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Abstract

Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions

between compared networks. NA is applicable to many fields, including computational biology,

where NA can guide the transfer of biological knowledge from well- to poorly-studied species

across aligned network regions. Existing NA methods can only align static networks. However,

most complex real-world systems evolve over time and should thus be modeled as dynamic net-

works. We hypothesize that aligning dynamic network representations of evolving systems will

produce superior alignments compared to aligning the systems’ static network representations, as

is currently done.

Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNAþþ. This

proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method,

MAGNAþþ. Even though both MAGNAþþ and DynaMAGNAþþ optimize edge as well as node

conservation across the aligned networks, MAGNAþþ conserves static edges and similarity be-

tween static node neighborhoods, while DynaMAGNAþþ conserves dynamic edges (events) and

similarity between evolving node neighborhoods. For this purpose, we introduce the first ever

measure of dynamic edge conservation and rely on our recent measure of dynamic node conserva-

tion. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-

art NA method and not just MAGNAþþ. We confirm our hypothesis that dynamic NA is superior to

static NA, on synthetic and real-world networks, in computational biology and social domains.

DynaMAGNAþþ is parallelized and has a user-friendly graphical interface.

Availability and implementation: http://nd.edu/�cone/DynaMAGNAþþ/.

Contact: tmilenko@nd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Networks can be used to model complex real-world systems in a

variety of domains (Boccaletti et al., 2006). Network alignment

(NA) compares networks with the goal of finding a node mapping

that conserves topologically or functionally similar regions between

the networks. NA has been used in many domains and applications

(Emmert-Streib et al., 2016). In computer vision, it has been used to

find correspondences between sets of visual features (Duchenne

et al., 2011). In online social networks, NA has been used to match

identities of people who have different account types (e.g. Twitter

and Facebook) (Zhang et al., 2015). In ontology matching, NA has

been used to match concepts across ontological networks (Bayati

et al., 2013). Computational biology is no exception. In this domain,

NA has been used to predict protein function (including the role of

proteins in aging), by aligning protein interaction networks (PINs)

of different species, and by transferring functional knowledge from

a well-studied species to a poorly-studied species between the spe-

cies’ conserved (aligned) PIN regions (Elmsallati et al., 2016; Faisal

et al., 2015a,b; Guzzi and Milenkovi�c, 2017; Meng et al., 2016b).

Also, NA has been used to construct phylogenetic trees of species

based on similarities of their PINs or metabolic networks (Kuchaiev

et al., 2010; Kuchaiev and Pr�zulj, 2011).

NA methods can be categorized as local or global (Guzzi and

Milenkovi�c, 2017; Meng et al., 2016b). Local NA typically finds

highly conserved but consequently small regions among compared

networks, and it results in a many-to-many node mapping. On the

other hand, global NA typically finds a one-to-one node mapping

between compared networks that results in large but consequently

suboptimally conserved network regions. Clearly, each of local NA

and global NA has its (dis)advantages (Guzzi and Milenkovi�c, 2017;

Meng et al., 2016a,b). In this paper, we focus on global NA, but our

ideas are applicable to local NA as well. Also, NA methods can be
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categorized as pairwise or multiple (Faisal et al., 2015b; Guzzi and

Milenkovi�c, 2017; Vijayan and Milenkovi�c, 2016). Pairwise NA

aligns two networks while multiple NA can align more than two

networks at once. While multiple NA can capture conserved net-

work regions between more networks than pairwise NA, which may

lead to deeper biological insights compared to pairwise NA, multiple

NA is computationally much harder than pairwise NA since the

complexity of the NA problem typically increases exponentially

with the number of networks. This is why in this paper we focus on

pairwise NA, but our ideas can be extended to multiple NA as well.

Henceforth, we refer to global and pairwise NA simply as NA.

Existing NA methods can only align static networks. This is be-

cause in many domains and applications, static network representa-

tions are often used to model complex real-world systems,

independent of whether the systems are static or dynamic. However,

most real-world systems are dynamic, as they evolve over time.

Static networks cannot fully capture the temporal aspect of evolving

systems. Instead, such systems can be better modeled as dynamic

networks (Holme, 2015). For example, a complex system such as a

social network evolves over time as friendships are made and lost.

Static networks cannot model the changes in interactions between

nodes over time, while dynamic networks can capture the times dur-

ing which the friendships begin and end. Other examples of systems

that can be more accurately represented as dynamic networks in-

clude communication systems, human or animal proximity inter-

actions, ecological systems, and many systems in biology that evolve

over time, including brain or cellular functioning. In particular, re-

garding the latter, while cellular functioning is dynamic, current

computational methods (including all existing NA methods) for ana-

lyzing systems-level molecular networks, such as PINs, deal with the

networks’ static representations. This is in part due to unavailability

of experimental dynamic molecular network data, owing to limita-

tions of biotechnologies for data collection. Yet, as more dynamic

molecular (and other real-world) network data are becoming avail-

able, there is a growing need for computational methods that are

capable of analyzing dynamic networks (Przytycka and Kim, 2010;

Przytycka et al., 2010), including methods that can align such

networks.

The question is: how to align dynamic networks, when the exist-

ing NA methods can only deal with static networks? To allow for

this, we generalize the notion of static NA to its dynamic counter-

part. Namely, we define dynamic NA as a process of comparing dy-

namic networks and finding similar regions between such networks,

while exploiting the temporal information explicitly (unlike static

NA, which ignores this information). We hypothesize that aligning

dynamic network representations of evolving real-world systems

will produce superior alignments compared to aligning the systems’

static network representations, as is currently done. To test this hy-

pothesis, we introduce the first ever method for dynamic NA.

Our proposed dynamic NA method, DynaMAGNAþþ, is a

proof-of-concept extension of a state-of-the-art static NA method,

MAGNAþþ (Vijayan et al., 2015). Saraph and Milenkovi�c (2014)

and Vijayan et al. (2015) compared MAGNAþþ to state-of-the-art

static NA methods at the time: IsoRank (Singh et al., 2007), MI-

GRAAL (Kuchaiev and Pr�zulj, 2011), and GHOST (Patro and

Kingsford, 2012). The comparisons were made on synthetic as well

as real-world PINs, in terms of both topological and functional

alignment quality. MAGNAþþ resulted in higher-quality align-

ments than the other methods in all of the comparison tests. More

recently, Meng et al. (2016b) compared in the same manner

MAGNAþþ to additional newer static NA methods: NETAL

(Neyshabur et al., 2013), GEDEVO (Ibragimov et al., 2013),

WAVE (Sun et al., 2015), and L-GRAAL (Malod-Dognin and

Pr�zulj, 2015). On synthetic networks, only MAGNAþþ and WAVE

produced high-quality alignments across all comparison tests, unlike

the other methods. On real-world PINs, the best method varied de-

pending on the comparison test, but overall, MAGNAþþ and

L-GRAAL produced the highest-quality alignments in most of the

tests. Hence, MAGNAþþ was the only top-performing method for

both synthetic and real-world networks. This is exactly why we

have chosen to extend MAGNAþþ rather than some other static

NA method to its dynamic counterpart. However, as any future

static NA methods are developed (Mamano and Hayes, 2017) that

are potentially superior to MAGNAþþ, our ideas on dynamic NA

will be applicable to such methods too. Section 2 describes the

method, and Section 3 confirms our hypothesis that dynamic NA is

superior to static NA, under fair comparison conditions, on both

synthetic and real-world networks, and on data from both computa-

tional biology and social network domains.

2 Materials and methods

We first describe MAGNAþþ and then its DynaMAGNAþþ
extension.

2.1 MAGNA 11

Static networks and static NA. A static network G(V, E) consists of

a node set V and an edge set E. An edge ðu; vÞ 2 E is an interaction

between nodes u and v. There can only be a single edge between the

same pair of nodes. Given two static networks G1ðV1;E1Þ and

G2ðV2;E2Þ, assuming without loss of generality that jV1j � jV2j, a

static NA between G1 and G2 is a one-to-one node mapping

f : V1 ! V2, which produces the set of aligned node pairs fðv; f ðvÞÞ
jv 2 V1g (Fig. 1a).

Static edge conservation. Given an NA between two static net-

works, an edge in one network is conserved if it maps to an edge in

the other network, and an edge in one network is non-conserved if it

maps to a non-adjacent node pair (i.e. a non-edge) in the other net-

work (Fig. 1a). A good static NA is a node mapping that conserves

similar network regions. That is, a good static NA should have a

large number of conserved edges and a small number of non-

conserved edges. In this context, we measure the quality of a static

NA using the popular symmetric substructure score (S3) edge conser-

vation measure (Saraph and Milenkovi�c, 2014).

S3 is defined as follows. Formally, the number of conserved edges is

Nc ¼
X

ðu;vÞ2V1�V1

1½ðu; vÞ 2 E1 ^ ðf ðuÞ; f ðvÞÞ 2 E2�;

and the number of non-conserved edges is

Nn ¼
X

ðu;vÞ 2 V1 � V1

1½ ððu; vÞ 2 E1 ^ ðf ðuÞ; f ðvÞÞ 62 E2Þ _

ððu; vÞ 62 E1 ^ ðf ðuÞ; f ðvÞÞ 2 E2Þ �

¼ jE1j þ jE02j � 2Nc;

where G02ðV 02;E02Þ is the subgraph of G2 induced by V 02 ¼ ff ðuÞju
2 V1g; 1½p� ¼ 1 if p is true and 1½p� ¼ 0 if p is false, and U �V is the

Cartesian product of sets U and V.

Then, S3 ¼ Nc

NcþNn
. Supplementary Algorithm S1 describes our S3

implementation that has OðjE1j þ jE2jÞ time complexity.

Static node conservation. A good static NA should also conserve

the similarity between aligned node pairs, i.e. node conservation.

Node conservation accounts for similarities between all pairs of
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nodes across the two networks. Node similarity can be defined in a

way that depends on one’s goal or domain knowledge. In this work,

we use a node similarity measure that is based on graphlets, as

follows.

Graphlets (in the static setting) are small, connected, induced

subgraphs of a larger static network (Milenkovi�c and Pr�zulj, 2008).

Graphlets can be used to describe the extended network neighbor-

hood of a node in a static network via the node’s graphlet degree

vector (GDV). The GDV generalizes the degree of the node, which

counts how many edges are incident to the node, i.e. how many

times the node touches an edge (where an edge is the only graphlet

on two nodes), into the vector of graphlet degrees (i.e. GDV), which

counts how many times the node touches each of the graphlets on

up to n nodes, accounting in the process for different topologically

unique node symmetry groups (automorphism orbits) that might

exist within the given graphlet. In this work, we use all graphlets

with up to four nodes, which contain 15 automorphism orbits,

when calculating the GDV of a node, per recommendations of the

existing studies (Hulovatyy et al., 2015, 2014). Hence, the GDV of

a node has 15 dimensions containing counts for the 15 orbits.

Given GDVs of all nodes in two static networks G1ðV1;E1Þ and

G2ðV2;E2Þ, where xu is the GDV of node u, we calculate similarity

s(u, v) between nodes u 2 V1 and v 2 V2 by relying on an existing

GDV-based measure of node similarity that was used by Hulovatyy

et al. (2015). The measure works as follows. First, to extract GDV

dimensions that contain the most relevant information about the ex-

tended network neighborhood of the given node, the measure re-

duces dimensionality of each GDV via principal component analysis

(PCA). PCA is performed on the vector set fxwjw 2 V1 [ V2g, where

we keep as few of the first k PCA components as needed to account

for at least 99% of variance in the vector set. Let us denote by yu the

dimensionality-reduced vector of xu that contains the k PCA compo-

nents. Second, we define node similarity s(u, v) as the cosine similar-

ity between yu and yv. Third, given a static NA f, we define our node

conservation measure as
P

u2V1

sðu;f ðuÞÞ
jV1 j .

Objective function and optimization process (or search strategy).

MAGNAþþ is a search-based algorithm that finds a static NA by

directly maximizing both edge and node conservation. Namely, it

maximizes the objective function aSE þ ð1� aÞSN, where SE is the

S3 measure of static edge conservation described above, SN is the

graphlet-based measure of static node conservation described above,

and a is a parameter between 0 and 1 that controls for the two meas-

ures. In several studies, it was shown that a of 0.5 yields the best re-

sults (Meng et al., 2016b; Vijayan et al., 2015), which is the a value

we use in this study, unless otherwise noted. Given an initial popula-

tion of random static NAs, MAGNAþþ evolves the population of

alignments over a number of generations while aiming to maximize

its objective function. MAGNAþþ then returns the alignment from

the final generation that has the highest value of the objective

function.

2.2 DynaMAGNA 11
Dynamic networks. A dynamic network H(V, T) consists of a node

set V and an event set T, where an event is a temporal edge (Fig. 1b).

An event is a 4-tuple ðu; v; ts; teÞ, where nodes u and v interact from

time ts to time te. An event is active at time t if ts � t � te. The dur-

ation of an event is the time during which an event is active, i.e.,

te � ts. There can be multiple events between the same two nodes in

the dynamic network, but no two events between the same two

nodes may be active at the same time. In fact, if there are two events

between the same two nodes that are active at the same time, then

they must be combined into a single event.

In the above representation of a dynamic network that our NA

method uses, time is captured in a continuous manner (i.e. each

event has a duration). However, dynamic network data is often pro-

vided in a different representation, as a discrete temporal sequence

of static network snapshots G1ðV1;E1Þ; . . . ;GkðVk;EkÞ. We can eas-

ily convert the static snapshot-based representation of a dynamic net-

work into our event duration-based representation (i.e. into H(V, T)

as defined above). We do this as follows: if there is an edge

Fig. 1. (a) Two static networks G1ðV1;E1Þ and G2ðV2;E2Þ (where edges be-

tween nodes in the same network are denoted by solid lines), and a static NA

between them (in this case, ui maps to vi for i ¼ 1; . . . ; 4, as shown by the dot-

ted arrows). An edge is conserved if it maps to another edge (e.g. edge (u1,

u2) maps to edge (v1, v2)). An edge is non-conserved if it maps to a non-adja-

cent (disconnected) node pair (e.g. edge (u1, u4) maps to a disconnected node

pair (v1, v4)). All conserved edges are shown in green, and all non-conserved

edges are shown in red. (b) Two dynamic networks H1ðV1;T1Þ and H2ðV2;T2Þ.
If two nodes interact at least once during the network’s lifetime (i.e. if there is

at least one event between the nodes), there is a solid line between the nodes.

A given solid line can capture multiple events. Each event is represented as

(ts, te), where ts is its start time, and te is its end time. For example, the event

between u3 and u4 is active from start time 8 to end time 10. A dynamic NA is

a node mapping between the two networks (in this case, ui maps to vi for

i ¼ 1; . . . ; 4, as shown by the dotted arrows). (c) Illustration of the conserved

event time (CET) and non-conserved event time (NCET) of the mapping of

node pair (u1, u2) to node pair (v1, v2). On the left are node pair (u1, u2) from

dynamic network H1ðV1;T1Þ and node pair (v1, v2) from dynamic network

H2ðV2 ;T2Þ, where (u1, u2) maps to (v1, v2). For each of the two node pairs (u1,

u2) and (v1, v2), the event times of the given node pair are visualized by the

plot on the right, where the given solid line in the plot indicates the start time

to the end time of the given event (i.e. the period of time during which the

given node pair is active). Given the above, the CET between (u1, u2) and (v1,

v2) is the amount of time during which both (u1, u2) and (v1, v2) are active at

the same time (the green area). Similarly, the NCET between (u1, u2) and (v1,

v2) is the amount of time during which exactly one of (u1, u2) or (v1, v2) is ac-

tive (the red area). We calculate the CET between these two illustrated node

pairs as follows. Since the events ðu1;u2; 1; 4Þ and ðv1; v2; 2; 5Þ are both active

from time 2 to time 4 for a duration of 4� 2 ¼ 2, the events ðu1;u2; 8; 11Þ and

ðv1; v2; 7; 10Þ are both active from time 8 to time 10 for a duration of

10� 8 ¼ 2, and the events ðu1;u2; 13; 18Þ and ðv1; v2; 14; 17Þ are both active

from time 14 to time 17 for a duration of 17� 14 ¼ 3, the total CET between

(u1, u2) and (v1, v2) is 2þ 2þ 3 ¼ 7. We calculate the NCET between these two

illustrated node pairs as follows. We know that (u1, u2) is active during time

periods 1 to 4, 8 to 11, and 13 to 18, totaling a duration of

ð4� 1Þ þ ð11� 8Þ þ ð18� 13Þ ¼ 11, and that (v1, v2) is active during time peri-

ods 2 to 5, 7 to 10, and 14 to 17, totaling a duration of

ð5� 2Þ þ ð10� 7Þ þ ð17� 14Þ ¼ 9. Since NCET is the amount of time during

which (u1, u2) is active, or (v1, v2) is active, but not both, we need to add up

the time during which either node pair is active, and subtract the time during

which both node pairs are active (making sure to subtract twice to avoid dou-

ble counting, because of the “but not both” constraint). Since the time during

which both node pairs are active is the CET, the NCET between (u1, u2) and

(v1, v2) is 11þ 9� 2� 7 ¼ 6
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connecting two nodes in the tth snapshot of the snapshot-based rep-

resentation, then there is an event between the two nodes that is ac-

tive from time t to time tþ1 in the event duration-based

representation. In other words, we combine the node sets of the

snapshots into a single node set V ¼ V1 [ . . . [ Vk. Then, for each

snapshot Gt, t ¼ 1; . . . ; k, we convert each edge ðu; vÞ 2 Et into an

event between nodes u 2 V and v 2 V in the dynamic network H(V,

T) with start time t and end time tþ1, i.e., the event ðu; v; t; t þ 1Þ.
This allows us to use the snapshot-based representation of a dy-

namic network in our study.

Dynamic NA. Given two dynamic networks H1ðV1;T1Þ and

H2ðV2;T2Þ, assuming without loss of generality that jV1j � jV2j, a

dynamic NA between H1 and H2 is a one-to-one node mapping

f : V1 ! V2, which produces the set of aligned node pairs fðv; f ðvÞÞ
jv 2 V1g (Fig. 1b). Note the similarity between the definitions of

static NA and dynamic NA (although the process of finding the ac-

tual alignments is different). This makes static NA and dynamic NA

fairly comparable.

Dynamic edge (event) conservation. First, given node pair (u1,

u2) in H1 that maps to node pair (v1, v2) in H2 (Fig. 1c), we extend

the notion of a conserved or non-conserved edge from static NA to

dynamic NA by accounting for the amount of time that the mapping

of (u1, u2) to (v1, v2) is conserved or non-conserved (defined below).

That is, we extend the notion of a conserved or non-conserved static

edge to the amount of a conserved or non-conserved dynamic edge

(event), as follows.

We define the amount of a conserved event as follows.

Similar to how an edge ðu01;u02Þ in static network G1ðV1;E1Þ is

conserved if it maps to an edge ðv01; v02Þ in static network

G2ðV2;E2Þ (and vice versa), the mapping of (u1, u2) to (v1, v2) is

conserved at time t if both (u1, u2) and (v1, v2) are active at time t.

We refer to the entire amount of time during which this mapping is

conserved as the conserved event time (CET) between (u1, u2) and

(v1, v2). In other words, it is the amount of time during which both

(u1, u2) and (v1, v2) are active at the same time. Formally, let Tu1u2

be the set of events between u1 and u2, and let Tv1v2
be the set

of events between v1 and v2. Then, the CET between (u1, u2) and

(v1, v2) is

CETððu1; u2Þ; ðv1; v2ÞÞ ¼
X

e2Tu1u2

X

e02Tv1v2

ctðe; e0Þ;

where the conserved time ctðe; e0Þ ¼ maxð0;minðte; t
0
eÞ �maxðts; t

0
sÞÞ

is the amount of time during which events e ¼ ðu1; u2; ts; teÞ and

e0 ¼ ðv1; v2; t
0
s; t
0
eÞ are active at the same time, i.e., ctðe; e0Þ is the

length of the overlap of the intervals ½ts; te� and ½t0s; t0e�.
We define the amount of a non-conserved event as follows.

Similar to how an edge ðu01;u02Þ in G1 is non-conserved if it maps to

a disconnected node pair ðv01; v02Þ in G2 (or vice versa), the mapping

of (u1, u2) to (v1, v2) is non-conserved at time t if exactly one of (u1,

u2) or (v1, v2) is active at time t. We refer to the entire amount of

time during which this mapping is non-conserved as the non-con-

served event time (NCET) between (u1, u2) and (v1, v2). In other

words, it is the amount of time during which (u1, u2) is active, or

(v1, v2) is active, but not both are active at the same time. Formally,

the NCET between (u1, u2) and (v1, v2) is

NCETððu1;u2Þ; ðv1; v2ÞÞ

¼
X

e2Tu1u2

dðeÞ þ
X

e02Tv1v2

dðe0Þ � 2
X

e2Tu1u2

X

e02Tv1v2

ctðe; e0Þ;

where d(e) is the duration of event e, i.e., the amount of time during

which e is active. We make sure to subtract twice the amount of

time during which (u1, u2) and (v1, v2) are both active due to the

above “but not both are active at the same time” constraint.

Second, given these definitions of CET and NCET between two

node pairs (u1, u2) and (v1, v2), we extend the S3 measure of static

edge conservation to a new dynamic S3 (DS3) measure of dynamic

edge (event) conservation. To define DS3, we need to introduce the

notion of CET between all node pairs across the entire alignment

(rather than between just two aligned node pairs), henceforth simply

referred to as alignment CET, which is the sum of CET between all

node pair mappings between H1 and H2. Also, we need to define the

notion of alignment NCET, which is the sum of NCET between all

node pair mappings between H1 and H2. Alignment CET measures

the amount of event conservation of the entire alignment and align-

ment NCET measures the amount of event non-conservation of the

entire alignment. A good dynamic NA is a node mapping that con-

serves similar evolving network regions. That is, a good dynamic

NA should have high alignment CET and low alignment NCET,

which is what DS3 aims to capture. Formally, alignment CET is

Tc ¼
X

ðu;vÞ2V1�V1

CETð ðu; vÞ; ðf ðuÞ; f ðvÞÞ Þ

and alignment NCET is

Tn ¼
X

ðu;vÞ2V1�V1

NCETð ðu; vÞ; ðf ðuÞ; f ðvÞÞ Þ:

Then, DS3 ¼ Tc

TcþTn
. Supplementary Algorithm S2 describes our

DS3 implementation that has OðjT1j þ jT2jÞ time complexity.

We note that there are many real-world networks that contain

events with durations that are significantly less than the entire time

window of the network, called “bursty” events. Examples of net-

works containing bursty events are e-mail communication networks,

economic networks that model transactions, and brain networks

constructed from oxygen level correlations as measured by fMRI

scanning, each of whose events last much less than a second while

the networks’ time windows span minutes to hours (Holme, 2015).

Since bursty events are so short, small perturbations in the event

times can greatly affect the resulting dynamic edge (event) conserva-

tion value. Thus, in order to allow our DS3 measure to be more ro-

bust to perturbations of up to Dt in the event times, one may simply

extend the duration of each event in the network by 2Dt. This is due

to the following. Given two events ðu1; u2; t; tÞ and ðv1; v2; t
0; t0Þ with

durations of 0, where t0 ¼ t þ Dt, the conserved time ctð�; �Þ between

the two events is 0. Thus, if we want to consider the two events as

conserved, we can increase the durations of both events by 2Dt to

create the modified events ðu1; u2; t � Dt; t þ DtÞ and

ðv1; v2; t
0 � Dt; t0 þ DtÞ, which results in a conserved time of Dt for

the two modified events. While we do not use this technique in our

work since we do not use networks with bursty events, others might

in the future, and if so, this needs to be considered when performing

dynamic NA.

Dynamic node conservation. Just as for static NA, a good dy-

namic NA method should also conserve the similarity between

aligned node pairs, i.e. node conservation. To take advantage of the

temporal information encoded in dynamic networks that are being

aligned and also to make dynamic NA as fairly comparable as pos-

sible to static NA, in this work, we rely on a measure of node simi-

larity based on dynamic graphlets, as follows.

Dynamic graphlets are an extension of static graphlets (Section

2.1) to the dynamic setting. While static graphlets can be used to

capture the static extended network neighborhood of a node, dy-

namic graphlets can be used to capture how the extended
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neighborhood of a node changes over time. To define dynamic

graphlets, we first present the notion of a Dt-time-respecting path

and a Dt-connected network. A Dt-time-respecting path is a se-

quence of events that connect two nodes such that for any two con-

secutive events in the sequence, the end time of the earlier event and

the start time of the later event are within Dt time of each other (i.e.,

are Dt-adjacent). A dynamic network is Dt-connected if for each pair

of nodes in the network, there is a Dt-time-respecting path between

the two nodes. Then, just as a static graphlet is an equivalence class

of isomorphic connected subgraphs (Section 2.1), a dynamic graph-

let is an equivalence class of isomorphic Dt-connected dynamic sub-

graphs, where two graphlets are equivalent if they both have the

same relative temporal order of events. We use Dt ¼ 1, per recom-

mendations by Hulovatyy et al. (2015). Just as the GDV of a node in

a static network is a topological descriptor for the extended neigh-

borhood of the node, there exists the dynamic GDV (DGDV) of a

node in a dynamic network, which describes how the extended

neighborhood of a node changes over time. Specifically, just as the

GDV of a node counts how many times the node touches each static

graphlet at each of its automorphism orbits, the DGDV of a node

counts how many times the node touches each dynamic graphlet at

each of its orbits. Dynamic graphlets have a similar notion of orbits

as static graphlets do, which now depend on both topological and

temporal positions of a node within the dynamic graphlet. To make

things fairly comparable to static NA, and per recommendations by

Hulovatyy et al. (2015), we use dynamic graphlets with up to four

nodes and six events, which contain 3727 automorphism orbits.

Hence, the DGDV of a node has 3727 dimensions containing counts

for the 3727 orbits.

Given the DGDVs of all nodes in two dynamic networks H1ðV1;

T1Þ and H2ðV2;T2Þ, just as in Section 2.1, we calculate similarity

s(u, v) between nodes u 2 V1 and v 2 V2 and then rely on cosine

similarities between the PCA-based dimensionality-reduced DGDVs

to obtain the total dynamic node conservation.

Objective function and optimization process (also known as

search strategy). DynaMAGNAþþ is a search-based algorithm that

finds a dynamic NA by directly maximizing both dynamic edge

(event) and node conservation. Namely, DynaMAGNAþþ maxi-

mizes the objective function aST þ ð1� aÞSN, where ST is the DS3

measure of dynamic edge conservation described above, SN is the

DGDV-based measure of dynamic node conservation described

above, and a is a parameter between 0 and 1 that controls for the

two measures. To make DynaMAGNAþþ fairly comparable to

MAGNAþþ, here we also use MAGNAþþ’s best a value of 0.5,

unless otherwise noted. Given an initial population of random dy-

namic NAs, DynaMAGNAþþ evolves the population of alignments

over a number of generations while aiming to maximize its objective

function. DynaMAGNAþþ then returns the alignment from the

final generation that has the highest value of the objective function.

Time complexity. To align two dynamic networks H1ðV1;T1Þ
and H2ðV2;T2Þ, DynaMAGNAþþ evolves a population of p align-

ments over N generations. It does so by using its crossover function

(see Saraph and Milenkovi�c (2014) for details) to combine pairs of

parent alignments in the given population into child alignments, for

each generation. For each generation, the dynamic edge (event) con-

servation, dynamic node conservation, and crossover of O(p) align-

ments are calculated. Since dynamic edge conservation takes

OðjT1j þ jT2jÞ to compute, dynamic node conservation takes OðjV1jÞ
time to compute, crossover takes OðjV2jÞ time to compute, and

jV1j � jV2j, the time complexity of DynaMAGNAþþ is

OðNpjV2j þNpðjT1j þ jT2jÞÞ. Note that the calculation of dy-

namic edge and dynamic node conservation in DynaMAGNAþþ is

parallelized. This allows DynaMAGNAþþ to be run on multiple

cores, which empirically results in close to linear speedup.

Other parameters. Given an initial population of dynamic NAs,

DynaMAGNAþþ evolves the population for up to a specified num-

ber of generations or until it reaches a stopping criterion. For each

generation, DynaMAGNAþþ keeps an elite fraction of alignments

from the current generation’s population for the next generation’s

population. In addition to the dynamic edge and node conservation

measures, and the a parameter that controls for the contribution of

the two measures, the remaining parameters of DynaMAGNAþþ
are (i) the initial population, (ii) the size of the population, (iii), the

maximum number of generations, (iv) the elite fraction, and (v) the

stopping criterion. For DynaMAGNAþþ, we use a population of

15 000 alignments initialized randomly, as in the original

MAGNAþþ paper. We specify a maximum of 10 000 generations,

since the alignments that we test all converge by 10 000 generations.

The elite fraction is 0.5, as in the original MAGNAþþ paper. The

algorithm stops when the highest objective function value in the

population has increased less than 0.0001 within the last 500 gener-

ations, since the alignments that we test do not increase by a signifi-

cant amount after this point.

To fairly compare DynaMAGNAþþ against MAGNAþþ, we

aim to set the parameters of both methods to be as similar as pos-

sible. So, other than MAGNAþþ’s edge and node conservation

measures, the remaining parameters of MAGNAþþ are the same as

for DynaMAGNAþþ. This way, any differences that we see be-

tween results of DynaMAGNAþþ and results of MAGNAþþ will

be the consequence of the differences of the two methods’ edge and

node conservation measures, i.e. of accounting for temporal infor-

mation in the network with DynaMAGNAþþ and ignoring this in-

formation with MAGNAþþ. In other words, any differences that

we see between results of DynaMAGNAþþ and results of

MAGNAþþ will fairly reflect differences between dynamic NA and

static NA.

3 Results and discussion

Since there are no other dynamic NA methods to compare against,

we compare DynaMAGNAþþ to the next best option, namely its

static NA counterpart. That is, we compare DynaMAGNAþþ
when it is used to align two dynamic networks, to MAGNAþþ
when it is used to align static versions of the two dynamic networks.

By “static versions”, we mean that we “flatten” or “aggregate” a

dynamic network into a static network that will have the same set of

nodes as the dynamic network and a static edge will exist between

two nodes in the static network if there is at least one event between

the same two nodes in the dynamic network. This network aggrega-

tion simulates the common practice where network analysis of

time-evolving systems is done in a static manner, by ignoring

their temporal information (Holme, 2015). We evaluate

DynaMAGNAþþ and MAGNAþþ on synthetic and real-world dy-

namic networks, as follows.

3.1 Evaluation using synthetic networks
Motivation. A good NA approach should be able to produce high-

quality alignments between networks that are similar and low-

quality alignments between networks that are dissimilar (Yavero�glu

et al., 2015). In this test on synthetic networks, “similar” means net-

works that originate from the same network model, and “dissimi-

lar” means networks that originate from different network models.

So, we refer to this test as network discrimination. Thus, in this
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section, we evaluate the network discrimination performance of

DynaMAGNAþþ and MAGNAþþ.

Data. We perform this evaluation on a set of biologically

inspired synthetic networks. Specifically, we generate 20 dynamic

networks using four biologically inspired network evolution models

(or versions of the same model with different parameter values) that

simulate the evolution (i.e. growth) of PINs, resulting in five net-

works per model (Hulovatyy et al., 2015). The four models that we

use are (i) GEO-GD with p¼0.3, (ii) GEO-GD with p¼0.7, (iii)

SF-GD with p¼0.3 and q¼0.7, and (iv) SF-GD with p¼0.7 and

q¼0.6, where GEO-GD is a geometric gene duplication model with

probability cut-off and SF-GD is a scale-free gene duplication model

(Pr�zulj et al., 2010). Hulovatyy et al. (2015) generalized the static

versions of these models to their dynamic counterparts, and we rely

on the same model networks as those used by Hulovatyy et al.

(2015) (see their paper for details). Intuitively, each of the 20 syn-

thetic networks is represented as a sequence of snapshots, where

snapshot size increases with time, as illustrated in Supplementary

Figure S1. The final (largest) snapshot of each synthetic network has

1000 nodes, and the number of edges varies depending on the differ-

ent parameter values of the considered network models.

Representative statistics describing the final snapshot of each of the

synthetic networks, such as their sizes or degree distributions, are

shown in Supplementary Table S1 and Supplementary Figure S2.

To illustrate generalizability of dynamic NA to other domains,

we also perform this evaluation on a set of social synthetic networks

generated using different parameter values of a social network evo-

lution model (due to space constraints, we refer the reader to

Supplementary Section S1.1, Supplementary Table S2, and

Supplementary Figs S3–S4 for details).

Evaluation measures. We calculate performance of each method

as follows. We align all possible pairs of the synthetic networks. The

higher the alignment quality between pairs of similar networks (i.e.

networks coming from the same model) and the lower the alignment

between pairs of dissimilar networks (i.e. networks coming from dif-

ferent models), the better the NA method. Here, by alignment qual-

ity between two networks that the given method identifies, we mean

the method’s objective function value for the alignment of the two

networks that is returned by the method (Section 2). Given the align-

ment quality values for all network pairs, we summarize the given

method’s performance using precision-recall and receiver operating

characteristic (ROC) frameworks. For some given threshold r,

a good NA method should result in alignment quality greater than

r for pairs of similar networks and in alignment quality smaller than

r for pairs of dissimilar networks. So, for a given threshold r, we

compute accuracy in terms of precision, the fraction of network

pairs that are similar and with alignment quality greater than r out

of all network pairs with alignment quality greater than r, and re-

call, the fraction of network pairs that are similar and with align-

ment quality greater than r out of all similar network pairs. Varying

the threshold r for all r	0 (i.e. for r between 0 and the maximum

observed alignment quality value, in increments of the smallest dif-

ference between any pair of observed alignment quality values) gives

us the precision-recall curve. Then, we compute the area under the

precision-recall curve (AUPR), the F-score (harmonic mean of preci-

sion and recall) at which precision and recall cross and are thus

equal (F-scorecross), and the maximum F-score over all threshold r

values (F-scoremax). For a given threshold r, we also compute

method accuracy in terms of sensitivity, which is the same as recall,

and specificity, the fraction of network pairs that are dissimilar and

with alignment quality less than r out of all network pairs that are

dissimilar. Varying the threshold r for all r	0 gives us the receiver

operating characteristic (ROC) curve. Then, we compute the area

under the ROC curve (AUROC).

Results. First, we aim to test whether optimizing both dynamic

edge (event) conservation and dynamic node conservation in

DynaMAGNAþþ is better than optimizing either dynamic edge

conservation alone or dynamic node conservation alone, since it was

shown for MAGNAþþ that optimizing both static edge conserva-

tion and static node conservation performs better than optimizing

any one of static edge conservation or static node conservation alone

(Meng et al., 2016b; Vijayan et al., 2015). So, we compare three dif-

ferent versions of DynaMAGNAþþ that differ in their optimization

functions. The three versions optimize: (i) a combination of dynamic

edge conservation and dynamic node conservation (corresponding

to a¼0.5, named DynaMAGNAþþ (EþN)), (ii) dynamic edge

conservation only (corresponding to a¼1, named DynaMAGNA

þþ (E)), and (iii) dynamic node conservation only (corresponding to

a¼0, named DynaMAGNAþþ (N)) (Section 2). We find that while

DynaMAGNAþþ (N) performs the best for biological synthetic net-

works (Table 1, Supplementary Fig. S5, and Supplementary Table

S3), it performs the worst for the social synthetic networks (Table 2,

Supplementary Fig. S6, and Supplementary Table S4). Similarly,

DynaMAGNAþþ (E) performs the best for synthetic social net-

works (Table 2) but the worst for biological synthetic networks

(Table 1). On the other hand, DynaMAGNAþþ (EþN) consist-

ently performs well (though not the best) in both cases. Because of

this, and because DynaMAGNAþþ (EþN) is the best of all three

versions for all analyzed real-world networks (as we show in Section

3.2), in the main paper, we only report results for DynaMAGNAþþ
(EþN) and refer to it simply as DynaMAGNAþþ. We report re-

sults for DynaMAGNAþþ (E) and DynaMAGNAþþ (N) in the

Supplement (Supplementary Section S1.2). This way, we fairly com-

pare DynaMAGNAþþ and MAGNAþþ, both using a¼0.5.

Second, and most importantly, we test whether dynamic NA is su-

perior to static NA, by comparing the network discrimination perform-

ance of DynaMAGNAþþ and MAGNAþþ. Indeed, for biological

synthetic networks, DynaMAGNAþþ outperforms MAGNAþþ with

respect to all considered NA quality measures (Fig. 2, Table 3,

Supplementary Fig. S5, and Supplementary Table S3). Similar results

(superiority of DynaMAGNAþþ over MAGNAþþ) also hold for the

social synthetic networks (Supplementary Fig. S6 and Supplementary

Table S4).

In summary, under fair comparison conditions, we demonstrate

that dynamic NA is superior to static NA for synthetic dynamic

networks.

3.2 Evaluation using real-world networks
Motivation. Here, we still evaluate whether the given method pro-

duces high-quality alignments for similar networks and low-quality

Fig. 2. Network discrimination performance of DynaMAGNAþþ and

MAGNAþþ for biological synthetic networks with respect to (a) precision-re-

call curve and (b) ROC curve
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alignments for dissimilar networks. However, the notion of similar-

ity that we use here is different than for the synthetic networks

above, because for real-world networks, we do not know which net-

work models they belong to (Yavero�glu et al., 2015). Specifically,

we align an original real-world network to its randomized (noisy)

versions (see below), where we vary the noise level. The larger the

noise level, the more dissimilar the aligned networks are, and thus,

the lower the alignment quality should be.

Zebra network. Since there is a lack of available dynamic mo-

lecular networks (Section 1), we begin our evaluation of real-world

networks on an alternative biological network type — an ecological

network. The original real-world network that we use is the Grevy’s

zebra proximity network (Rubenstein et al., 2015), which contains

information on interactions between 27 zebras in Kenya over 58

days. The data was collected by driving a predetermined route each

day while searching for herds. There are 779 events in the network.

We also report results for another animal proximity network that

contains information on interactions between 28 onagers, a species

that is closely related to the Grevy’s zebra, mostly in the Supplement

due to space constraints (Supplementary Section S1.3). The onager

proximity network contains 28 nodes and 522 events.

Since the difference between dynamic NA and static NA is that

the former accounts for the temporal aspect of the data more expli-

citly than the latter, to properly validate results for dynamic NA, as

strict randomization scheme as possible should be used when creat-

ing randomized (noisy) versions of the original dynamic network

that will be aligned to the original network. By “as strict as pos-

sible”, we mean that we want to use a randomization scheme that

preserves as much structure (i.e. topology) as possible of the

dynamic network and randomizes only the temporal aspect of the

network. This way, the only difference observed between

DynaMAGNAþþ’s and MAGNAþþ’s performance will be the

consequence of considering the temporal aspect of the data. For this

reason, we randomize the original network using the following

model per recommendations by Holme (2015). In order to random-

ize the original dynamic network H(V, T) to a certain noise level,

first, we arbitrarily number all m events in the network as

T ¼ fe1; e2; . . . ; emg. Then, for each event ei, with probability p

(where p is the noise level) we randomly select another event

ej; j 6¼ i, and swap the time stamps of the two events. Since we only

swap the time stamps, this randomization scheme conserves the total

number of events and the structure of the flattened version of the

original dynamic network. We study 10 different noise levels, from

0% to 100% in smaller increments initially and larger increments

toward the end (clearly, at the 0% noise level, the aligned networks

are identical). For each noise level, we generate five randomized ver-

sions of the original network and report results averaged over the

five randomization runs.

We evaluate DynaMAGNAþþ and MAGNAþþ’s performance

as follows. First, for a good method, alignment quality should de-

crease as the noise level increases, since the original network and its

randomized version become more dissimilar with this increase. As in

Section 3.1, one measure of alignment quality that we use is each

method’s objective function. Another measure that we use is node

correctness. Node correctness of an alignment is the fraction of cor-

rectly aligned node pairs (according to the ground truth node map-

ping) out of all aligned node pairs. Given that our original network

and its randomized versions have the same set of nodes, we know

which nodes in the original network correspond to which nodes in

the given randomized network. That is, we know the ground truth

(or perfect) mapping between the aligned networks. Hence, we can

measure node correctness between the networks. Thus, we evaluate

each method’s alignment quality using the method’s objective func-

tion as well as node correctness, with the expectation that for a

good method, alignment quality should decrease with increase in the

noise level.

Second, since we know the perfect alignment between the ori-

ginal network and each of its randomized versions, we compute the

“ideal” alignment quality — the quality of the perfect alignment, as

measured by DynaMAGNAþþ’s objective function. The expect-

ation is that a good method’s alignment quality should mimic well

the “ideal” quality.

Third, we expect DynaMAGNAþþ’s alignment quality to be

superior to MAGNAþþ’s alignment quality with respect to node

correctness for lower (meaningful) noise levels, if it is indeed true

that dynamic NA is superior to static NA. We do not expect this su-

periority for higher noise levels, since at such noise levels, networks

being aligned are highly randomized and thus a good method should

produce low-quality alignments.

Indeed, our results confirm all three of the above expectations

(Fig. 3 and Supplementary Fig. S7). Specifically, first,

DynaMAGNAþþ’s alignment quality indeed decreases with the in-

crease in the noise level with respect to both its objective function

(Fig. 3a) as well as node correctness (Fig. 3b). On the other hand,

MAGNAþþ’s alignment quality stays constant with increase in the

noise level. In other words, MAGNAþþ produces alignments of the

same quality for low noise levels (where network structure is mean-

ingful) as it does for high noise levels (where network structure is

random). Second, DynaMAGNAþþ’s alignment quality follows

closely the quality of the perfect alignments, while MAGNAþþ
does not (Fig. 3a). Third, DynaMAGNAþþ achieves higher node

Table 1. Network discrimination performance of DynaMAGNAþþ,

while optimizing both dynamic edge and node conservation

(EþN), dynamic edge conservation alone (E), and dynamic node

conservation alone (N), for biological synthetic networks, with re-

spect to the area under the precision-recall curve (AUPR), F-score

at which precision and recall cross and are thus equal (F-scorecross),

maximum F-score (F-scoremax), and the area under the ROC curve

(AUROC)

NA method AUPR F-scorecross F-scoremax AUROC

DynaMAGNAþþ (EþN) 0.865 0.700 0.771 0.950

DynaMAGNAþþ (E) 0.742 0.550 0.762 0.919

DynaMAGNAþþ (N) 0.994 0.950 0.962 0.998

Note: In each column, the highest score is bolded.

Table 2. Equivalent of Table 1 for social synthetic networks

NA method AUPR F-scorecross F-scoremax AUROC

DynaMAGNAþþ (EþN) 0.908 0.800 0.839 0.959

DynaMAGNAþþ (E) 1.000 1.000 1.000 1.000

DynaMAGNAþþ (N) 0.751 0.600 0.723 0.883

Note: In each column, the highest score is bolded.

Table 3. Network discrimination performance of

DynaMAGNAþþ and MAGNAþþ, for biological synthetic net-

works, with respect to the same measures as in Table 1

NA method AUPR F-scorecross F-scoremax AUROC

DynaMAGNAþþ 0.865 0.700 0.771 0.950

MAGNAþþ 0.711 0.550 0.645 0.863

Note: In each column, the highest score is bolded.
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correctness than MAGNAþþ at lower (meaningful) noise levels.

This is not a surprise, since DynaMAGNAþþ explicitly uses the

temporal information in the aligned networks, while MAGNAþþ
does not. Thus, in summary, dynamic NA outperforms static NA.

We observe similar results for the onager network (Supplementary

Fig. S8).

The above complete failure of MAGNAþþ to produce align-

ments of decreasing quality as the noise level increases is due to the

strict randomization scheme that we use to create the noisy versions

of the original network, which conserves all structure of the flat-

tened version of the original dynamic network. Recall that we use

the strict randomization scheme to ensure that the results of

DynaMAGNAþþ are meaningful. Yet, to give as fair advantage as

possible to static NA, we produce a different set of noisy versions of

the original network using a somewhat more flexible randomization

scheme that does not conserve the structure of the flattened version

of the original dynamic network, per recommendations of Holme

(2015). This randomization scheme works as follows. In order to

randomize the original dynamic network H(V, T) to a certain noise

level, first, we arbitrarily number all m events in the network as

T ¼ fe1; e2; . . . ; emg. Then, for each event ei, with probability p

(where p is the noise level) we randomly select an event ei0 , and we

rewire the two events. That is, given ei ¼ ðu; v; ts; teÞ and

ei0 ¼ ðu0; v0; t0s; t0eÞ, we either set ei ¼ ðu; v0; ts; teÞ and ei0 ¼ ðu0; v; ts; teÞ
with probability 0.5, or we set ei ¼ ðu; u0; ts; teÞ and ei0 ¼ ðv; v0; ts; teÞ
with probability 0.5. If the rewiring creates a loop (i.e., an event

from a node to itself) or a multiple link (i.e., duplicate events be-

tween the same nodes), then we undo it and randomly select another

event ei0 . This randomization scheme conserves the entire set of time

stamps of the original network, but it does not preserve the structure

of the flattened network. We study 10 different noise levels (from

0% to 100% in smaller increments initially and larger increments

toward the end). For each noise level, we generate five randomized

versions of the original network and report results averaged over the

five randomization runs. While now MAGNAþþ’s alignment quality

also decreases with increase in the noise level and also MAGNAþþ
closely follows the quality of the perfect alignments, as it should (Fig.

4a and Supplementary Fig. S9), DynaMAGNAþþ is still superior to

MAGNAþþ with respect to node correctness (Fig. 4b), which again

implies that dynamic NA is superior to static NA.

Because the results are consistent independent of the randomiza-

tion scheme that is used to produce noisy networks, and since the

strict scheme should be used to correctly evaluate

DynaMAGNAþþ’s correctness, henceforth, we report results only

for the strict randomization scheme.

Yeast network. Since there is a lack of available experimental

dynamic molecular networks, we continue our evaluation of real-

world networks on the next best available dynamic molecular

network option. Namely, we create a dynamic yeast PIN from an

artificial temporal sequence of static yeast PINs. Here, the static

PINs that are used as snapshots of the dynamic PIN are all real-

world networks, it is just their temporal sequence that is artificial.

The sequence consists of six static PIN snapshots: a high-confidence

S. cerevisiae (yeast) PIN with 1004 proteins and 8323 interactions,

and five lower-confidence yeast PINs constructed by adding to the

high-confidence PIN 5%, 10%, 15%, 20%, or 25% of lower-

confidence interactions; the interactions are added in order of

decreasing confidence. Clearly, the five lower-confidence PINs have

the same 1004 nodes as the high-confidence PIN, and the largest of

the five lower-confidence PINs has 25% more edges than the high-

confidence PIN, i.e. 10 403 of them. This network set has been used

in many existing static NA studies (Kuchaiev et al., 2010;

Milenkovi�c et al., 2010; Kuchaiev and Pr�zulj, 2011; Meng et al.,

2016b; Saraph and Milenkovi�c, 2014; Vijayan and Milenkovi�c,

2016). When we use the six static PINs as snapshots to form a dy-

namic network, we order the six networks from the smallest one in

terms of the number of edges (i.e. the one of the highest confidence)

to the largest one in terms of the number of edges (i.e. the one of the

lowest confidence). Since each static PIN contains the same set of

nodes, this simulates a dynamic network that is growing as it

evolves, with more and more interactions being added to the net-

work over time. When we align the resulting (original) dynamic

yeast network to its randomized versions, we find that just as for the

zebra network, DynaMAGNAþþ’s alignment quality decreases

with increase in the noise level, with respect to both its objective

function (Fig. 5a) as well as node correctness (Fig. 5b), while

MAGNAþþ’s alignment quality does not change. Further,

DynaMAGNAþþ again matches more closely the quality of the per-

fect alignments than MAGNAþþ does (Fig. 5a). Finally,

DynaMAGNAþþ again produces higher node correctness than

MAGNAþþ for the lower (meaningful) noise levels. Thus, dynamic

NA is superior to static NA for the yeast network as well.

Enron network. To demonstrate DynaMAGNAþþ’s generaliz-

ability on non-biological networks, we continue our evaluation on a

social network. The original network that we use is the Enron

e-mail communication network (Priebe et al., 2005), which is based

on e-mail communications of 184 employees in the Enron corpor-

ation from 2000 to 2002, made public by the Federal Energy

Regulatory Commission during its investigation. The entire two-

year time period is divided into two-month periods so that if there is

at least one e-mail sent between two people within a particular two-

month period, then there exists an event between the two people

during that period. There are 5539 events in the Enron network.

Fig. 3. Alignment quality of DynaMAGNAþþ and MAGNAþþ as a function of

noise level when aligning the original Grevy’s zebra network to randomized

(noisy) versions of the original network. Here, the randomization is as strict

as possible, as it conserves all structure of the flattened version of the original

dynamic network and only randomly “shuffles” the given percentage (noise

level) of its event time stamps. Alignment quality is shown with respect to (a)

each method’s objective function, and (b) node correctness. “Ideal” in panel

(a) shows the quality of perfect alignments (see the text)

Fig. 4. Alignment quality of DynaMAGNAþþ and MAGNAþþ for the Grevy’s

zebra network. The figure can be interpreted in the same way as Figure 3, ex-

cept that here, the randomization used to create the noisy networks does not

conserve the structure of the flattened version of the original dynamic

network
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When we align the original network to its randomized versions, we

find that just as for the zebra and yeast networks,

DynaMAGNAþþ’s alignment quality decreases with increase in

the noise level, while MAGNAþþ’s alignment quality does not

change (Fig. 6). Further, DynaMAGNAþþ again matches more

closely the quality of the perfect alignments (Fig. 6a). So, these re-

sults again indicate that dynamic NA is superior to static NA.

Interestingly, for this network, MAGNAþþ also produces high-

quality alignments with respect to node correctness for the low noise

levels, just like DynaMAGNAþþ does (Fig. 6b).

On optimizing edge versus node conservation for real-world

networks. Here, we briefly come back to the discussion of

which of DynaMAGNAþþ (EþN), DynaMAGNAþþ (E), or

DynaMAGNAþþ (N) is superior. For all analyzed real-world net-

works, DynaMAGNAþþ (EþN) is superior to the other two ver-

sions (Table 4), which justifies our choice to mainly report the

results of DynaMAGNAþþ (EþN) throughout the paper.

Running time. Recall that the time complexity of

DynaMAGNAþþ is linear with respect to the number of events in

the aligned networks (Section 2.2), while the time complexity of

MAGNAþþ is linear with respect to the number of edges in the

aligned networks (Section 2.1). Because there are typically more

events in a dynamic network than edges in its flattened version, and

because more computations are involved when calculating event

conservation than when calculating edge conservation,

DynaMAGNAþþ is expected to be slower than MAGNAþþ (yet,

it is this ability of DynaMAGNAþþ to capture temporal event in-

formation that makes it more accurate than MAGNAþþ). When

using eight cores to align the yeast network to its 0% randomized

version, DynaMAGNAþþ takes 2.0 hours, with 2% of this time

spent on counting dynamic graphlets, while MAGNAþþ takes

0.8 hours, with 11% of this time spent of counting static graphlets

(faster implementations for static graphlet counting exist (Ho�cevar

and Dem�sar, 2014)). This makes DynaMAGNAþþ 2.5 times slower

than MAGNAþþ. Nonetheless, the somewhat slower (yet still very

practical) runtime of DynaMAGNAþþ is justified by

DynaMAGNAþþ’s superiority over MAGNAþþ in terms of align-

ment quality.

DynaMAGNA 11’s availability. We implement a friendly

graphical user interface (GUI) for DynaMAGNAþþ (Fig. 7) for

easy use by domain (e.g., biological) scientists. Also, we provide the

source code of DynaMAGNAþþ so that computational scientists

may potentially extend the work (http://nd.edu/�cone/

DynaMAGNAþþ/).

4 Conclusion

We introduce the first ever dynamic NA method. We show that our

method, DynaMAGNAþþ, produces superior alignments com-

pared to its static NA counterpart due to its explicit use of available

temporal information in dynamic network data. DynaMAGNAþþ
is a search-based NA method that can optimize any alignment qual-

ity measure. In this work, we propose an efficient temporal

information-based alignment quality measure, DS3, that

DynaMAGNAþþ partly optimizes in order to find good align-

ments. DynaMAGNAþþ can be extended in two ways: by optimiz-

ing future, potentially more efficient alignment quality measures

with the current search strategy, or by optimizing its current align-

ment quality measures with a future, potentially superior search

strategy (Crawford et al., 2015). DynaMAGNAþþ can also be ex-

tended into an “online” version to allow for dealing with constantly

“arriving” temporal data (Albers, 2003). Namely, after

DynaMAGNAþþ has produced an alignment of two dynamic

Fig. 5. Alignment quality of DynaMAGNAþþ and MAGNAþþ for the yeast

network. The figure can be interpreted in the same way as Figure 3

Fig. 6. Alignment quality of DynaMAGNAþþ and MAGNAþþ for the Enron

network. The figure can be interpreted in the same way as Figure 3

Table 4. Alignment quality of DynaMAGNAþþ optimizing both dy-

namic edge and node conservation (EþN), dynamic edge conser-

vation alone (E), and dynamic node conservation alone (N), in

terms of node correctness, when each network is aligned to itself

(corresponding to the 0% noise level)

NA method \ Network Zebra Yeast Enron

DynaMAGNAþþ (EþN) 0.800 0.920 1.000

DynaMAGNAþþ (E) 0.704 0.635 1.000

DynaMAGNAþþ (N) 0.793 0.891 0.996

Note: Each score is an average over five runs. In each column, the highest

score is bolded.

Fig. 7. GUI to DynaMAGNAþþ. The only required parameters are the two

networks to be aligned, and the output directory/file name information. While

DS3 is the only currently implemented dynamic edge (event) conservation

measure, other future dynamic edge conservation measures can be easily

added. Any dynamic node similarity measure can be used by selecting a file

containing pairwise similarities between nodes of the two networks. The a

parameter (Section 2.2) can be set to any desired value. Other advanced par-

ameters can also be user-specified. The default values are set according to

the parameter values used in this work (Section 2.2)
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networks, if new events are added to either of the networks,

DynaMAGNAþþ can be modified to allow for updating the current

alignment into a new one that will account for the new events.

We demonstrate applicability of DynaMAGNAþþ and dynamic

NA in general in multiple domains: biological networks (ecological

networks and PINs) and social networks. Given the impact that

static NA has had in computational biology, as more PIN and other

molecular dynamic network data are becoming available, dynamic

NA and thus our study will continue to gain importance. The same

holds for other domains in which increasing amounts of real-world

dynamic network data are being collected. So, we have just

scratched the tip of the iceberg called dynamic NA.
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