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Abstract

Background: Two isoforms of Rho-associated coiled-coil kinase (ROCK), ROCKI and ROCKII, play an important
role in many cellular processes. Despite the accumulating evidence showing that ROCK could be a potential
cancer therapeutic target, the relevant tumor types to ROCK activation are not well clarified. The aim of this
study was to evaluate the ROCK activation status in different tumor types of breast cancer.

Results: We evaluated the immunoreactivities of phosphorylation-specific antibodies of ROCKI and ROCKII to
inform their kinase activation in 275 of breast carcinoma tissues, including 56 of carcinoma in situ, 116 of invasive
carcinoma, and 103 of invasive carcinoma with metastasis. ROCKII activation signal detected in nucleus was
significantly correlated with tumor metastasis, while ROCKI and cytosolic ROCKII activation signals made no
significant difference in that metastasis. Furthermore, nuclear ROCKII activation signal was associated with
poor clinical outcome and correlated with late tumor stage, low expression of estrogen receptor (ER) and
progesterone receptor (PR), overexpression of human epidermal growth factor receptor 2 (HER2) and high

Ki67 labeling index.

Conclusions: Nuclear ROCKII activation signal might contribute to the tumor metastasis in breast cancer.
Differences in ROCK activation that underlie the phenotypes of breast cancer could enhance our understanding for the

use of ROCK inhibitors in cancer therapy.
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Background

The development of metastasis-specific therapy stratagem
is an important issue for breast cancer since tumor
metastasis is the main cause of breast cancer-related
mortality [1, 2]. The small GTPases, RhoA and RhoC, are
the key molecules in the invasive and metastatic cancer
cell behaviors, as well as in tumor growth and cancer-
associated alteration of extracellular matrix [3—6]. Rho-
associated kinase (ROCK), a main effector of RhoA and
RhoC, is a serine/threonine kinase and contributes to the
stabilization of actin filaments and myosin-mediated
contractility [7, 8]. Two ROCK isoforms, ROCKI (also
known as ROKP) and ROCKII (also known as ROKa),
were identified [9, 10]. The two kinases have 65 % overall
identity in humans with 87 % identity in the catalytic
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kinase domain [11]. It has been reported that activation of
ROCK signaling increased tumor cell dissemination [12].
Inhibition of ROCK significantly reduced cell invasion
and metastasis in several tumor models, such as
breast carcinoma, hepatoma, melanoma, prostatic and
lung cancers [13-17]. Application of ROCK inhibitor
reduced cells metastasis in “human breast cancer
metastasis to human bone” mouse model [18]. These
data suggest that ROCK is involved in tumorigenesis
and is a potential cancer therapeutic target. The
combination of ROCK inhibitors with proteasome
inhibitors in non-small-cell lung cancer and with
tyrosine kinase inhibitors in chronic myeloid leukemia
produced greater anti-cancer effects [19, 20]. Despite
the significant effects of ROCK inhibition in many
cancer studies, the clinical trials of ROCK inhibitors
in cancer therapy is still limited since the relevance
of tumor types to ROCK activation is not well
clarified [11].
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Breast cancer is a heterogeneous disease, including
subtypes based on estrogen receptor (ER) and progesterone
receptor (PR) status and amplification of human epidermal
growth factor receptor 2 (HER2) [21]. The hormone
receptor-positive cancers are the luminal A and B types.
HER2-enriched type is identified as high expression of
HER2 and low expression of ER/PR. Breast cancers with
negative ER, PR, and HER2 status is “triple negative” and
approximate the basal-like type [22, 23]. It is necessary to
link the ROCK activation signals with specific subtypes.
Although the high expression of ROCKs in cancer has been
reported [17], it should be noted that the enhanced
transcript or protein expression may not be necessarily
correlated with the increase in their kinase activity. In our
previous studies, we identified the autophosphorylation of
ROCKI and ROCKII at the highly conserved Ser1333 and
Ser1366 residues, respectively [24, 25]. We generated the
phosphorylation-specific antibodies and validated their
specificity by Western blot analysis combined with peptide
competition and gene knockdown experiments. We also
provided evidence that S1333 ROCKI and S1366 ROCKII
phosphorylation can indicate their kinase active status in
response to RhoA signaling [24, 25]. Thus, the kinase
activation status of ROCKI and ROCKII in tissues could be
evaluated directly by using these antibodies. The aim of this
study was therefore to evaluate the ROCKI and ROCKII
activation status in different tumor types of breast cancer,
including carcinoma in situ (CIS), invasive carcinoma
(IC) and invasive carcinoma with metastasis (ICM),
by immunohistochemical staining with anti-pS1333
ROCKI and anti-pS1366 ROCKII antibodies. The
differences of ROCK activation status that underlie
the phenotypes of breast cancer were assayed, and
their associations with clinicopathologic factors and
clinical outcome were also characterized.

Methods

Study samples

Patients with primary breast carcinoma were retrieved
from the surgical pathology file of the hospital from
1990 to 1999. The clinicopathological data including
age, histologic type, grade, nodal status, stage at diag-
nosis, date of surgery, follow up data, and ER/PR/
HER2 data were collected from the pathology and
medical records. Overall survival was defined as the
time from operation to death related to breast cancer.
The study protocol was approved by the Institutional
Review Board of Taipei Veterans General Hospital,
Taiwan. In this retrospective study, the sample collec-
tion followed the ethical standards of the World
Association’s Declaration of Helsinki and the need for
informed consent was waived by the Institutional Re-
view Board of the Taipei Veterans General Hospital,
Taiwan.
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Tissue microarray (TMA) construction

All specimens were fixed in 10 % neutral buffered
formalin. After reviewing the original histopathology
slides for confirmation of the presence of the required
tissues, two hundred and seventy-five tumor samples
from patients with breast cancer were used in this study.
The tumor samples according to their original diagnoses
were classified as carcinomas in situ (CIS, # = 56), invasive
carcinomas (IC, n=116) and invasive carcinomas with
metastasis (ICM, n=103). Tumor samples larger than
1 cm, which were available and adequate for building tissue
arrays with 2 mm tissue cylinders from 2 to 3 appropriate
areas, were selected from each case. Two cores from
representative areas of the tumors, or three cores from the
tumors with heterogeneous features or those with available
metastatic tumors were selected to construct tissue
microarrays (TMAs). All patient identifiers were delinked
from the tissues in the TMAs.

Immunohistochemical staining and quantification

Tissue sections were immunostained using anti-pS1333
ROCKI and anti-pS1366 ROCKII antibodies on a Bond-
max immunostainer (Leica Microsystems, Newcastle, UK).
The production and validation of anti-pS1333-ROCKI and
anti-pS1366-ROCKII antibodies have been described
previously [24, 25]. Tissue sections were deparaffinized in
xylene, rehydrated through serial dilutions of alcohol, and
washed in phosphate-buffered saline (pH 7.2). On-board
heat-induced antigen retrieval in pH 9.0 ethylenediamine
tetraacetic acid (EDTA) for 30 min was performed.
Sections were incubated with the primary antibodies (1:
750 for pS1333 ROCKIL 1:3200 for pS1366 ROCKII) for
60 min at room temperature. Visualization was performed
using a VBS Refine polymer detection system (Leica
Microsystems). ROCKII S1366 phosphopeptide or non-
phosphopeptide (0.3 pg/ml) was added for the peptide
competition experiment. All sections were counterstained
with hematoxylin. Both nuclear staining and cytoplasmic
staining of ROCKI and ROCKII phosphorylation were
evaluated. The percentage of tumor cells with perceptible
ROCK phosphorylation signal of in the nucleus was
recorded for nuclear staining. Cytoplasmic staining was
graded as negative/weak (no staining or <10 % faint
staining), moderate (10-50 % area with intermediate
staining), and strong (>50 % area with intense staining).
Stains for ER (clone 6 F11, Leica Biosystems, Newcastle,
UK, 1:100), PR (clone 16, Leica Biosystems, 1:150), HER2
(polyclone A0485, Dako, Glostrup, Denmark, 1:900) and
Ki-67 (clone MIB-1, Dako, Glostrup, Denmark, 1:75) were
performed. The evaluations of ER, PR, and HER?2 followed
previously reported instructions [26, 27]. One percent or
more tumor cells exhibiting nuclear staining were
regarded as positive for ER and PR [26]. HER2 positivity
was defined by complete intense membrane staining in
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more than 10 % tumor cells [27]. The percentage of Ki67
positive tumor cells derived from four high-power fields
(400x) was averaged for the Ki67 labeling index.

Cell block preparation

HEK293T cells were maintained in Dulbecco's modified
Eagle’s medium (DMEM) supplemented with 10 % (v/v)
fetal bovine serum (FBS) in a humidified atmosphere of
5 % CO5/95 % air at 37 °C. For siRNA transfection
experiments, 5x 10° of cells were transfected with or
without of siRNA targeting human ROCKII (Dharmacon
smartpool) by Lipofectamine 2000 reagent (Invitrogen,
Carlsbad, CA). After 2 days, cells were than transfected
with pEGFP-RhoAV14 by TurboFect reagent (Thermo
Fisher Scientific) for 16 h. Cell were trypsinzied and
collected by centrifugation at 900 rpm for 3 min. The
cell pellets were fixed in 10 % neutral buffered formalin
for 48 h, centrifuged and processed to paraffin cell block
in the automatic tissue processor. A parallel set of cell
lysate was prepared for the examination the protein
expression levels of ROCKII and GFP-RhoAV14 by
Western blot analysis with anti-ROCKII and anti-RhoA
antibodies.

Statistical analysis

Chi-square test for trend was used to compare the
distributions of categorical variables. Differences between
continuous variables were compared using the Mann—
Whitney U test. Univariate Cox regression was performed
for survival analyses. The survival curve was plot using
Kaplan-Meier method. Their differences were compared
by log-rank test. Multivariate Cox regression model was
used to adjust the influence of significant prognostic fac-
tors. The statistical difference was considered significant
when the P value was less than 0.05.

Results

Patient characteristics

The clinical and pathological characteristics including age,
grade, ER/PR/HER? status, and follow up of study cohort
underlying the tumor type category are shown in Table 1.

Assessment of ROCK phosphorylation
immunohistochemical (IHC) staining for breast carcinomas
The IHC results of ROCKI S1333 phosphorylation and
ROCKII S1366 phosphorylation stratified by tumor
classification are listed in Table 2. The status of ROCKI
and ROCKII activation was determined by IHC staining
with anti-pS1333 ROCKI and anti-pS1366 ROCKII
antibody, respectively. Both ROCKI and ROCKII
activation signals were observed in the cytoplasm and
nucleus of tumor cells. The nuclear ROCKII signals were
observed more frequently in the ICM 51/103 (50 %)
cases than in the IC 35/116 (30 %) and CIS 11/56 (20 %)
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Table 1 Clinical and pathological information of study cases

Total as IC ICM
Age (years) 53(25,95) 50(25,77) 54(29,95) 53(28,87)
Grade® 275 56 116 103
1 26 (9 %) 13(23%) 12 (10 %) 1(1 %)
2 172 (63 %) 36 (64 %) 74 (64 %) 62 (60 %)
3 77 (28 %) 7 (13 %) 30 (26 %) 40 (39 %)
ER 266 54 m 101
Negative 88 (33 %) 7 (13 %) 37 (33 %) 44 (44 %)
Positive 178 (67 %) 47 (87 %) 74 (67 %) 57 (56 %)
PR 265 54 m 100
Negative 126 (48 %) 14 (26 %) 55 (50 %) 57 (57 %)
Positive 139 (52 %) 40 (74%) 56 (50 %) 43 (43 %)
HER2 264 53 109 102
Negative 199 (72 %) 45(85%) 84 (77 %) 70 (69 %)
Positive 65 (25 %) 8 (15 %) 25 (23 %) 32 (31 %)
Follow up (months) 108 (1, 262) 97 (1,213) 132 (9, 262) 86 (1, 257)

Data presented as mean (range) or number (%)

CIS, Carcinoma in situ; IC, Invasive carcinoma; ICM, Invasive carcinoma with
metastasis; ER, estrogen receptor; PR, progesterone receptor. 2CIS was graded
by nuclear grade; IC and ICM were graded by Nottingham histologic score

cases (P<0.001). In addition, the percentage of tumor
cells with perceptible ROCKII phosphorylation signal
was evaluated, and the mean percentage of cells with nu-
clear signals was found to be significantly higher in ICM
cases (20.8 %) than in IC (8.7 %) and CIS (6.9 %) cases
(P =0.003). ROCKI activation signal in nucleus was ob-
served with no significant differences among CIS, IC or
ICM cases (Table 2). Both ROCKI and ROCKII
activation signals were observed in the cytoplasm with
no significant differences among CIS, IC or ICM cases
(Table 2), either. Overall, these data suggest that nuclear
ROCKII activation signal is associated with tumor
metastasis in invasive breast cancer.

Validation the specificity of anti-pS1366 ROCK antibody in
IHC staining

The representative IHC staining of ROCKII S1366 phos-
phorylation is showed in Figure 1. Three different breast
carcinoma samples were shown and the ROCKII S1366
phosphorylation was detected negative or positive clearly
at different proportional of nucleus and/or cytoplasm of
tumor cells. To confirm the binding specificity of the
anti-pS1366 ROCKII antibody, the ROCKII S1366 phos-
phorylated and non-phosphorylated peptides were used
for antibody neutralization. The staining signal of a tumor
sample revealing ROCII S1366 phosphorylation positive
signal both in cytosol and nuclei could be abolished by
competition with phosphorylated S1366 peptide but not
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Table 2 The results from ROCK phosphorylation staining, stratified by tumor types
Tumor Cytoplasmic staining Nuclear staining
type Negative/weak Moderate Strong P Mean % (Standard deviation) PP
ROCKII S1366 phosphorylation
cls 52 (93 %) 4(7 %) 0 (0 %) 10.8861] 0814 6.9 (16.4) 10.329]0.003
IC 107 (92 %) 9 (8 %) 0 (0 %) 8.7 (20.7)
ICM 91 (88 %) 12 (12 %) 0 (0 %) 20.8 (29.6)
ROCKI S1333 phosphorylation
cls 50 (89 %) 5 (9 %) 12 %) 1043310450 1361 10.908 10933
IC 96 (83 %) 19 (17 %) 0 (0 %) 09 (3.8)
ICM 86 (83 %) 16 (16 %) 1 (1 %) 2.1 (84)

Data presented as number (%) for cytoplasmic staining and mean % (Standard deviation) for nuclear staining. Bold values indicate statistical significance (P < 0.05)
CIS, Carcinoma in situ; IC, Invasive carcinoma; ICM, Invasive carcinoma with metastasis. *Chi-square test for trend. PMann-Whitney test

by non-phosphorylated peptide, indicating the specificity
of detection (Fig. 2).

To further validate the specificity, HEK293T cells were
used to prepare cell blocks for IHC staining of ROCKII
S1366 phosphorylation. We found that the ROCKII S1366
phosphorylation signal was significant increased by cells
expression of constitutively active RhoAV14. Depletion of
the endogenous ROCKII by siRNA transfection diminished
the staining signal, confirming that the signal derived from
ROCKII (Fig. 3a). Of note, the ROCKII S1366 phosphoryl-
ation level determined in cells without GFP-RhoAV14
transfection was so low that the effect of ROCKII depletion
was inconspicuous. Enhancement of ROCKII activation
by GFP-RhoAV14 expression highlights the decrease of
ROCKII S1366 phosphorylation signal in knockdown

cells. The ROCKII S1366 phosphorylation and protein
expression of ROCKII and GFP-RhoAV14 were also
confirmed by Western blot analysis (Fig. 3b).

Association of nuclear ROCKII S1366 phosphorylation
status with clinicopathologic features and clinical outcomes
in invasive breast cancer

The positive staining of ROCKII activation signal in the in-
vasive breast cancer (IC and ICM) respect to clinicopatho-
logic features is listed in Table 3. The nuclear ROCKII
$1366 phosphorylation signal was significantly stronger in
tumors at advanced stage (P =0.003), and correlated with
ER negative (P=0.002), PR negative (P=0.017), HER2
positive status (P=0.017) and high Ki67 labeling
index (P =0.044). There was no significant correlation
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Fig. 2 Competition of ROCKII S1366 phosphorylation immunohistochemical staining signal by peptide neutralization. Sample sections from one
tumor of grade-3 invasive ductal carcinoma with axillary lymph node metastasis were stained with anti-pS1366 ROCKII antibody in the (a) absence
or (b) presence of non-phosphorylated $1366 ROCKII peptide (0.3 pg/ml) or (c) phosphorylated S1366 ROCKII peptide (0.3 pg/ml). Scale bar, 20 um

between nuclear ROCKII activation signal and patient
age (< 50 years vs. > 50 years) or histological grade
(Table 3). The IHC results of nuclear ROCKII S1366
phosphorylation stratified by molecular classification
in invasive breast cancer are listed in Table 4. Our re-
sults show that nuclear ROCKII S1366 phosphoryl-
ation signal was significantly lower in the luminal
types group compared to HER2-enriched group (P<
0.001) and to triple negative group (P =0.044)
(Table 4).

Nuclear ROCKII activation signal was a significant
prognostic factor, as revealed by univariate Cox regres-
sion analyses (Hazard ratio = 1.013, P =0.004). The best
cut-off value for the proportion of nuclear ROCKII acti-
vation to predict survival was 30 %; there was significant
difference in the survival between cases with nuclear
ROCKII activation signal>30 % (median survival
142 months) and cases with nuclear ROCKII activation
signal <30 % (median survival 257 months) (P < 0.001,
Fig. 4). The relevance of nuclear ROCKII activation to
other prognostic variables was then studied by multivari-
ate analyses. Tumor stage was the most significant one
among the prognostic variables studied such as patient
age, histologic grade, tumor stage, ER, PR and HER2 sta-
tus, and nuclear ROCKII activation (Table 5, model 1).
Tumor stage is a complex function including tumor size,
lymph node status and distant metastasis. Since nuclear
ROCKII activation signal was significantly higher in
ICM cases (Table 2) and associated with late tumor stage
(Table 3), being highly dependent on tumor stage might
confound the prognostic value of nuclear ROCKII acti-
vation. We then removed tumor stage form the multi-
variate analysis and found that the prognostic
significance of nuclear ROCKII activation was revali-
dated (Hazard ratio = 2.116, P = 0.016; Table 5, model 2).
This data further support the correlation of nuclear

ROCKII activation with late tumor stage as well as
metastasis.

Discussion

ROCK plays a key role in multiple cellular activities pri-
marily through its function on alteration of actin cyto-
skeleton dynamics [8, 28]. The importance of ROCK in
pathogenesis is shown by using its specific inhibitors to
interfere with disease progression in the clinical trials
and animal experiments [29-32]. Recent studies have re-
vealed a diverse range of functions of ROCK in cancer
beyond its role in regulating cytoskeleton [11]. In this
study, we observed the presence of ROCKII activation
signal indicating by S1366 phosphorylation in a portion
of cell nuclei, which seemed to associate with tumor me-
tastasis and clinical outcome in the invasive breast can-
cer. However, it is still unknown whether nuclear
ROCKII activation does contribute to tumor progres-
sion. We also observed the ROCKI and ROCKII activa-
tion signals in cytoplasm, although they showed no
significant differences among different types of breast
cancers. We cannot rule out the involvement of cytosolic
ROCKI and ROCKII activation in tumor metastasis, be-
cause the spectrotemporal control of ROCK activation
in cytoplasm might be very dynamic and not easy to
evaluate in the fixed surgical samples.

In this study, we used the ROCKII S1366 phosphoryl-
ation signal to indicate its kinase activation regard our
previous finding that S1366 was autophosphorylated
once ROCKII is activated [24]. However, it cannot detect
the ROCKII activation mediated by proteolytic cleavage
of the inhibitory C-terminal region by granzyme B in
apoptotic cells [33], as well as the somatic mutation
which leading to premature termination of translation at
Y1174 identified in a malignant melanoma cell line [34].
These truncated ROCKII are constitutive active and
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Fig. 3 Validation of anti-pS1366 ROCKII antibody specificity in ROCKII
depleted cell block. HEK293T cells were transiently transfected with or
without siRNA targeting human ROCKII for 2 days and then transfected
with or without pEGFP-RhoAV14 for 16 h. (a) Cells were pelleted and
fixed. The samples from these cell blocks were stained with anti-pS1366
ROCKII antibody. Scale bar, 20 um. (b) Cells were harvested for Western
blotting with antibodies as indicated

will not detected in our system. Moreover, we cannot
route out the possibility that the increase of ROCKII
S$1366 might also contributed from other kinase in
the cells. Therefore, S1366 phosphorylation may indi-
cate the activation of full-length ROCKII but not ab-
solutely equal to the overall status of ROCKII kinase
activity in the cells.

Elevated transcripts or proteins levels of ROCKI and
ROCKII have been reported breast cancer and other hu-
man cancers [17, 35-37]. However, it should be noted
that increased gene expression might not be certainly
correlate with their activation, since the ROCK is regu-
lated by interaction with many specific regulatory mole-
cules, both positively and negatively [38]. In this study,
we found that ROCKII S1366 phosphorylation signal
was detected in nucleus of the metastatic breast cancer.
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Table 3 ROCKII S1366 phosphorylation nuclear expressions in
invasive breast cancers

Number  Mean % (standard deviation)  P*

Age (years)

<50 90 13.6 (25.8) 0.706
=50 129 14.9 (26.2)

Grade
1 13 2.7 (6.0) 10220] 0637
2 136 139 (25.5)
3 70 17.5 (28.6)

Stage
/1l 147 9.8 (21.5) 0.003
/v 72 23.7 (31.5)

ER
Negative 131 23.3 (30.6) 0.002
Positive 81 9.0 (20.8)

PR
Negative 112 20.1 (30) 0017
Positive 99 8.2 (18.6)

HER2
Negative 154 11.3 (23) 0017
Positive 57 228 (314)

Ki67
<20 % 34 59 (134) 0.044
>20% 36 17.8 (25.1)

Bold values indicate statistical significance (P < 0.05). ER, estrogen receptor; PR,
progesterone receptor. *Mann-Whitney test

It implies that the ROCKII protein is localized at nucleus
and a critical ROCKII activator is co-localized with nu-
clear compartmentalized ROCKII in metastatic breast
tumors, such as nucleolar phosphoprotein NPM/B23
[39] and other Rho family members and their regulators
can be present in nucleus [40-43]. In addition, it is also
possible that a key ROCKII inhibitor is enhanced in
cytoplasm of metastatic breast cancer cells. More studies
are required to elucidate the molecular mechanisms of
ROCKII activation in nucleus of metastatic breast cancer
cells.

It is still an opened question about the function as well
as down-stream substrate of ROCKII in the nucleus of
metastatic breast cancer cells. Tanaka et al. have reported
that ROCKII was localized in the nucleus and associated
with transcriptional coactivator CBP/ p300 both in vitro
and in vivo [44]. They confirmed the nuclear localization
of ROCKII by immunofluorescence staining and nuclear
extraction combined with gel filtration, and found that
ROCKII was present in a large protein complex and par-
tially co-localized with CBP/p300 in distinct insoluble nu-
clear structure. They also provided evidence that ROCKII
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Table 4 Stratify nuclear ROCKII S1366 phosphorylation by
immunohistochemical subtypes in invasive breast cancers

Number  Mean % (standard deviation) P
Luminal 130 9.5 (21.3) 1<0.001
HER2 enriched 37 30.27 (34.4) 0.044
Triple negative 42 16.9 (25.6) 10437

Bold values indicate statistical significance (P < 0.05). ER, estrogen receptor; PR,
progesterone receptor. *Mann-Whitney test

phosphorylated CBP/p300 and increased its HAT activity
in vitro, implying the contribution of nuclear ROCKII ac-
tivation to gene regulation through CBP/p300. Several
studies have revealed that CBP/p300 was related to
tumorigenesis of various human cancers [45-47]. High
expression of CBP/p300 in human breast cancer has been
found to be correlated with tumor recurrence and predicts
adverse prognosis [48]. The association of CBP/p300 with
poor prognosis was also reported in other cancers
[47, 49, 50]. In addition to the interaction with CBP/
p300, it has been reported that ROCKII is translo-
cated into nucleus to inhibit Cdc25A for cell cycle ar-
rest in cells undergoing epithelial-mesenchymal
transition stimulated by TGFP [51]. The nuclear
localization of Rho family members and their regula-
tors are also reported [40-43]. Our finding of the
correlation of nuclear ROCKII activation with tumor
metastasis and poor prognosis in invasive breast can-
cer revealed a novel role of nuclear ROCKII activity
in breast cancer. More experiments are needed to in-
vestigate the function of ROCKII in the nuclei of
metastatic breast cancer cells.

0.8
pROCKII < 30%

g
S 06
&
= P<0.001
2
g 041 1 pROCKI=30%
0.2
0 60 120 180 240
Survival time (months)
Number at risk
pROCKII <30% 176 137 84 47 8
pROCKII = 30% 43 16 7 1 1

Fig. 4 A high level of nuclear ROCKII activation was related to poor
prognosis. Kaplan-Meier plot of the overall survival for 219 cases of
invasive breast carcinoma dichotomized at the nuclear expression of
pS1366 ROCKII of 30 %. The number of subjects at risk is listed above
the X-axis. The difference is determined by log-rank test (P < 0.001)
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Table 5 Multivariate Cox regression for cases with invasive

carcinomas
Hazard ratio (95 % Cl) P

Model 1
Age (year) 1.019 (1.001, 1.037) 0.044
Grade

1 1

2 1.935 (0.258, 14.529) 0.521

3 1.062 (0.132, 8.565) 0.955
Stage

\ 1

Il 1.811 (0,673, 4.875) 0.240

Il 6.144 (2.264, 16.677) < 0.001

\% 58450 (9.985, 342.165) < 0.001
ER+ 0.403 (0.169, 0.963) 0.041
PR+ 1.768 (0.734, 4.262) 0.204
HER2+ 1.302 (0.688, 2.463) 0418
Nuclear pROCKII 2 30 % 1414 (0.715, 2.794) 0319
Model 2
Age (year) 1.019 (1.000, 1.039) 0.050
Grade

1 1

2 3.244 (0442, 23.801) 0.247

3 2299 (0.297, 17.784) 0425
ER+ 0.563 (0.241, 1.316) 0.185
PR+ 1.253 (0.532, 2.952) 0.605
HER2+ 1315 (0.713, 2.425) 0381
Nuclear pROCKII =30 % 2.116 (1.152, 3.888) 0016

(

Bold values indicate statistical significance (P < 0.05). ER, estrogen receptor; PR,
progesterone receptor

Conclusion

The importance of ROCK activation in cancer pro-
gression has been highlighted [11, 38]. In this study,
we used anti-S1333 ROCKI and anti-S1366 ROCKII
antibodies to inform the ROCKI and ROCKII kinase
activation status in different types of breast cancer
and found that ROCKII activation signal detected in
nuclei was significantly correlated with tumor metas-
tasis. We further found that nuclear ROCKII signal
was negatively correlated with ER and PR expression
and positively correlated with HER2 overexpression
and high Ki67 labeling index in the invasive breast
cancers. It was also associated with poor clinical out-
come, which was relevant to advanced tumor stage.
This is the first report on the relationship between
ROCKII activation in nuclei and tumor metastasis as
well as clinicopathologic features in invasive breast
cancers.
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