is an activa-

tion function with hyperbolic tangent function. A neural network with LSTM units can be

trained with training sequence data using an optimizing algorithm such as gradient descent

combing with BPTT to calculate the gradients.

Cross-validation

Cross-validation is a measurement to test the ability of a predictive model to predict new data

that was not used in estimating it, while the results of a statistical analysis will generalize to an

independent dataset [47]. There are many types of cross-validation, e.g., leave-p-out cross-vali-

dation validation, leave-one-out cross-validation, repeated random sub-sampling validation,

holdout method, K-fold cross-validation, and so on. The K-fold cross-validation, a technique

of randomly dividing the original sample into K equal-sized subsamples, for choosing parame-

ters of the model is adopted herein [48]. For the K subsamples, a single subsample is retained

as the validation data to test the model, while the remaining K-1 subsamples for training the

model. The cross-validation process is then repeated K times, and the K results can then be

averaged to produce a single estimation. A typical process of estimating a turning parameter λ
with K-fold cross-validation is as follows: (1) approximately dividing the sample dataset Dn

into K equal subsamples S = {S1, S2,. . .,SK}; (2) For each subsample Si, it will fit the model with

a parameter to other K-1 subsamples, giving t̂ � kðlÞ and compute its error in predicting the kth

Fig 3. RNN models. (a) Basic RNN, (b) LSTM.

https://doi.org/10.1371/journal.pone.0265660.g003
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subsample as in Eq (7):

EkðlÞ ¼
XK

i¼1

ðyi � xit̂
� kðlÞÞ

2
ð7Þ

The cross-validation error can be expressed as:

sðlÞ ¼
1

K

XK

i¼1

EðlÞ ð8Þ

Additionally, the cross-validation should be used very carefully due to its data leakage and

overfitting[49, 50]. In this paper, K = 5 is adopted to train the model, while λ is chosen to make

σ(λ) smallest.

Model selection criterion and evaluation index

In ANN, the modeling data is usually split into two groups: training data for training the data,

while validation data for testing the model efficiency based on ANN. The selection of the best

model based on ANN is determined via the minimization of the bias between the values gained

from the training and validation data and the values in the raw data. The comparison between

the forecasted value of the three approaches based on ANN and the observed value from the

raw data is adopted to determine the efficiency of the three predicting approaches in this

research. The mean absolute error (MAE), mean absolute percentage error (MAPE), and the

mean square error (MSE) are adopted as the evaluating measures, which are commonly

adopted in selecting predictions to measure the accuracy and bias of models [16, 51], which

can be expressed mathematically as:

MAE ¼
1

n

Xn

t¼1

jyt � xtj ð9Þ

MAPE ¼
100%

n

Xn

t¼1

yt � xt

xt

�
�
�
�

�
�
�
�

ð10Þ

MSE ¼
1

n

Xn

t¼1

ðyt � xtÞ
2

ð11Þ

Where yt is the forecasted values at time-step t, xt is the observed value of the raw data at

time-step t, while n is the number of forecasting.

Results

Development and results of neural networks

Three artificial neural networks were adopted herein to fit the incidence and death trend of

Hepatitis. The available incidence/death time series were divided into different subsamples as

K-fold cross-validation need. The optimum neural networks were obtained based on the least

MSE between the training and test datasets.

The number of cases of the 5 class hepatitis diseases from 2005–2018 is listed in Table 1.

Hepatitis B is the highest incidence of hepatitis. The number of deaths from 2005 to 2018

caused by the different types of hepatitis is listed in Table 2.
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Considering the number of cases between 2015 to 2018, hepatitis B is the highest propor-

tion as shown in Fig 4, while hepatitis C is the second-highest proportion of hepatitis diseases.

In this research, three different ANNs are employed to fit the hepatitis incidence trend. To esti-

mate how accurately a predictive model will perform in practice, cross-validation is adopted to

split the training and test data, which is mainly used. The goal of cross-validation is to test the

model’s ability to predict new data, flag overfitting or selection bias issues, and give how the

model generalizes to an independent dataset. K-fold cross-validation can provide a solution

that divides the dataset into different folds and makes each fold have some point as a testing

dataset, which divides a given dataset into a K number of folds [52].

The number of inputs of the neural networks will not require any transformation of the

original incidence series for the training. In this study, the number of neurons in the input

layer of BPNN, RNN and LSTM neural networks are set to the same number as the lookback

Table 1. Numbers of cases caused by hepatitis diseases in China.

HA HB HC HE HU H

2005 76102 1132805 59159 15397 82969 1366432

2006 70889 1261735 77315 18455 78907 1507301

2007 79349 1327225 100258 20513 75715 1603060

2008 58820 1330654 118201 19679 63824 1591178

2009 45372 1330352 141609 20854 55556 1593743

2010 36250 1193266 163174 24260 51331 1468281

2011 32659 1252236 188807 30459 50318 1554479

2012 25452 1257320 219110 29859 41979 1575588

2013 22891 1113319 223094 28991 39321 1427626

2014 26740 1084543 222528 27943 34804 1396558

2015 23418 1085113 232400 27986 29518 1398435

2016 21866 1100691 231725 28671 24699 1407652

2017 19603 1180545 242897 29844 21201 1494090

2018 16736 1225877 251246 29435 17234 1540528

https://doi.org/10.1371/journal.pone.0265660.t001

Table 2. Numbers of deaths caused by hepatitis diseases in China.

HA HB HC HE HU H

2005 36 849 102 44 103 1134

2006 33 841 151 40 88 1153

2007 23 838 123 39 75 1098

2008 13 930 131 31 59 1164

2009 22 830 155 24 41 1072

2010 6 723 142 34 32 937

2011 14 686 137 41 18 896

2012 9 638 110 23 23 806

2013 4 593 163 20 19 789

2014 8 398 134 15 13 568

2015 12 353 98 12 6 481

2016 6 430 111 18 5 570

2017 4 455 129 27 3 618

2018 4 470 115 15 2 606

https://doi.org/10.1371/journal.pone.0265660.t002
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value as in Eq 12, which is a parameter that presents the number of values in each row (e.g.,

using the data from January to December in 2005 to predict the data of January in 2006, then

lookback = 12). The output layer of the neural networks is only one neuron indicating the fore-

cast value of the incidence of the next month. The input matrix and the corresponding output

Fig 4. Incidence and fitting values of Hepatitis predicted by three neural network models. (a) Hepatitis, (b) Hepatitis A, (c) Hepatitis B, (d) Hepatitis C, (e)

Hepatitis E, (f) Hepatitis U.

https://doi.org/10.1371/journal.pone.0265660.g004
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matrix of the training and test sample herein can be expressed as:

G ¼

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

� � � � � � � � �

xt� 12 xt� 11 xt� 10 xt� 9 xt� 8 xt� 7 xt� 6 xt� 5 xt� 4 xt� 3 xt� 2 xt� 1

2

6
6
6
6
4

3

7
7
7
7
5
ð12Þ

F ¼

x13

x14

. . .

xt

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð13Þ

In which, Г andF represent the input matrix and corresponding output matrix respectively,

while the number of elements in each row can be changed. In this paper, two different look-
back values (the incubation period and 12) are adopted for HA, HB, HC and HE (while the

average incubation period are 1, 3, 2 and 1 months respectively). xt indicates the sample value

at time t. Г is transferred into the input layer for training, while F is its training goal. These

matrices are then placed into Python neural network functions, and the corresponding param-

eters are appropriately set.

In artificial neural networks, the computational efficiency and accuracy are influenced by

not only learning rates and algorithms but also the number of neurons in the hidden layers.

There are no standard rules for adopting the number of layers and neurons, while it can be

optimized via multiple trials and model error [53].

The learning rates are tested from 0.0015 to 0.05 with 0.0005 increments for examination.

Based on test, the learning rates have a little influence for the result, thus 0.0025 is adopted

herein. The number of neurons in the hidden layer was tested from 3 to 12 with 3 increment

for each method.

In BPNN,.. For RNN,. For LSTM,.

Comparisons of forecasting performance

The incidence and death values caused by Hepatitis diseases including Hepatitis A, Hepatitis

B, Hepatitis C, Hepatitis E, Hepatitis U (representing other Hepatitis diseases) in China from

2005 to 2018 are listed in Tables 1 and 2. Among different Hepatitis diseases, the number of

cases caused by HB is the largest. The number of HA cases has been approximately decreased

year by year, and it is lower than the number of HC, HE and HU in 2018. However, the num-

ber of HC cases is generally increasing every year, and it is the second Hepatitis disease-caus-

ing incidence and deaths.

The proportion of incidence and death cases for the different diseases from 2005 to 2018

are illustrated below. Hepatitis B is the most disease-causing incidence and death, and the pro-

portion is greater than 70 percent. However, the percentage of the incidence and deaths is

decreased much in 2018 compared with 2005. The percentage of incidence and deaths caused

by HC is gradually growing year by year, and the percentage is up to 16.3% and 19% respec-

tively. But after 2016, it keeps in a similar percentage. In 2005, the lowest number of incidence

and death cases are Hepatitis E and Hepatitis A respectively, while in 2018, they are Hepatitis

A and Hepatitis U.

Fig 4(a) shows the incidence and fitting values of Hepatitis predicted by three neural net-

work models, as well as the observed values, while Fig 4(b) to Fig 4(f) indicate the incidence
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and fitting values of Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis E, Hepatitis U, respectively

by the different neural network models. The figures show that the predicted values in the three

models matched the observed data measurably.

Table 3 and Fig 5 show the modeling and prediction performance of the three neural net-

work models. From the figure, the MAE, MAPE and MSE measures in the LSTM model are

the lowest in the training performance, but not in the predicting performance. Based on the

measured errors and the visualization of the three neural networks, there is no one model pre-

dicting the incidence cases that can be completely superior to other models. When predicting

the number of incidence cases for HB and HC (they are the most common two Hepatitis dis-

eases in recent years), the performance ranking of the three models from high to low is LSTM,

BPNN, RNN. For HE predicting, the ranking is LSTM, RNN, BPNN, while it is BPNN, RNN,

LSTM for HU predicting. However, the ranking is BPNN, LSTM, RNN to forecast the whole

Table 3. Comparison among different models.

Type Models lookback Simulated performance Predicted performance

MAE MSE MAPE MAE MSE MAPE

H BPNN 12 7.12�10−06 8.25�10−11 7.5918 5.35�10−06 5.60�10−11 5.6589

RNN 12 6.79�10−06 7.32�10−11 7.2593 6.19�10−06 6.86�10−11 6.4674

LSTM 12 6.52�10−06 9.01�10−11 6.9687 6.55�10−06 8.21�10−11 7.0667

HA BPNN 1 6.80�10−07 1.00�10–12 29.6218 1.32�10–06 1.76�10−12 134.4940

BPNN 12 2.58�10−07 1.57�10−13 10.8548 2.79�10−07 8.68�10−14 29.1055

RNN 1 4.30�10−07 4.50�10−13 17.4566 4.51�10−07 6.18�10−13 50.7638

RNN 12 3.25�10−07 2.21�10−13 13.2379 1.04�10−07 1.79�10−14 11.2512

LSTM 1 4.50�10−07 5.30�10−13 17.5645 1.08�10−07 2.45�10−14 11.6492

LSTM 12 3.06�10−07 1.83�10−13 12.9311 1.24�10−07 2.31�10−14 13.4330

HB BPNN 3 5.95�10−06 5.81�10−11 7.8670 5.46�10−06 5.41�10−11 7.2589

BPNN 12 6.27�10−06 6.77�10−11 8.1580 4.26�10−06 3.64�10−11 5.5301

RNN 3 6.55�10−06 6.94�10−11 8.7680 5.30�10−06 5.37�10−11 6.9699

RNN 12 5.52�10−06 5.67�10−11 7.1977 4.90�10−06 3.92�10−11 6.4344

LSTM 3 6.05�10−06 6.16�10−11 7.9204 4.97�10−06 3.86�10−11 6.8457

LSTM 12 5.37�10−06 4.99�10−11 7.1972 3.84�10−06 3.08�10−11 4.9881

HC BPNN 2 1.03�10−06 1.83�10−12 10.5562 1.42�10−06 3.11�10−12 9.5433

BPNN 12 8.21�10−07 1.26�10−12 7.9427 9.74�10−07 1.98�10−12 6.9851

RNN 2 1.26�10−06 2.57�10−12 13.5108 1.24�10−06 2.93�10−12 8.9051

RNN 12 1.12�10−06 2.11�10−12 11.3992 9.23�10−07 1.25�10−12 6.0301

LSTM 2 1.37�10−06 3.29�10−12 13.46 6.76�10−06 4.85�10−11 44.6704

LSTM 12 9.00�10−07 1.54�10−12 9.0873 8.84�10−07 1.98�10−12 5.8519

HE BPNN 1 2.75�10−07 1.39�10−13 18.8614 2.22�10−07 9.83�10−14 11.571

BPNN 12 2.17�10−07 9.94�10−14 13.1658 2.06�10−07 6.35�10−14 11.2271

RNN 1 2.62�10−07 1.22�10−13 17.2014 2.61�10−07 1.66�10−13 13.3623

RNN 12 2.54�10−07 1.34�10−13 15.8489 1.83�10−07 5.57�10−14 10.1930

LSTM 1 2.45�10−07 1.06�10−13 16.2124 2.18�10−07 8.79�10−14 11.4885

LSTM 12 2.73�10−07 1.46�10−13 16.7860 1.40�10−07 4.06�10−14 7.3504

HU BPNN 12 2.23�10−07 1.19�10−13 7.9227 2.52�10−07 7.68�10−14 25.9586

RNN 12 3.41�10−07 2.49�10−13 11.9683 1.35�10−07 2.36�10−14 13.3907

LSTM 12 3.01�10−07 1.97�10−13 10.4429 1.61�10−07 3.53�10−14 16.6552

Note: lookback is the number of neurons in the input layer of BPNN, RNN and LSTM neural networks, which is a parameter that presents the number of values in each

row as in Eq (12).

https://doi.org/10.1371/journal.pone.0265660.t003
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Fig 5. Prediction performance of the three neural network models. (a) MAE, (b) MSE, (c) MAPE.

https://doi.org/10.1371/journal.pone.0265660.g005
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Hepatitis disease incidence cases. We have the lookback value (about to the incubation period,

and 12) for HA, HB, HC and HE, while only lookback = 12 only for H and HU (since there are

no incubation period for them).

Discussion

The internet-based infectious disease surveillance system of China has been used for over 10

years since it was created. As the data listed in Table 1, 20 924 951 cases and 11 892 deaths

were reported in the system from 2005 to 2018. The disease data shows the change of each

Hepatitis. For HA during 2005 to 2018, the case is from 76 102 to 16 736 that the case number

was decreased about 78%, the deaths is from 36 to 4. Accompany the economic and medical

development in China, the cases and deaths of HA show a significant downward trend since

HA virus is usually spread by infected feces. During 2005 to 2018, the case of HB is around 1

200 000 for each year, since HB is commonly transmitted via infective blood, semen, preg-

nancy and childbirth, etc. The population and the number of new born baby have been a big

number. It’s worth noting that from 2017, the cases and deaths increase a lot, which might be

influenced by Two-child policy. For HC, the cases are increased more than 4 times in 2018

compared with 2005, since HC is spread primarily by blood-to-blood contact (injection drug,

needlestick injuries, etc.) and the expansion of medical services. The deaths are a relatively sta-

ble quantity, which might be influenced by medical quality. For HE, the cases increase 47.69

percent from 2005 to 2018, while the death rate reduced from 0.29 percent to 0.05 percent,

which might be influenced by the improvement of medical quality.

For infectious disease control and prevention, early awareness of the behaviors is signifi-

cant, while the performance of statistical models in predicting future infectious disease inci-

dence has been turned out helpful. There were some artificial neural network models applied

to predict Hepatitis disease. There have been many time series, neural network models, to pre-

dict infectious disease incidence and death trends. How to choose the best model for the pre-

diction of infectious disease has been attracting more and more attention. There is much

research on comparing the different neural network model accuracy to predict infectious dis-

ease behavior, while different models have an inconsistent performance for prediction. For

predicting Hepatitis A disease incidence trends, the conventional multiple-layer neural net-

work model performs better than radial basis neural networks and time-delayed neural net-

works [22]. Many researchers are recommending that it is requisite to compare different

forecasting models to predict the infectious behavior for different infectious diseases. In this

paper, a rigorous study of three-time series neural network models was carried out with com-

parison to predict the pattern of Hepatitis incidence and death involving BPNN, RNN, LSTM.

A comprehensive comparison among the three neural network models is illustrated from both

principle and practical application.

In theory, the time series models of artificial neural networks capture the data information

via nonlinear functions, which can approximate any continuous measurable function. In prac-

tice, BPNN is a feed-forward artificial neural network, which is based on the algorithm of

backpropagation. RNN is a type of artificial neural network for recognizing patterns in time-

series data, while the output depends on the sequence of time-series data other than a single

piece of data. LSTM is a modified RNN architecture to address the vanishing and exploding

issues of gradients and solve the problem of training over long sequences and retaining mem-

ory. Neural networks are nonparametric nonlinear models utilizing fewer prior assumptions

based on the data generated by the intrinsic process. Thus, these neural network methods are

more tolerant and less susceptible to predict time-series models compared with the conven-

tional methods. There are many artificial neural network models widely used as powerful
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methods of modeling complex nonlinear and dynamic systems in various kinds of research

areas.

In this paper, three different types of neural network models are employed to predict Hepa-

titis incidence, but they have different accuracy and efficacies compared via MAE, MAPE and

MSE empirical measures, while the performance of the three neural network models shows

their abilities to predict Hepatitis incidence. The LSTM accurately captured all Hepatitis train-

ing data compared with BPNN and RNN. The LSTM has the best performance to predict the

disease incidence of Hepatitis B, Hepatitis C and Hepatitis E, while BPNN is the best model

among the three to forecast the disease incidence of Hepatitis (involving the whole Hepatitis

diseases), Hepatitis A and Hepatitis U.

In conclusion, we presented three artificial neural networks time series models on Hepatitis,

which have the potential ability to predict the trends of time-series data due to the strong non-

linear mapping ability, especially when there exists a nonlinear relationship among the time

series data. These methods can be potentially applied in time series data of other public health

and clinical research, which would significantly promote Hepatitis disease control and

management.

There are still some limitations to this research. The Hepatitis data obtained is started from

2005 since the government system is established in 2004. Therefore, the short time-series data

of Hepatitis might influence the accuracy of the three neural network models. Additionally, it

is difficult to explain clearly how the specific nonlinear functions work in the neural networks

due to their black-box property. Furthermore, in this study, the comparative prediction accu-

racies are established only for Hepatitis diseases, while their findings might not suitable for

other diseases.

Hepatitis diseases have a significant influence on people’s health. Advanced strategy with

accurate estimation from the government can be made out quickly and efficiently. For further

research, more comprehensive predicting theories and techniques should be researched in

practice.

Conclusion

This investigation used 14 years of nationally representative Hepatitis data to construct deep

learning models to predict the incidence of Hepatitis based on the monthly incidence of Hepa-

titis through a national public health surveillance system in China mainland. We presented

three deep learning methods, which show their significance to forecast the Hepatitis incidence

and have the potential to assist the decision-makers in making efficient decisions for the early

detection of the disease incidents, which would significantly promote Hepatitis disease control

and management.
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