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Abstract: Cytochrome P450s are a group of monooxygenase enzymes involved in primary, secondary
and xenobiotic metabolisms. They have a wide application in the agriculture sector where they could
serve as a target for herbicides or fungicides, while they could function in the pharmaceutical industry
as drugs or drugs structures or for bioconversions. Alternaria species are among the most commonly
encountered fungal genera, with most of them living as saprophytes in different habitats, while
others are parasites of plants and animals. This study was conducted to elucidate the diversity and
abundance, evolutionary relationships and cellular localization of 372 cytochrome P450 in 13 Alternaria
species. The 372 CYP proteins were phylogenetically clustered into ten clades. Forty (40) clans and
seventy-one (71) cyp families were identified, of which eleven (11) families were found to appear
in one species each. The majority of the CYP proteins were located in the endomembrane system.
Polyketide synthase (PKS) gene cluster was the predominant secondary metabolic-related gene cluster
in all the Alternaria species studied, except in A. porriof, where non-ribosomal peptide synthetase
genes were dominant. This study reveals the expansion of cyps in these fungal genera, evident in the
family and clan expansions, which is usually associated with the evolution of fungal characteristics,
especially their lifestyle either as parasites or saprophytes, with the ability to metabolize a wide
spectrum of substrates. This study can be used to understand the biology, physiology and toxigenic
potentials of P450 in these fungal genera.
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1. Introduction

Alternaria species are ubiquitous fungi with different life cycles consisting of sapro-
phytic, endophytic and parasitic modes of living [1]. This genus of fungi is characterized
by the formation of large conidia that are usually dark, multicellular, with both transverse
and longitudinal septa. Alternaria genus is characterized to be in the Family: Pleosporaceae,
Order: Pleosporales, Class: Dothediomycetes, Subdivision: Pezizomycotina, Division:
Deuteromycotina and Phylum: Ascomycota [2,3]. This genus has been reviewed to consist
of about 350 species broadly divided into those with large spores and those with small
spores, and which, collectively, have been further subdivided into several sections based
on morphological and molecular phylogenetic characteristics [4]. Saprophytic Alternaria
species play an important ecological role where they collaborate with other microbes to
decompose and mineralize plant residues, thereby aiding the bio-geochemical recycling
of nutrients. Many Alternaria species have been characterized as endophytes residing in
healthy plants tissues and producing many bioactive compounds that can stimulate the
growth of the host plant, suppress pathogens, improve resistance to environmental stress
and aid the assimilation of nitrogen [5,6]. Other members of this genus are important
plant pathogens with a broad host range reported to cause diseases and many post-harvest
diseases in different crops in about 400 plant species causing significant economic loss to
important crops, such as tomatoes, potatoes, apples, etc. [1,7]. Some group members can
affect weeds that could be processed and applied as mycoherbicides, while others cause
upper respiratory tract infection and asthma in humans [1]. Recent findings have identified
Alternaria sp. as one of the few fungi capable of degrading untreated extra-heavy crude oil,
demonstrating its potential suitability for use in bioremediation [8]. Over 300 secondary
metabolites have been described to be produced by the genus Alternaria. These belong
to different categories of naturally occurring compounds, such as nitrogen-containing
compounds, steroids, terpenoids, pyranones (pyrones), quinones and phenolics. They
have different biologic activities, such as phytotoxic, cytotoxic and antimicrobial proper-
ties, serving as base structures for pesticides and drugs. The biological activities of active
compounds have been validated by numerous pharmacologists, plant pathologists and
chemists [4,9,10].

Cytochrome P450 are hemoproteins containing monooxygenases that catalyze the
transformation of a wide array of endogenous and exogenous substances. They have
a wide range of functional properties, such as catalyzing the regio-, chemo- and stere-
ospecific oxidation of a wide array of substrates, indicating their importance as major
players in primary and secondary metabolism and xenobiotic degradation [11,12]. Many
secondary metabolites that are important to medical, agricultural and industrial processes
are biosynthesized with the use of CYPs, of which fungi are producers of a wide spectrum
of secondary metabolites making use of CYPs to serve as biocatalyst, drug and agrochem-
icals targets and for bioremediation of heavily contaminated environment [13,14]. The
physiological traits of fungi have been associated with CYPs, such as the pathogenicity
of fungi, and it has been reported that the pathogenicity of fungi is a consequence of the
expansion and functional diversification of fungal CYPs. CYPs play a housekeeping role
in fungi, especially CYP51, which is used in the biosynthesis of sterol, which is a popular
antifungal target in the control of human and plant diseases caused by fungi, and they also
impact the ecological roles of fungi serving as saprotrophs or decomposers [14]. Therefore,
there is a need for an extensive investigation to study the different aspects of CYPs function,
regulation and biotechnological applications due to their wide functional and biological
roles [13]. Many studies have attempted to analyze the CYPome of many fungi, such as that
of Phanerochete chrysosporium [15], Mycosphaerellagraminicola [16], Grosmannia clavigera [17],
Trichoderma spp., [12] and Fusarium spp., [18]. However, this information is scarce in Al-
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ternaria species and is based on individual species, especially Alternaria alternata [19–21].
Elucidating the comparative evolutionary process of cytochrome P450 proteins in different
Alternaria species can further enhance their biotechnological exploration. Therefore, this
study intends to perform robust profiling of the CYP in 13 species of Alternaria due to
the ecological, agricultural, industrial and medical applications, and implications of this
important fungal genus.

2. Methodology
2.1. Sequence Data Retrieval

A total of 1760 cytochrome P450 protein sequences (Supplementary File S1) of 13 species
of fungi belonging to the genus Alternaria were retrieved from Joint Genome Institute (JGI)
fungal genome database MycoCosm (http://genome.jgi-psf.org/programs/fungi/index.
jsf (accessed on 18 May 2021)), which are Alternaria fragaria BMP 3062, A. capsici BMP0180, A.
mali BMP3064, A. citriarbusti BMP2343, A. solani BMP0185, A. brassicicola, A. dauci BMP0167,
A. tangelonis BMP2327, A. rosae MPI-PUGE-AT-0040 v1.0, A. gaisen BMP2338, A. macrospora
BMP1949, A. porri BMP0178 and A. alternata SRC1lrK2f v1.0.

2.2. Sequence Validation

A two-step procedure was performed for the sequence validation using the procedure
established by [19]. Firstly, the retrieved protein sequences of each Alternaria spp. were re-
trieved. Sequences without Cytochrome P450 annotations (as described in the JGI database)
were manually removed. Secondly, the conserved domains (CD) of the resultant sequences
were further validated in the NCBI batch CD database with the cut-off of positive hits set
at E-value 10−5 [15]. A total of 372 cyp protein sequences (Supplementary Files S2 and S3)
from the 13 Alternaria spp. were validated and used for further analyses in the present study.

2.3. Annotation of CYPs

The selected fungal cytochrome P450 protein sequence was subjected to blasting on
the Fungal Cytochrome P450 database (FCPD) to identify the CYPs families (http://p450
.riceblast.snu.ac.kr/blast.php (accessed on 26 June 2021)) on blast program BLOSUM62
matrix with a limited expected value of 1e-5. The predicted sequences were assigned to
CYP families and clans to which they have the highest homology (40% and above) from
the fungal Cytochrome P450 database (http://p450.riceblast.snu.ac.kr (accessed on 26 June
2021)) against all named fungal CYPs as followed by the International P450 Nomenclature
Committee [13].

2.4. Construction of Heatmap

An interactive expression heatmap was constructed to show the distribution of the
identified Cyp families in the thirteen Alternaria species. The data were uploaded to
http://heatmapper.ca/expression/ (accessed on 22 February 2022), and the following
parameters were used for the heatmap plot: clustering method—average linkage, distance
measurement method—Euclidean, scale type row. Clustering was also applied to row
while custom color scheme was used.

2.5. Phylogenetic Reconstruction of CYPs

Using MEGA X software, the selected fungal cytochrome P450 proteins were subjected
to sequence alignment using ClustalW for pairwise and multiple sequence alignment with
gaps [22]. The maximum likelihood method and JTT matrix-based model [23] were used
to infer the evolutionary history using the neighbor join and BioNJ algorithms to a matrix
of pairwise distances estimated using the JTT model, and the topology of the tree was
evaluated by bootstrap analysis with one thousand re-sampling replicates. The tree was
drawn to scale, with branch lengths measured in the number of substitutions per site. The
evolutionary analyses were conducted in MEGA X [22], involving 372 protein sequences
following the description of [24].

http://genome.jgi-psf.org/programs/fungi/index.jsf
http://genome.jgi-psf.org/programs/fungi/index.jsf
http://p450.riceblast.snu.ac.kr/blast.php
http://p450.riceblast.snu.ac.kr/blast.php
http://p450.riceblast.snu.ac.kr
http://heatmapper.ca/expression/
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2.6. Identification of Cytochrome P450s Associated with Secondary Metabolism-Related
Gene Clusters

This was performed using the automated pipeline on the respective genome pages
for all the Alternaria species, and the secondary metabolic-related gene clusters included
NRPS, PKS, PKS/NRPS, NRPS-like and terpene cyclase clusters.

2.7. Subcellular Localization Analysis

BUSCA integrative webserver (https://busca.biocomp.unibo.it (accessed on 26 July
2021)) was used for determining the subcellular localization of the 372 proteins to gain
more understanding of the functional mechanism of the Cytochrome P450 proteins [25].

3. Results
3.1. CYP Proteins in Alternaria

The result obtained shows the presence of 372 cytochrome P450 proteins in the 13 Al-
ternaria species in Table 1. It was discovered that A. macrospora had the highest number of
CYP protein entries (42). This is followed by A. dauci and A. solani, with 33 and 32 CYP
protein entries, respectively. The least number was observed in A. fragaria, which had 23,
and A. porri, with 24 CYP proteins. It was also discovered that a total of 34 cytochrome P450
protein entries had no family matches in the fungal cytochrome P450 database from all the
13 Alternaria species, with the majority of this category in A. brassicicola (11). In contrast, all
the other species had either one, two or three entries with no family match.

Table 1. Taxonomic distribution of putative CYPs in thirteen Alternaria species.

Alternaria Species Genome Size (Mb) Number of
Predicted Genes Total Cyp Proteins Protein with

Complete Sequences Family Type Clan Type Families with No
FCPD Matches

A. fragaria BMP 3062 33,135,386 12,272 125 23 19 14 1
A. capsici BMP0180 31,350,549 11,487 113 25 20 15 3
A. mali BMP3064 34,331,800 12,715 132 28 23 19 3
A. citriarbusti BMP2343 33,865,016 12,606 131 27 21 16 2
A. solani BMP0185 31,129,923 12,258 129 32 24 23 1
A. brassicicola 31,974,449 10,688 127 28 12 10 11
A. dauci BMP0167 30,427,686 11,981 123 33 27 23 1
A. tangelonis BMP2327 33,765,687 12,639 125 28 24 19 1
A. rosae
MPI-PUGE-AT-0040 v1.0 33,831,682 12,640 152 27 19 14 5
A. gaisen BMP2338 33,998,619 13,902 137 26 20 15 2
A. macrospora BMP1949 31,350,355 11,961 130 42 30 22 2
A. porri BMP0178 29,243,729 12,232 127 24 20 15 1
A. alternata SRC1lrK2f
v1.0 32,990,834 13,469 209 29 26 22 1

Total 1760 372 34

3.2. Family and Clan Classification

Heatmap showing the distribution of Cyp families (green) or absence (red) across
thirteen (13) Alternaria species (Figure 1). The data used in generating this heat map are
presented in Supplementary Data File S4. A total of 71 Cyp families and 40 CYP clans
were identified in the 13 Alternaria species, as shown in Figure 1. A. macrospora had the
most diverse Cyp families (30), followed by A. dauci (27), while the species with the least
Cyp family diversity was A. brassicicola (12 families). The results in Figure 1 also show
that 11 Cyp families were only found in specific Alternaria species. For instance, Cyp532,
Cyp526 and Cyp532 were only present in A. macrospora, Cyp5093 and Cyp5095 in A. porri,
Cyp545, Cyp5112 and Cyp596 in A. solani, while Cyp665, Cyp521 and Cyp61 were only
found in A. gaisen, A. rosae and A. brassicicola, respectively. However, Cyp552 was found in
10 Alternaria species, showing that it is more conserved than the other Cyps. This is closely
followed by Cyp5103, which appeared in nine species, while Cyp65, Cyp505 and Cyp530
were found in eight Alternaria species.

https://busca.biocomp.unibo.it
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Figure 1. Heatmap showing the distribution of Cyp families (green) or absence (red) across
thirteen (13) Alternaria species. The data used in generating this heat map are presented in
Supplementary Data File S5.

3.3. Evolutionary Relationship

Phylogenetic analysis was carried out using the 372 aligned CYP proteins sequences
to demonstrate the evolutionary relationships of the CYPs in the 13 Alternaria species, as
illustrated in Figure 2. It was discovered that CYPs belonging to the same family, regardless
of the Alternaria species, were clustered in the same monophyletic clade on the phylogenetic
tree, suggesting a strong evolutionary relationship. The different CYPs in these organisms
were discovered to be clustered into ten clades, as shown in Table 2. Clade I had the highest
branches with 127 CYP proteins entries. Here, 15 CYP proteins with unidentified families
were found to be clustered in this clade, and Cyp5095, as the unique Cyp family, was
found only in this clade. This is closely followed by clade 10 with 82 phyletic branches
having Cyp504, Cyp526, Cyp665 and Cyp5053 as the unique Cyp families found only in
this clade. The least number of branching was found in clade VII and clade VIII having two
and one branches, respectively; however, all the CYP proteins here had no family match in
the FCPD, as shown in Table 2. Individual phylogenetic trees for each of the thirteen (13)
species of Alternaria are presented in Supplementary File S5.
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Figure 2. Evolutionary relationship of Cytochrome P450 genes in thirteen Alternaria species, which
was inferred using MEGA X.

Table 2. Phylogenetic clustering of Cytochrome P450 families and clans among thirteen Alternaria spp.

Phylogenetic Clade Sequence Entry CYP Families CYP Clans Putative Function

I 127

Cyp65, Cyp561,
Cyp563, Cyp62,
Cyp567, Cyp566,
Cyp548, Cyp528,
Cyp539, Cyp628,
Cyp671, Cyp53,
Cyp673, Cyp684,
Cyp583, Cyp578,
Cyp680, Cyp643,
Cyp5095, Cyp677,
Cyp682, Cyp681,
Cyp552

CYP65, CYP61, CYP62,
CYP566, CYP548,
CYP528, CYP52,
CTP574, CYP53,
CYP673, CYP583,
CYP578, CYP58,
CYP643, CYP677

Xenobiotic metabolism,
Secondary metabolism,
Primary metabolism

II 53

Cyp561, Cyp620,
Cyp630, Cyp570,
Cyp527, Cyp535,
Cyp573, Cyp675,
Cyp629, Cyp5080,
Cyp531, Cyp5077,
Cyp532

CYP65, CYP533,
CYP630, CYP507,
CYP572, CYP531

Xenobiotic metabolism,
secondary metabolism
Primary metabolism
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Table 2. Cont.

Phylogenetic Clade Sequence Entry CYP Families CYP Clans Putative Function

III 5 Cyp576 CYP576

IV 12 Cyp5075, Cyp51,
Cyp540

CYP589, CYP51,
CYP540 Primary metabolism

V 3 Cyp539 CYP52 Xenobiotic metabolism

VI 63

Cyp609, Cyp5112,
Cyp561, Cyp530,
Cyp645, Cyp639,
Cyp550, Cyp61,
Cyp5125, Cyp559,
Cyp68, Cyp595,
Cyp596, Cyp503,
Cyp654, Cyp5103

CYP609, CYP58,
CYP530, CYP65,
CYP645, CYP639,
CYP550, CYP61,
CYP559, CYP68,
CYP54, CYP653

Secondary metabolism,
Xenobiotic metabolism,
Primary metabolism

VII 2 No match in FCDP No match in FCDP
VIII 1 No match in FCDP No match in FCDP

IX 24
Cyp534, Cyp56,
Cyp547, Cyp539,
Cyp65,

CYP534, CYP56,
CYP547, CYP52, CYP65

Xenobiotic metabolism,
Primary metabolism,
Secondary metabolism

X 82

Cyp59, Cyp586,
Cyp526, Cyp505,
Cyp504, Cyp665,
Cyp530, Cyp546,
Cyp5053, Cyp5093,
Cyp5068, CYP5063,
CYP5069, CYP5148,
CYP620, CYP530,
CYP628, CYP543

CYP59, CYP526,
CYP505, CYP504,
CYP52, CYP530,
CYP546
CYP5063, CYP533,
CYP529

Xenobiotic metabolism,
Primary metabolism,
Secondary metabolism

3.4. Subcellular Location

Subcellular localization of the 372 cytochrome P450 in the 13 Alternaria species is pre-
sented in Figure 3. Here, it was discovered that most of the Cytochrome P450 proteins were
localized in eight subcellular compartments, with the majority located in the endomem-
brane system (281). The nucleus has the least number of proteins, as only cytochrome P450
proteins of A. citriarbusti (1) were located in this organelle.

3.5. Distribution of Secondary Metabolite-Related Gene

Secondary metabolite gene clusters of the 13 Alternaria species are as shown in Figure 4.
Here, polyketide synthases (PKSs) had the highest occurrence (131), of which the high-
est was found in A. solani (14). This is followed by non-ribosomal peptide synthetases-
like (NRPS-like) (91) with A. macrospora having the highest (9), non-ribosomal peptide
synthetases (80) with this gene cluster occurring highest in A. porri while dimethylallyl
diphosphate tryptophan synthases (DMATS), polyketide synthases-like (PKS-like) and
terpene cyclases (T.C.) had 13, 27 and 34 occurrences. In contrast, hybrid had the least
occurrence (11).
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4. Discussion

Alternaria species are among the most commonly encountered fungi with the greatest
global impact on humans and human activities. Many live as saprobes in the various
habitats where they are involved in the degradation of a wide diversity of substances, such
as leather, marine organisms, plants, wood pulp, sewage, paper, textiles, building supplies,
stone monuments, optical instruments, cosmetics, computer disks and jet fuel [26]. CYPs in
the Alternaria species are distributed into 71 families and 40 clans, which could be due to
gene duplication events through evolution, enabling these organisms to survive and live in
a wide range of habitats [27,28]. Ref. [14] reported that Cytochrome P450s are important
proteins playing diverse biological roles in fungi’s survival and physiological processes,
as many have been identified to play a housekeeping role in fungi. It is for these reasons
that other members of this genus are plant parasites where they serve as post-harvest
pathogens destroying a large amount of agricultural output [1,7], while many others are
known to cause human infections, particularly in immuno-compromised patients, causing
dermatomycosis, respiratory tract infection, etc., while their spores have been identified as
one of the most common and potent sources of both indoor and outdoor allergen [29].

The present study’s findings revealed that some Cyp families were unique to some
Alternaria species (A. macrospora, A. porri, A. solani A. gaisen, A. rosae and A.brassicicola).
Rampersad (2020) opined that distinct cyps in various fungus species might significantly
affect the host specificity of each fungus species to a given plant or animal. Alternaria species
are well known producers of several host-specific toxins, such as AM-toxin, cercosporin,
ABR-toxin, AC-toxin, dothistromin, AB-toxin, Ak-toxin, versicolorin B, Maculosin toxin, AF-
toxins, AAL-toxin, AT-toxin, ACT-toxin and AL-toxin, ACR(L)-toxin, HC-toxin, Destuxin
A, B, AS-toxin I and AP-toxin [19,20,30,31]), which directly influence their virulence and
pathogenicity [21]. Cyp genes were found in all Alternaria species investigated. It was
believed that the Cyp gene is conserved and plays an important function in Alternaria.
However, the overall amount found in the examined fungus varies. The findings of our
study revealed that five cyp families (Cyp552, Cyp5103, Cyp505, Cyp530 and Cyp65)
were predicted to be conserved, as they were shown to be common across the majority of
the queried Alternaria species, which suggests their significant role in this fungal genus.
The four cyp families (Cyp552, Cyp505, Cyp530 and Cyp65) were previously reported
in Aspergillus nidulans [32], Grosmannia clavigera [17], Mycosphaerella graminicola [16] and
Trichoderma harzianum [12], while Cyp505 was reported in Phanerochete chrysosporium [15].
However, the Cyp5103 family predicted in 8 out of the 13 Alternaria spp. was not reported
in any of the aforementioned fungal genera, which implies that this cyp family could
serve as a vital target to be harnessed for their management or biosynthesis of important
metabolites in these fungi. Cyp51 and Cyp61, reported to be common in both plant and
animal species, were predicted in only 2 of the 13 queried Alternaria species. The spread
and clustering of Cyp families into 10 phyletic clades across the 13 selected Alternaria
species suggest several expansions and narrowing of cyp families along a paralogous
evolutionary path, which could favor the development of several fungal traits to ensure
the successful adaptation and colonization of their environment, including pathogenicity,
as observed by [33,34]. Fungal cyp family expansions and functional diversifications have
been linked to the development of fungal pathogenicity [29]. Despite some parallels in
CYPome distribution amongst the Alternaria species, the family diversity of cyp genes
varies significantly between the species. It is represented in their family number and in
their family kind. We believe that the diversity in the cyp genes among the Alternaria species
is connected to the potential need for novel physiological activities. The study revealed the
different putative functions engaged by each phyletic clade of the 13 Alternaria spp. The
beneficial roles played by p450s genes in various cell functions, including neutralization of
host defense, metabolism of xenobiotics and primary and secondary metabolism, have been
well documented [12]. The phylogeny of all annotated cyps produced revealed several cyp
branches in the phylogenetic tree, demonstrating their significantly evolved divergence.
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The findings of this study also established the localization of cyps genes in eight
different cellular components (plasma membrane, cytoplasm, endomembrane system,
organelle membrane, mitochondrion, mitochondrial membrane, extracellular space and
nucleus) of Alternaria spp., which suggests their varying important roles in the species.
Fungal species are known to possess the class II enzyme group, characterized to be involved
in diverse cellular functions, such as biosynthesis of secondary metabolites (mycotoxins),
lipid metabolism, sterols of membranes, detoxification of xenobiotics and phytoalexins,
therefore, justifying the multicellular localization of their cyps [35,36].

Additionally, the role of P450 genes in the biosynthesis of secondary metabolites
(S.M.), such as mycotoxins in fungal species, has been well documented [36]. Even though
these S.M.s have not been shown to have a direct effect on the growth and development
of fungi [37], they are significant for the colonization of their environment by serving
as growth inhibitors of their competitors and chemical communicating signals [38–40].
The pathogenesis of several fungal pathogens is aided by the secondary metabolite they
biosynthesized [41]. Alternaria species are notable producers of secondary metabolites, of
which the majority are powerful mycotoxins known to be involved in cancer development.
For this, over 300 known secondary metabolites are known to belong to either steroids,
terpenoids, pyranones (pyrones), quinones and phenolics, identified to exhibit different
biologic activities, such as phytotoxic, cytotoxic and antimicrobial properties, serving as
base structures for pesticides and drugs, and many of these are biosynthesized by CYP
proteins [4,14,32,42,43]. This is evident in this study’s discovery of the preponderance of
polyketide synthase (PKS) secondary metabolic-related gene cluster in all the Alternaria
species studied, which is implicated in building the structural support of many secondary
metabolites as they are multi-domain and multi-functional enzymes [41]. Other structural
genes reported to aid in the synthesis of secondary metabolites include P450 monooxy-
genases, methyltransferases, reductases, dimethylallyl tryptophan synthase (DMATS),
polyketide synthase-like (PKS-like), polyketide synthase (PKS), non-ribosomal peptide
synthase (NRPS), non-ribosomal peptide synthase-like (NRPS-like) and terpene cyclases
(T.C.) [40,44–46] established the active role of non-ribosomal peptide synthase genes (NPS6,
AbNPS2) to be involved in the biosynthesis of secondary metabolites, which directly
promotes the integrity of the cell wall, viability of conidia, virulence of old spore and
pathogenicity in A. brassicicola. Following the recent identification of 12 cercosporin toxin
biosynthesis (CTB) genes from the whole-genome sequencing of A. alternata (Y784-BC03),
a pathway for the biosynthesis of cercosporin was postulated, which was regulated by
non-reducing polyketide synthase [21]. These studies indicate the significant importance of
these secondary metabolites in fungi.

5. Conclusions

Our analysis has revealed the various Cytochrome P450 clans and families in the
13 Alternaria species and their distribution into the different phylogenetic groups, including
their putative functions in metabolism. Here, 372 CYP proteins were identified to belong to
71 Cyp families, revealing the diverse biological, agricultural and biotechnological potential
of these fungi. These fungi are a group of commonly encountered genera living in different
habitats and utilizing a diverse substrate spectrum. The phylogenetic clustering of these
proteins into ten clades reveals their close relationships and further demonstrates the influ-
ence of gene expansion and duplication during the evolutionary process. The majority of
these proteins were identified to be located in the endo-membrane system, revealing intense
participation of these proteins in active synthesis, packaging and transportation of sub-
stances in the cell. Their potential can be harnessed in bio-conversion and transformation
of different compounds. The occurrence of secondary metabolite gene clusters is further
evidence revealing the involvement of these genera in the synthesis of diverse secondary
metabolites with agricultural, pharmaceutical, medical and industrial applications. This
study will enable the selection of Alternaria species for various agricultural, medical and
biotechnological applications, including their use to clean environmental pollution.
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