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Feature extraction plays an important role in text recognition as it aims to capture essential characteristics of the text image. Feature
extraction algorithms widely range between robust and hard to extract features and noise sensitive and easy to extract features.
Among those feature types are statistical features which are derived from the statistical distribution of the image pixels. This paper
presents a novel method for feature extraction where simple statistical features are extracted from a one-pixel wide window that
slides across the text line. The feature set is clustered in the feature space using vector quantization. The feature vector sequence is
then injected to a classification engine for training and recognition purposes. The recognition system is applied to a data corpus
which includes cursive Arabic text of more than 600 A4-size sheets typewritten in multiple computer-generated fonts. The system
performance is compared to a previously published system from the literature with a similar engine but a different feature set.

1. Introduction

Optical character recognition (OCR) is amongst the branches
of pattern recognition where a computer program attempts
to imitate the human ability to read printed text with
human accuracy, but at a higher speed [1]. A number of
factors are pushing toward text recognition: the easy use of
electronic media, its growth at the expense of conventional
media, and the necessity of converting the data from the
conventional media to the new electronic media. The latter
motivates the vast range of OCR applications which includes
automatic mail routing [2], machine processing of forms
[3], bank cheques [4], printed newspapers [5], and signature
verification [6].

Most optical character recognitionmethods for Latin text
assume that individual characters can be isolated. Although
this is applicable and successful for those languages, this
assumption cannot be applied reliably to cursive script, such
as Arabic, where the shape of the character is context sen-
sitive. Feature extraction tackles the obstacle of cursiveness
of Arabic in twofold: the global approach and the analytical
approach. While global approach treats the word as a whole,

extracts features from the unsegmented word, and then
compares those features to amodel [7, 8], analytical approach
decomposes the word into smaller units called glyphs [9].
Glyphs may or may not correspond to characters, although
previous research has confirmed the difficulties in attempting
to segment Arabic words into individual characters [10].

A feature measures certain attributes of a glyph and then
combines those measurements into a vector. Those measure-
ments capture essential characteristics of the glyph which
eliminate variations of the same glyph across various fonts
and preserve properties between two different glyphs. Fea-
tures could be structural, statistical, or global transformation.
Structural features concern with topological and geometrical
characteristics of a glyph [11, 12]. These include strokes
and bays in all directions, intersections of lines, endpoints,
positions of strokes and dots relative to the baseline, loops,
and zigzags [13–15]. From one side, structural features are
difficult to extract; in contrast, they are capable of tolerating
variations in writing styles and noise [16]. Statistical features
may compute the density distribution of the glyph pixels [17]
or count the segments of ones and zeros, the length of each
of those segments, and the ratio of how the image pixels
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are distributed between image parts [18]. They can also have
the form of image intensity function, moments which may
be invariant to geometric transformations such as scaling,
rotation, and translation [19, 20]. Statistical features are easier
to compute than structural features; however, they are very
sensitive to noise and style variation. Global transformation
features transform the representation of the image pixels from
the current status into a more compact form. This includes
using Fourier Descriptors (FDs) to represent the character’s
outer skeleton via a periodic function [21] transforming
each word into a normalized polar image, then applying the
two-dimensional Fourier transform to the polar image [22]
or representing the boundary pixels of the character using
Freeman code [23, 24].

After transferring the glyph image into a sequence of
feature vectors, the next step is to classify this sequence into
one of predefined clusters. Various classification methods
and techniques have been applied in recognizing Arabic
alphanumerical and text. These include Template Matching
[25], Euclidean Distance [26], Neural Networks [27], Fuzzy
Logic [28], Genetic Algorithms [29], and Hidden Markov
Models (HMMs) [30]. HMMs are statistical models which
are widely and efficiently implemented among applications
such as speech processing, online character recognition [31],
and offline character recognition [32].TheHMMcan tolerate
variations in time-varying patterns by providing explicit
representation for these patterns. There are a number of
packages which enable researchers to implement HMMs to
their environments. Among those packages is the HMMTool
Kit (HTK) [33].

This paper presents a novel algorithm to extract a feature
set fromaone-pixel widewindow that slides across theArabic
text line image from right to left. This feature set includes
the segment length within each image column. The feature
space is clustered using vector quantization (VQ) [34] in
order to reduce the dimensionality of the problem from two
dimensions to one dimension. This enables us to utilize one
of the existing recognition engines; HTK.

2. The Proposed Algorithm

Activities conducted within the OCR system include acquir-
ing the document image, preprocessing it, and then decom-
posing it into text line images, clustering the feature space into
classes using VQ, coupling the discrete representation of the
features with the corresponding ground truth to estimate the
character model parameters. During recognition, an input
line image is transferred into a feature vector sequence,
clustered into a sequence of discrete symbols. This sequence
is then injected into the recognition engine which outputs a
stream of characters matching the text line.

The text line image is fed to the system as a two-
dimensional binary array. Feature extraction applies a set
of statistical measures to the line image which results in a
sequence of two-dimensional feature vectors. Those feature
vectors are computed as a function of a sliding one-pixel wide
window scanning the line image from right to left. A set of
simple features is extracted from pixels falling within that
window.This feature set represents the Run-Length Encoding

(RLE) of the pixel column [35]. RLE is a quick and simple
algorithm to compress data. This algorithm is supported by
various bitmap file formats such as PCX, BMP, and TIFF. For
each repeating string of characters, the algorithm stores the
character value and computes the frequency of that character
within the string. The algorithm refers to these two figures
as the run value and the run length. The efficiency of the
algorithm to compress data highly depends on the nature of
image under consideration.

Figure 1 illustrates the implementation of RLE algorithm
to a gray image. RLE extracts the runs of data for each seg-
ment within each column. The algorithm finds the intensity
value for a pixel, the run value, and counts the number
of pixels with the same value in that segment, run count.
The new representation of the image using RLE may not be
friendly to be utilized to train and test a recognition system. In
contrast, a binary image has less pixel complexity as there are
only two run values, one or zero, and therefore amore concise
representation for the image. In this paper, a document image
represents the binary image of one A4-size page where white
is the background andblack is the foreground.This document
image is mostly white and hence is efficiently encoded due to
the large amount of contiguous data that has the same run
value.

The document binary image is run-length encoded in
a sequential process which processes the image data as a
one-dimensional stream, rather than a two-dimensional map
of data. This implies that the algorithm starts from the top
right corner of the image, traverses the first column, and
transfers each segment into a single number which represents
the run count of ones or zeroes. This process iterates to all
consequent columns. Figure 2 illustrates the implementation
of the proposed algorithm to a small portion of a word image.
Figure 2(b) shows a portion of a word image in Figure 2(a).
Each column in the text line image is transferred into a
sequence of discrete numbers where each number represents
the run count of a segment of zeroes or ones as shown
in Figure 2(c). There is no certain order for the segment
sequence in a given column as this depends on whether
the first pixel of that column is zero or one. Figure 3 shows
two columns with two different pixel combinations. The two
columns have the same segment sequence and run counts.
To remedy this, we assume that the first pixel in the column
is zero and we count the run length accordingly. If the first
pixel in the column is one then we assign zero value to the
first segment. This presents consistency among all columns
which is essential to clear confusion between those columns
with similar segment sequences. Applying this to the columns
shown in Figure 3, the first column has the same segment
sequence where the second column (b) alters its segment
sequence into the following: 0, 1, 3, 3, 1, 2.Though the problem
of similarity is resolved now, different segment sequence
sizes appear clearly here. The next section will resolve this
challenge.

3. Implementation and Recognition Results

3.1. The Arabic Corpus. The proposed algorithm is imple-
mented to a corpus that includes more than 600 A4-size
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Figure 1: Implementing RLE to a gray image.
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Figure 2: RLE implementation to binary image.
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Figure 3: Encoding individual columns.

pages of Arabic text. The content was typewritten in six
different computer-generated fonts. These fonts are Tahoma,
Simplified Arabic, Traditional Arabic, Andalus, Naskh, and
Thuluth; see Figure 4. They cover different complexity scales
ranging from Tahoma which is a simple font with no overlap
or ligature toThuluthwhich is very richwith challenges: over-
laps, ligatures, and decorative curves. The corpus includes
15000 text line images of 116743 words and 596931 letters, not
including spaces. It has line heights which are proportional
to the font type and size. The line image height varies from
35 pixels to 95 pixels with different number of segments
per column. Various approaches were applied to produce
uniform feature vectors. Khorsheed [7] resized all line images
to a single height of 60 pixels. This allows the feature
extraction to produce consistent feature vectors.

In this paper, we tackle this variation differently. We aim
to calculate the optimal size of the feature vector or in other
words the optimal number of segments per column. This is
related to a number of transitions from zero (background)
to one (foreground) and vice versa. Table 1 shows numbers
of transitions per column, number of columns with this

Table 1: Number of transitions/column for all line images in the
corpus.

Number of
transitions/column Number of columns Accumulative

percentage
0 3003663 18.44%
1 95418 19.03%
2 7694625 66.27%
3 74196 66.73%
4 4231776 92.71%
5 45013 92.98%
6 1028765 99.30%
7 7403 99.35%
8 94771 99.93%
9 900 99.93%
≥10 10910 100.00%

transition number, and the accumulative percentage. More
than 99% of the 16,287,440 columns in the corpus have six
transitions atmost.Thismeans that those columns have seven
runs/segments or less. Therefore, we decide to transfer each
column in the line image into a seven-dimensional feature
vector. Each item within that feature vector represents the
run-length of the foreground or background pixels. All other
transitions beyond the first six transitions from the top are
discarded. The proposed algorithm produces feature vectors
3 to 5 times more than the algorithm presented in [7]. In that
algorithm, the slidingwindowwas vertically divided into cells
where each cell includes 3 × 3 or 5 × 5 pixels. Three features
were extracted from each cell: the intensity, the intensity of
horizontal derivative, and the intensity of vertical derivative.
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(a) Tahoma font

(b) Simplified Arabic

(c) Traditional Arabic

(d) Andalus

(e) Naskh

(f) Thuluth

Figure 4: Samples from the six fonts in the corpus.

Vertical and horizontal overlaps between cells increase the
amount of features generated from an individual line image
though increase the processing time. Figure 5 illustrates the
outputs of the proposed algorithm and [7] from a small
portion of a text line binary image. The proposed algorithm
produces 6 feature vectors, one fromeach column.Khorsheed
[7] first slid a 3 × 3 window vertically with zero overlap
which generated three cells. Those three cells were combined
together to form one feature vector. The sliding window then
shifted two pixels to the left which resulted in one pixel
horizontal overlap. The algorithm finally produced only two
feature vectors from the given binary image portion. The
difference in the size of the feature vectors extracted using the
two algorithms will impact training the recognition engine as
we shall see next section. Both algorithms implemented VQ
tomap continuous density vectors to discrete simple symbols.
A vector quantizer depends on a so-called codebook which
defines a set of clusters each of which is represented by the
mean value of all feature vectors belonging to that cluster.
Each incoming feature vector is then matched with each
cluster and assigned the index corresponding to the cluster
which has the minimum difference value or in another words
is closest.

3.2. The Recognition Engine. This is based on the hidden
Markov model toolkit (HTK) [33]. HTK is a portable toolkit
for building and manipulating hidden Markov models. Most
of HTK functionality is built as C code libraries which
facilitates writing scripts to execute HTK tools. The HTK
tools have three phases: data preparation, training, and
recognition tools. We hardcode the data preparation tools

to acquire the document image, preprocess it, and then
decompose it into text line images as the text line is chosen
here as the unit for training and recognition purposes.TheC-
code also performs RLE feature extraction before converting
the final result into HTK format. Data preparation tools are
also responsible for mapping the output of feature extraction
against predefined codebook vectors and replaced with the
symbol representing the nearest codebook vector. This step
transfers the text line image into a sequence of discrete
symbols. It takes as input a set of feature vectors, clusters
them, and uses the centroid of each cluster to define the
clusters with the codebook.

The data preparation tool builds a linear structured
codebook in an iterative process. Initially, there is only one
cluster with a mean value of all training vectors. In each
following iteration, if the total distance between the cluster
members and the mean is more than a predefined threshold,
themean is then perturbed to give twomeans and the vectors
within that cluster are rearranged according to which mean
is nearest to them. This continues until the codebook size
reaches the required number of clusters.

HTK recognition tool decodes the observation sequence
and outputs the associated state sequence. It requires a
network to describe the transition probabilities from one
character model to another. Each model represents various
shapes of one character in the alphabet. In this paper, we have
implemented two character model schemes: monomodels
and trimodels. A monomodel is context-independent where
each character in the alphabet is represented by a distinct
HMM. Each character in the word is separated from its
preceding and succeeding neighbors. Monomodels are easy
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Figure 5: Feature extraction using the proposed algorithm and Khorsheed [7].

Table 2: Recognition results: monomodels versus trimodels.

Test dataset Monomodels Trimodels
Part of training dataset 89.86% 98.78%
Independent of training dataset 89.49% 95.21%

to train, as the total number of models is relatively small,
and simple to label, as each label represents one character. In
contrast, a trimodel is context-dependent where each model
consists of a combination of three letters: the recognized letter
and its preceding and succeeding neighbors in the context.

Table 2 shows the system performance of four different
experiments all executed using 1024 codebook size. Two of
those experiments were performed using part of the training
dataset as a test dataset. This illustrates the system capability
to learn, meaning apparent relationships in the training data
can be identified.The other two experiments were performed
using independent test dataset of the training dataset. This
assesses if the relationships previously identified can be held
in general.

Table 3: Recognition results: the proposed algorithm versus Khor-
sheed [7].

Recognition system Number of states/model
7 16

The proposed algorithm 81.35% 80.44%
Khorsheed [7] 74.58% 5.35%

As shown in Figure 5, the proposed algorithm produces
feature vectors 3 to 5 times more than [7]. This enables fine
tuning the recognition engine parameters more accurately
as illustrated in Table 3. The more states a model has the
more data it needs to reestimate its parameters. This is also
essential for trimodels as there are around 9400 models each
has its own set of parameters. Table 3 shows a huge drop in
the recognition rate for [7] when the number of states per
model is 16. This is due to the lack of adequate number of
feature vectors to tune the recognition engine parameters. In
contrast, the proposed algorithm does not suffer from this
problem as shown in the same table.
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Table 4: Recognition results for each font in the corpus.

Font type The proposed algorithm Khorsheed [7]
Simplified 97.26% 88.62%
Thuluth 89.69% 87.85%
Naskh 97.15% 86.45%
Traditional 97.38% 90.05%
Tahoma 99.14% 92.56%
Andalus 98.28% 92.76%

Table 4 shows the system performance for each of the six
fonts in the corpus using two feature extraction methods:
the proposed algorithm and [7]. As illustrated, the pro-
posed algorithm outperforms [7] at all fonts thanks to the
overwhelming number of feature vectors extracted from the
line images which enable the recognition engine, using the
proposed algorithm, to grasp the fine variations from various
fonts and writing styles.

4. Conclusions

This paper presented a novel approach to extract features
from the text line images. The proposed algorithm is a
segmentation-free and uses run-length encoding (RLE). The
performance of the proposed approach was assessed using a
corpus including cursive Arabic text typewritten in various
computer-generated fonts and a recognition engine based on
Hidden Markov Models Tool Kit (HTK). The system was
capable of learning complex ligatures and overlaps. Finally, a
comparison was conducted between the proposed algorithm
and another algorithm which extracted intensity features.
The abundance of RLE feature vectors compared to the
intensity feature vectors enables the proposed algorithm to
accurately fine-tune the recognition engine parameters and
hence improve the overall system performance.
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