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Postpartum depression (PPD) is a major public health concern with significant
consequences for mothers, their children, and their families. However, less is
known about its underlying neuropathological mechanisms. The voxel-based degree
centrality (DC) analysis approach provides a new perspective for exploring the intrinsic
dysconnectivity pattern of whole-brain functional networks of PPD. Twenty-nine patients
with PPD and thirty healthy postpartum women were enrolled and received resting-
state functional magnetic resonance imaging (fMRI) scans in the fourth week after
delivery. DC image, clinical symptom correlation, and seed-based functional connectivity
(FC) analyses were performed to reveal the abnormalities of the whole-brain functional
network in PPD. Compared with healthy controls (HCs), patients with PPD exhibited
significantly increased DC in the right hippocampus (HIP.R) and left inferior frontal orbital
gyrus (ORBinf.L). The receiver operating characteristic (ROC) curve analysis showed that
the area under the curve (AUC) of the above two brain regions is all over 0.7. In the seed-
based FC analyses, the PPD showed significantly decreased FC between the HIP.R
and right middle frontal gyrus (MFG.R), between the HIP.R and left median cingulate
and paracingulate gyri (DCG.L), and between the ORBinf.L and the left fusiform (FFG.L)
compared with HCs. The PPD showed significantly increased FC between the ORBinf.L
and the right superior frontal gyrus, medial (SFGmed.R) compared with HCs. Mean FC
between the HIP.R and DCG.L positively correlated with EDPS scores in the PPD group.
This study provided evidence of aberrant DC and FC within brain regions in patients with
PPD, which was associated with the default mode network (DMN) and limbic system
(LIN). Identification of these above-altered brain areas may help physicians to better
understand neural circuitry dysfunction in PPD.

Keywords: postpartum depression, voxel-based degree centrality, seed-based functional connectivity, fMRI,
receiver operating characteristic (ROC) curve analysis
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INTRODUCTION

Postpartum depression (PPD) is a common but complex
condition that affects approximately 10–20% of new mothers and
has detrimental effects on mothers, infants, and their families
(Nguyen et al., 2019). The risk of maternal suicide, infant
abuse, and infanticide are all elevated among mothers with PPD
(Lee and Chung, 2007). PPD further has a long-term negative
impact on the cognitive, emotional, and behavioral development
of children (Halligan et al., 2007). Due to the risks posed to
the mother and the infant, the mother with PPD needs early
diagnosis and treatment. Understanding the changes of PPD in
brain structure, function and metabolism will help us to develop
early screening, diagnosis, and targeted treatment techniques.

Resting-state functional magnetic resonance imaging (rs-
fMRI) has been used to detect spontaneous neural brain
activity in PPD using the amplitude of low-frequency fluctuation
(ALFF) analysis (Deligiannidis et al., 2013, 2019; Chase et al.,
2014) or dynamic ALFF (Cheng et al., 2022b), regional
homogeneity (ReHo) analysis (Xiao-juan et al., 2011), voxel-
mirrored homotopic connectivity (Zhang et al., 2020), dynamic
or static functional connectivity (FC) (Cheng et al., 2022b),
functional connectivity density (FCD) (Cheng et al., 2021), and
functional connectivity strength (FCS) (Cheng et al., 2022a).
Compared with healthy controls (HCs), mothers with PPD
showed significantly increased ReHo in the posterior cingulate
and medial frontal gyrus and decreased ReHo in the temporal
gyrus (Xiao-juan et al., 2011). The depressed mothers also
showed reduced connectivity among the anterior cingulate cortex
(ACC), amygdala, hippocampus, and dorsolateral prefrontal
cortex, between the corticocortical and corticolimbic regions
(Deligiannidis et al., 2013), between the posterior cingulate
cortex (PCC) and amygdala (Chase et al., 2014), and between
the dorsomedial prefrontal cortex (dmPFC) and the precuneus,
posterior cingulate cortex, and supramarginal gyrus/angular
gyrus regions (Deligiannidis et al., 2019). However, they showed
increased connectivity between dmPFC and the rest of the
default mode network (DMN) (Deligiannidis et al., 2019).
Decreased voxel-mirrored homotopic connectivity values in the
bilateral dmPFC, dorsal anterior cingulate cortex (dACC), and
orbitofrontal cortex were observed in patients with PPD (Zhang
et al., 2020). Mothers with PPD exhibited increased static FC
(sFC) between the subgenual anterior cingulate cortex (sgACC)
and ventral anterior insula and disrupted sFC between the sgACC
and middle temporal gyrus. The changes in dynamic FC between
the sgACC and superior temporal gyrus could differentiate PPD
and HCs (Cheng et al., 2022b). Patients with PPD showed
specifically weaker long-range FCD in the right lingual gyrus
(LG.R), functional couplings between LG.R and dmPFC, and left
precentral gyrus, and specifically stronger functional coupling
between LG.R and right angular. Moreover, the altered FCD
and resting-state FC were closely associated with depression
and anxiety symptoms load (Cheng et al., 2021). The PPD
group showed specifically higher FCS in right parahippocampus,
and perceived social support mediated the influence of FCS in
the right cerebellum posterior lobe on depression and anxiety
symptoms (Cheng et al., 2022a). These studies can help clarify

how PPD may affect a mother’s baseline brain activity at rest and
provide a more comprehensive understanding of neural circuitry
dysfunction in mothers with PPD.

The above studies focus on regional functional connectivity or
analyze neural networks between selected brain regions based on
a prior assumption (Deligiannidis et al., 2013, 2019). To better
understand the changes in neural circuitry in PPD, we employed
degree centrality (DC) to measure the global connectivity at the
voxel level. DC is a new emerging reliable and compelling graph-
based analysis method (Xia and He, 2017), which can identify
that the voxels showed altered direct connections to all other
voxels with high sensitivity, specificity, and reproducibility. It
does not depend on the selection of brain regions based on prior
assumptions (Bullmore and Sporns, 2009). Degree centrality
(DC) has been applied to brain network research, and its
abnormalities have been found in various mental disorders, such
as schizophrenia (Li X. et al., 2019), major depressive disorder
(Sheng et al., 2018), bipolar disorder (Deng et al., 2019), multiple
sclerosis (Eijlers et al., 2017), Alzheimer’s disease (AD) (Guo
et al., 2016), epilepsy (Ren et al., 2019), and Parkinson’s disease
(Li M. et al., 2019). However, the DC analysis cannot provide
detailed information regarding the connectivity between a voxel
and the particular regions that were changed. In this study, we
further conducted a seed-based FC analysis using the regions with
high DC values as seeds to comprehensively explore the intrinsic
abnormal connectivity of the whole-brain functional network.
We tested the following hypotheses: (1) the PPD group showed
abnormal DC in several brain regions compared with HCs; (2)
the alterations of DC would be related to clinical symptoms; and
(3) the brain regions with abnormal DC showed the aberrant FC
with other brain regions.

MATERIALS AND METHODS

Participants
The ethics committee of the Shandong Second Provincial General
Hospital approved this study, and all participants provided
written informed consent. Twenty-nine right-handed patients
with PPD were recruited from the Department of Obstetrics
of Shandong Second Provincial General Hospital and the
Department of Obstetrics of the 960th Hospital of the PLA
Joint Logistics Support Force. Two experienced senior associate
chief physicians of neurology confirmed their diagnoses using
the Structured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-V) and Chinese
Classification and Diagnostic Criteria of Mental Disorders, 3rd
edition (CCMD-3). Inclusion criteria for patients were as follows:
(a) their age ranged from 21 to 38 years, in the fourth week
after delivery; (b) they were current first-episode, treatment-
naive patients with PPD; (c) they had an Edinburgh postpartum
depression scale (EPDS) score =12; (d) they had no other medical
or mental illness history, (e) they were not substance abusers or
substance dependent; (f) there were no contraindications of an
MR examination; and (g) there were no organic abnormalities for
MRI routine series. The EPDS scale was assessed in 1 h before the
image acquisition.
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A total of thirty right-handed, age-matched healthy
postpartum women were recruited from the department of
obstetrics. Inclusion criteria for the healthy postpartum group
were as follows: (a) they were aged from 21 to 38 years and in
the fourth week after delivery; (b) they did not have a current
or previous history of depressive episodes; (c) their EDPS score
was<3; (d) they had no other medical or mental illness history;
(e) there were no substance abusers or substance dependent; (f)
there were no contraindications of the MR examination; and (g)
there were no organic abnormalities for the MRI routine series.

Image Acquisition
All brain imaging data were acquired on a 3.0 T MR
system (Discovery MR750, General Electric, Milwaukee, WI,
United States) with a standard eight-channel head coil. During
scanning, all subjects were instructed to lie still and awake, close
their eyes, and breathe steadily. Special nonmagnetic foam pads
were used to fix the head and minimize head movement.

High-resolution structural T1-weighted scan (Three-
dimensional Brain Volume, 3D BRAVO) was performed with
the following parameters: time repetition (TR) = 8.2 ms,
time echo (TE) = 3.2 ms, flip angle = 12◦, field of view
(FOV) = 240 mm × 240 mm, slices = 115, voxel size = 1 mm,
and thickness = 1.0 mm. Resting-state BOLD MR images
were acquired with the following parameters: TR = 2,000 ms,
TE = 30 ms, flip angle = 90◦, FOV = 240 mm × 240 mm,
resolution = 64 × 64, thickness = 4.0 mm, no interspace,
slices = 41, gradient echo-planar volumes = 200, and duration
was 6 min 40 s. In addition, T1 and T2-weighted images were
collected to exclude anatomic abnormality and brain diseases
for each subject.

Functional Image Preprocessing
The fMRI data preprocessing was conducted using the Data
Processing Assistant for Resting-State fMRI (DPARSF) and
RESTing-state fMRI data analysis toolkit (REST)1, which is based

1http://www.restfmri.net

on Statistical Parametric Mapping (SPM12).2 First, the first 10
time points of resting-state image data were discarded to ensure
steady-state longitudinal magnetization. Second, the slice-time
corrected images were realigned to the first volume for head
motion correction. Then, T1 images were coregistered to the
realigned functional images and segmented to gray matter, white
matter, and cerebrospinal fluid. We normalized the resulting
images to a standard Montreal Neurological Institute (MNI)
template in the Montreal Neurological Institute space by applying
the parameters of structural image normalization and resampling
the normalized images to 3 mm isotropic voxels. After linear
trend removal, the data were band-pass filtered (0.01–0.08 Hz)
to eliminate physiological noise. Several sources of spurious
covariates along with their temporal derivatives, including the
six head motion parameters, global mean, white matter, and
cerebrospinal fluid, were removed. Then, the time series of each
subject was used to compute the DC.

Degree Centrality Calculation
We computed voxel-wise DC using Pearson correlations with
the REST 1.8 toolbox. The time course of each voxel in the
gray matter (GM) mask was extracted and correlated with
every other voxel within the mask to generate a correlation
matrix (Supplementary Figure 1 and Table 1). The threshold
for the Pearson’s correlation coefficient was set at r > 0.25
(Supplementary Figure 2). DC was computed as the sum
of the weights of connections (weighted) for each voxel
(Supplementary Figure 3). The resulting DC maps were spatially
smoothed with a 4 mm × 4 mm × 4 mm FWHM Gaussian
kernel and were improved in normality using the Fisher-z
transformation. To validate the main results that did not depend
on the selection of correlation thresholds, we also computed the
DC maps using other different correlation thresholds (i.e., 0.1,
0.2, 0.3, and 0.4) and then reperformed statistical analysis. We
found that the choice of these thresholds did not have a significant
impact on the main results.

2http://www.fil.ion.ucl.ac.uk/spm

TABLE 1 | Demographic and clinical characteristics of participants.

Healthy control (HC, n = 30) Postpartum depressed (PPD, n = 29)

Characteristic Mean (SD) Percent (%) Mean (SD) Percent (%) P-value

Age (years) 27.33 (4.10) 27.24 (3.55) 0.99a

Primipara 26 86.66 25 86.21 0.96b

Caesarean 9 30.0 11 37.93 0.52b

Breastfeeding 30 100 29 100

Socioeconomic status

(Thousand RMB) 133.0 (2.47) 144.48 (2.20) 0.06a

Education (years) 12.23 (2.58) 13.00 (2.15) 0.68a

Neuropsychological tests

EPDS 0.50 (0.73) 15.79 (1.86) 0.00a

PSQI 6.52 (3.02) 15.17 (2.96) 0.00a

SD, standard deviation; RMB, Renminbi; EPDS, Edinburgh postpartum depression scale; PSQI, Pittsburgh sleep quality index.
aUnpaired t-test, bχ2.
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FIGURE 1 | Comparisons of degree centrality between patients with postpartum depression (PPD) and healthy controls (HCs). (A) Brain regions with different degree
centrality (DC) values between groups: HIP.R and ORBinf.L. (B,C) The distribution and comparison of DC values of brain regions in the PPD and HCs. (D,E) The
ROC curve evaluates the diagnostic value of the DC value of different brain regions to distinguish patients with PPD from healthy mothers. HIP.R, right hippocampus;
ORBinf.L, left inferior frontal orbital gyrus.

Functional Connectivity Analysis
The whole-brain cluster with significant abnormal DC in patients
with PDD (compared with control subjects) was selected as seeds.
We obtained FC maps by calculating the correlation coefficient

(r score) between the mean time series of each seed region and
the rest of the brain. Finally, FC maps were converted to z-score
maps using Fisher’s z transformation to improve the normality.
Correction for between-group FC comparisons was conducted
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TABLE 2 | Brain regions showing significant differences in the degree centrality
between postpartum depression (PPD) and healthy controls (HCs).

Brain region Peak MNI coordinates Cluster size Peak
T

value

x y z (mm3)

Right hippocampus 27 −21 −6 208 3.74

Frontal_Inf_Orb_L −24 27 −18 146 3.19

MNI, Montreal Neurological Institute.

using REST1.8 software via the Gaussian random field (GRF)
theory correction program (voxel p < 0.05, cluster p < 0.05, 2-
tailed).

Statistical Analysis
The variables, including age and clinical symptom scores
between the PPD and control group, were analyzed using the
Mann–Whitney U test using SPSS 18.0 (SPSS Inc., Chicago,
IL, United States). The differences in delivery method and
time were determined using chi-square tests. The threshold
was set at p < 0.05 (two-tailed). With age as covariates,
two sample t-tests were performed in REST1.8 software to
determine significant voxel-based differences in the DC value
between the two groups. Correction for multiple comparisons
was conducted using REST1.8 software via the GRF theory
correction program within the whole brain (voxel p < 0.001,
cluster p < 0.05, 2-tailed). Since DC calculation is very important
in this study, we increased the p-value (p < 0.001) when
doing GRF correction.

In addition, we performed Pearson correlation analyses
between the DC and neuropsychological test scores of patients
with PPD. We used the receiver operating characteristic (ROC)
curve analysis of DC values of brain regions showing differences
between the two groups to determine the brain regions’
diagnostic significance for PPD. The threshold was set at
p < 0.05. The peak voxel coordinates with the highest significance
within the brain areas of altered FC were described in terms
of standard Montreal Neurological Institute coordinates. The
software “BrainNet Viewer” in REST3 was used to draw a
3D brain figure.

RESULTS

Demographic and Clinical
Characteristics
The demographic and clinical characteristics of all subjects are
listed in Table 1. There were no significant differences in age,
delivery time, delivery method, feed options, socioeconomic
status, or education level between PPDs and controls
(p > 0.05). PPD groups had higher EPDS and PSQI scores
(p < 0.001) than the HCs.

3http://www.nitrc.org/projects/bnv/

FIGURE 2 | (A) Brain regions showing aberrant functional connectivity (FC)
with HIP.R (seed region) in the PPD group compared with the HCs. Cool color
represents significantly decreased FC. (B,C) Mean values of the abnormal
functional connectivity in these groups. (D,E) The ROC curve evaluates the
diagnostic value of the FC value of different brain regions to distinguish
patients with PPD from healthy mothers, in which HIP.R was as seeds.

(Continued)
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FIGURE 2 | (F) Scatter plots depicting a partial correlation between the
HIP.R-related functional connectivity in the DCG.L and the EDPS scores for
patients with PPD. (G) Brain regions showing aberrant FC with ORBinf.L (seed
region) in the PPD group compared with the HCs. Warm color represents
significantly increased FC, and cool color represents significantly decreased
FC. (H,I) Mean values of the abnormal functional connectivity in these groups.
(J,K) The ROC curve evaluates the diagnostic value of the FC value of
different brain regions to distinguish patients with PPD from healthy mothers,
in which ORBinf.L was as seeds. HIP.R, right hippocampus; ORBinf.L, left
inferior frontal orbital gyrus; MFG.R, right middle frontal gyrus; DCG.L, left
median cingulate and paracingulate gyri; FFG.L, left fusiform; SFGmed.R, right
superior frontal gyrus, medial. ***Significant at 0.001 level and
*significant at 0.05 level.

TABLE 3 | Significant differences in functional connectivity between postpartum
depression (PPD) and healthy controls (HCs).

Seed area Area with
altered FC

Peak MNI coordinates Cluster
size

Peak T
value

x y z (mm3)

Right Frontal_Mid_R 30 45 30 91 −2.98

hippocampus Cingulum_Mid_L −6 12 33 148 −3.17

Frontal_ Fusiform_L −45 −60 −18 172 −3.44

Inf_Orb_L Frontal_Sup_Medial_R 12 30 57 590 3.46

MNI, Montreal Neurological Institute.

Degree Centrality Analysis
Compared with the HCs, the PPD group showed increased
DC in the right hippocampus (HIP.R) and left inferior frontal
orbital gyrus (ORBinf.L) (Figures 1A–C and Table 2). The
brain areas with decreased DC were not found in PPDs
compared with the HCs.

The ROC curve analysis was used to test the diagnostic value
of two brain regions (cluster1: HIP.R; cluster 2: ORBinf.L) with
significantly altered DC between groups. The area under the
curve (AUC) includes the HIP.R 0.8374 and ORBinf.L 0.7764
(Figures 1D,E).

There were no significant correlations between the DC values
in the two brain regions (HIP.R and ORBinf.L) and any scores
(EPDS and PSQI) in the PPD group.

Seed-Based Functional Connectivity
Analysis
We used HIP.R and ORBinf.L as seeds in the functional
connectivity analysis of the whole brain. In the PDD
group, the HIP.R showed significantly decreased FC with
the right middle frontal gyrus (MFG.R) and the left median
cingulate and paracingulate gyri (DCG.L) compared with
HCs. Furthermore, in the PPD group, the ORBinf.L showed
increased FC with the right superior frontal gyrus, medial
(SFGmed.R), while decreased FC with the left fusiform
(FFG.L) compared with HCs (Figures 2A–C,G–I and
Table 3).

The ROC curve analysis was used to test the diagnostic
value of the four significant different FCs (HIP.R to MFG.R;
HIP.R to DCG.L; ORBinf.L to SFGMED.R; and ORBinf.L to
FFG.L) between groups. The area under the curve (AUC)

includes the HIP.R to MFG.R: 0.9397; HIP.R to DCG.L: 0.9816;
ORBinf.L to SFGMED.R:0.7920; and ORBinf.L to FFG.L:0.8241
(Figures 2D,E,J,K).

Correlation analysis revealed that FC intensity between HIP.R
and the DCG.L positively correlated with the score of EDPS in
patients with PPD (r = 0.384, p = 0.04; Figure 2F). There were no
significant correlations among the FC intensity among any other
regions and any other scores (EPDS and PSQI) in the PPD group.

DISCUSSION

This study observed voxel-level whole-brain FC abnormalities
in patients with PPD using both DC and seed-based FC
approaches. In this study, we found the following: (1)
compared with the HCs, the PDD group showed increased
DC in HIP.R and the ORBinf.L; the ROC curve analysis
showed that the AUCs of the above two brain regions are
all over 0.7. (2) In the seed-based FC analyses, the PPD
showed significantly decreased FC between the HIP.R and
MFG.R, between the HIP.R and DCG.L, and between the
ORBinf.L and FFG.L compared with HCs. The PPD showed
significantly increased FC between the ORBinf.L and SFGmed.R
compared with HCs. (3) In particular, the HIP.R-related FC
abnormalities in the DCG.L of patients with PPD were associated
with EDPS scores.

The hippocampus is the core region in the limbic system (LIN)
and plays a very important role in memory and cognitive function
as well as the regulation of motivation, stress, and emotion
(Eichenbaum, 2013). The hippocampus is highly sensitive to
stress (Thomas et al., 2007). Both normal sadness and depressive
illness were reported to be linked to increases in limbic areas
including the hippocampus (Fitzgerald et al., 2008; Delaveau
et al., 2011). It has been reported that MDD leads to an
increased nodal centrality (both degree and strength) for the
right hippocampus (Chu et al., 2018); patients with MDD
have impaired functional connections of the hippocampus
(Gray et al., 2020). In this study, we found that higher DC
in the right hippocampus in PPD, which means that the
right hippocampus had the increased centrality in PPD’s brain
network. However, the seed-based FC analysis showed that
the right hippocampus presented weaker connectivity with the
MFG.R and the DCG.L compared with HCs. It had already
been observed the attenuation of connectivity between the
dlPFC and hippocampus in PPD subjects (Deligiannidis et al.,
2013). The results suggested that a higher DC value is not
necessarily better; too high may indicate wrong connectivity
or invalid connectivity. The appearance of invalid connectivity
or wrong connectivity will lead to a decrease in brain
function. The abnormal DC and FC of the hippocampus might
explain memory deficits and the depression experienced by
patients with PDD.

The MFG plays an essential role in a variety of cognitive
functions, such as working memory, motor control, and
attentional reorientation (Japee et al., 2015). Decreased structural
and FC of MFG have been frequently reported in depressed
individuals (Korgaonkar et al., 2014; Sheng et al., 2018).
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DCG.L is the part of the cingulate gyrus and is involved
in behavior, motor, and somatosensory function, especially in
emotion, information transmission, and cognitive processing
(Oane et al., 2020). Aberrant activity of this brain region is
associated with negative emotions (Jiang et al., 2020), episodic
memory, and rumination processing of depressive symptoms
(Huang et al., 2021). We found that FC intensity between
HIP.R and DCG.L positively correlated with the score of
EDPS in patients with PPD. We used the original FC value
when doing the correlation analysis. There were 15 negative
values of FC between HIP.R and the DCG.L. The negative
values mean that the stronger the FC, the smaller the value,
so it was positively correlated with the score. This result
highlighted the importance of HIP.R and DCG.L in PPD, and
the abnormal FC between them might be a distinct feature
in the neurobiology of PPD. Integrative dysfunctions of these
regions may contribute to disturbances in mood, cognition,
and memory in PPD.

The ORBinf.L refers to one of the three parts of the
inferior frontal gyrus that plays an important role in the
regulation of emotion and attention (Cha et al., 2016). It
is involved in behaviors related to emotion and empathy
and shows increased functional activity when individuals
experience subjective feelings of guilt (Briggs et al., 2019). In
disease, the orbital part of the inferior frontal gyrus exhibits
abnormal functional connectivity in patients with depression
(Rolls et al., 2020) and anxiety (Cha et al., 2016). In this
study, we found that the PPD group showed increased DC
in ORBinf.L that showed increased FC with the SFGmed.R,
while decreased FC with the FFG.L compared with HCs. The
medial superior frontal gyrus, as an important part of the
superior prefrontal gyrus, is associated with self-consciousness,
self-referential processing, emotion regulation, and cognitive
processing (Yan et al., 2021). It played a partial mediating role
in the relationship between perceived stress and depression
(Wang et al., 2019). The fusiform gyrus is involved in many
aspects of cognition, especially emotion recognition in social-
cognitive processes (Jung et al., 2021). The abnormal neural
activity in the fusiform gyrus may be associated with the severity
of depression or susceptibility to depression (Huang et al.,
2021). The abnormal FC among these above regions might
explain depression, anxiety, stress, and social impairments among
patients with PPD.

In this study, we demonstrated that PPD-related integrative
disturbances were most commonly located in the DMN and
LIN. The HIP.R, MFG.R, DCG.L, ORBinf.L, and SFGmed.R
were suggested as key nodes of DMN. DMN is engaged in
a diverse array of functions, such as episodic memory, self-
referential activity, and monitoring the self and surrounding
environment (Raichle, 2015). LIN is mainly involved in memory,
regulation of negative cognition, and emotion (Rolls, 2015).
DMN and LIN exhibited abnormal neuro-activity and were
involved in the physiopathology of depression (Sheng et al.,
2018). Our results supported the preferential involvement of
hubs and the DMN/LIN in PPD and developed models of
network alterations in the disease, which might help better
understand the underlying neurobiology of PPD. The ROC

curve analysis showed that the AUC of the HIP.R and the
ORBinf.L and their altered FCs were all over 0.7. The range
of AUC between 0.7 and 0.9 indicates the ideal diagnostic
value. The brain regions with high DC values and the
abnormal FCs in PPD had appropriate diagnosis accuracy and
could be used as the imaging biomarkers of patients with
PPD for diagnosis.

However, this study has several limitations. First, the sample
size was relatively small, which may affect statistical power.
Second, DC can only identify brain regions with abnormal
functional connectivity and is unable to provide a clear causal
relationship. Third, this study lacks the comparison between the
pretreatment and posttreatment of patients with PPD and could
not provide the imaging change of the above brain areas after
treatment. Fourth, it is controversial about the time of onset of
PPD. We chose the fourth week, the time of the new mother’s
first postpartum follow-up in the hospital, to do the EPDS scale
and acquire the fMRI images. We will follow up with the mothers
and do the EPDS scale and acquire the fMRI images within the
first 6 weeks and 1 year after delivery in our following research
to further verify our results. Fifth, the cognitive functions of
the new mothers were not assessed in detail. In our following
research, we will use Beck’s Anxiety Inventory (BAI), Pittsburgh
Sleep Quality Index (PSQI), and SymptomChecklist90 (SCL-90)
to assess the new mothers thoroughly. There is still no complete
consensus on the orders between the temporal filtering and the
nuisance regression during data preprocessing. In this study,
linear regression was conducted after band-pass filtering the data
(0.01–0.08 Hz) according to the processing procedure of similar
studies (Zhang et al., 2020; Li et al., 2021; Wang et al., 2021)
and the default order DPARSF and REST software. We will
explore two data processing pipelines for PPD disease in future
studies. In conclusion, we found abnormal DC values and FCs
in a variety of brain regions in the PPD groups, which might
demonstrate the reorganization of the brain network in PPD
and provide imaging biomarkers for early screening and accurate
diagnosis of PPD.
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