
Nucleolar protein CSIG is required for p33ING1 function
in UV-induced apoptosis
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Cellular senescence-inhibited gene (CSIG) protein, a nucleolar protein with a ribosomal L1 domain in its N-terminus, can exert
non-ribosomal functions to regulate biological processes, such as cellular senescence. Here, we describe a previously unknown
function for CSIG: promotion of apoptosis in response to ultraviolet (UV) irradiation-induced CSIG upregulation. We identified
p33ING1 as a binding partner that interacts with CSIG. After UV irradiation, p33ING1 increases its protein expression,
translocates into the nucleolus and binds CSIG. p33ING1 requires its nucleolar targeting sequence region to interact with CSIG
and enhance CSIG protein stability, which is essential for activation of downstream effectors, Bcl-2-associated X protein,
to promote apoptosis. Thus, our data imply that p33ING1–CSIG axis functions as a novel pro-apoptotic regulator in response to
DNA damage.
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The nucleolus is the site for rRNA synthesis and ribosome
assembly in the cell. Recent studies showed that the
nucleolus has emerged as a highly complex and multi-
functional regulatory compartment.1,2 The nucleolus is an
extremely sensitive structure to monitor; it responds to cellular
apoptotic stresses such as radiation, or exposure to cytotoxic
agents.3,4 Nucleolar proteins such as nucleophosmin (NPM/
B23), nucleostemin, L11, Net1 and ARF (alternate reading
frame product of the CDKN2A locus) have important roles
in these non-ribosomal functions, including regulation of
cell growth and death, stress responses, mitosis and the cell
cycle; we are only just beginning to understand.3,4

Cellular senescence-inhibited gene (CSIG) protein
(RSL1D1/PBK1/L12) is a protein first cloned by several labs
including ours. It is a nucleolar protein that has a ribosomal
L1 domain in its N-terminus and a lysine-rich domain in its
C-terminus.5 This protein can delay cellular senescence
through inhibition of phosphatase and tensin homolog protein
(PTEN) translation.5 It also can regulate the nucleolar
localization of nucleostemin through physical interaction by
its C-terminus.6 Whether CSIG can modulate response to pro-
apoptotic stimuli is currently unknown.

Protein complex shuttles between the nucleolus and

nucleoplasm are important for many non-ribosomal pro-

cesses.4,7 Protein movement is mostly out of, rather than

into, the nucleolus in response to DNA damage.8 Few proteins

seem to be targeted to the nucleoli after damage; the known

examples include p33ING1, RelA, DEDD, heat-shock protein-

70 (Hsp70) and PML, which migrate from the nucleoplasm or

cytoplasm.9–13 The p33ING1 tumor suppressor has been

reported to be downregulated in breast, gastric and lymphoid
tumors.14 p33ING1 promotes apoptosis, and its movement
to the nucleolus increases apoptosis after ultraviolet (UV)
irradiation.12,15,16 p33ING1 possesses a nucleolar targeting
sequence (NTS); mutation in this sequence was found to
reduce p33ING1 apoptotic function after UV treatment.12 ARF
protein, which localizes predominantly in the nucleolus,
physically associates with p33ING1 and causes cell-cycle
arrest in the absence of UV stress.17 However, ARF moves
from the nucleolus to the nucleoplasm in response to UV – in
a direction opposite to p33ING1 movement.18,19 Why p33ING1
protein targets the nucleolus to promote apoptosis in
response to UV has been unclear.

Here, we report that increased protein expression of CSIG
sensitizes cells to UV irradiation-induced apoptosis. p33ING1
targets the nucleolus and stabilizes CSIG protein after UV
irradiation. We show here that p33ING1 needs its NTSs to
interact with CSIG, which is required for CSIG protein
stabilization and p33ING1-dependent apoptosis after UV
stress. Also, knocking down CSIG expression decreases
p33ING1-dependent apoptosis after UV irradiation. Our
results provide a new possible molecular mechanism under-
lying the regulation of apoptosis after UV irradiation.

Results

CSIG promotes UV irradiation-induced apoptosis. Many
nucleolar proteins respond to DNA damage.3 To examine
whether CSIG affects the ability of cells to undergo apoptosis
in response to genotoxic stress, we initially analyzed CSIG
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expression levels after DNA damage. When HEK293 cells
were treated with UV, etoposide, low and high concentrations
of cisplatin and doxorubicin to induce genotoxic stress, the
cells significantly upregulated CSIG after treatment
(Figure 1a). To further investigate a possible role for CSIG
in UV-induced apoptosis, we transfected HEK293 cells with a
control vector or a plasmid expressing wild-type CSIG and
subjected the cells to UV treatment (Figure 1b). Apoptosis
was shown by Annexin-V and PI double staining; percentage
of the sub-G1 fraction by FACS analysis; and chro-
matin condensation by 4,6-diamidino-2-phenylindole (DAPI)
staining. The results showed that overexpression of CSIG did
not induce apoptosis in the absence of DNA damage
(Figure 1c). However, after UV treatment, CSIG increased
the population of apoptotic cells (Figure 1d, Supplementary
Figure S1b). Overexpression of CSIG also increased the
population of apoptotic cells after doxorubicin treatment
(Supplementary Figure S1). Cell-cycle profiles of the
cells were also shown; overexpression of CSIG slightly
decreased G1-phase percentage and increased S-phase and

G2/M-phase cell numbers, but there was no significant
difference compared with controls, both in non-UV and UV
treatment (Figures 1c and d).

Ultraviolet irradiation can induce both CSIG and
p33ING1 protein expressions. We found that CSIG
protein induction after UV is independent of p53 status
(data not shown). So there may be other proteins
participating in this process. p33ING1 is a putative tumor
suppressor, which promotes apoptosis in a p53-dependent
or -independent manner.15,20–23 Ultraviolet irradiation targets
p33ING1 to the nucleolus to promote apoptosis; CSIG
primarily localizes in the nucleolus, 5,12 and CSIG
increased UV-induced apoptosis (Figure 1). To determine if
there is a functional relationship of CSIG with p33ING1 in
UV-induced apoptosis, their cellular localizations and
expression patterns were examined.

Subcellular distributions of CSIG and p33ING1 were
determined by high-resolution confocal analyses. The results
showed that CSIG protein localized predominantly in the
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Figure 1 CSIG sensitizes cells to UV-induced apoptosis. (a) HEK293 cells were treated with 50 J/m2 UV, etoposide (50 mM), and low (1 mg/ml) and high (10 mg/ml)
concentrations of cisplatin and doxorubicin (2mM). After 6 h, cells were harvested for western blot analysis. Tubulin was used as loading control for western blot analysis.
The relative abundance of CSIG was measured by densitometry and expressed as fold increase relative to control cells. (b) HEK293 cells were transfected with plasmids for
CSIG or empty control vector. The cells were lysed and tested by western blotting for CSIG and b-actin expression. (c) HEK293 cells were transfected with plasmids for CSIG
or empty control vector, and 48 h later were collected for apoptotic assays. (d) HEK293 cells were transfected with plasmids for CSIG or empty control vector, and 36 h later
were irradiated with 50 J/m2 UVC and cultured for 24 h. Floating and adherent cells were collected for apoptotic assays. For AnnexinV–FITC and PI analysis, cells stained by
AnnexinV or both dyes were regarded as apoptotic. For cell-cycle analysis, cells were harvested, fixed and stained by PI. Horizontal bars mark areas quantified to determine
the proportion of cells with the indicated DNA content. M1 indicate apoptotic cells with sub-G1 DNA content. Values are means±S.D. *Pr0.05. Chromatin condensation was
visualized by DAPI staining and analyzed with immunofluorescence microscopy. The cells that were condensed, fragmented and bright were regarded as apoptotic cells
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nucleolus (Figure 2a upper panel). Endogenous p33ING1 was
mostly distributed in the nucleus without treatment and
gathered within the nucleolus after UV irradiation. Ectopically
expressed p33ING1 increased its distribution both in the
nucleus and in the nucleolus without UV irradiation; after
UV irradiation, the exogenous p33ING1 gathered within the
nucleolus. To a great extent, CSIG colocalized with both
endogenous and exogenous p33ING1 protein in the nucleolus
after UV irradiation (Figure 2a lower panel). These data
suggest a physiological connection between CSIG and
p33ING1 after UV irradiation.

Previous studies reported that p33ING1 increases the
protein expression after DNA damage in some cell lines.20,24

Also, CSIG protein levels upregulate after DNA damage
treatments (Figure 1). So, we analyzed whether UV irradiation
could induce p33ING1 and CSIG protein expressions in cell
lines with different p53 status. Results showed CSIG and
p33ING1 to be simultaneously induced after UV irradiation in
HEK293 (p53 deregulation), HeLa (p53 deficient), HCT116
p53þ /þ (p53 wild-type) and HCT116 p53�/� (p53 null), but
not RKO (p53 wild-type) and RKO-E6 (p53 deficient), cells.
These results indicated that UV induced CSIG and p33ING1
expressions, which were p53 independent (Figure 2b). In
addition to UV irradiation, p33ING1 and CSIG were simulta-
neously induced by the DNA damage treatments, including
high concentration of cisplatin, etoposide and doxorubicin
(Supplementary Figure S2).

To further study the protein expression profile of CSIG
and p33ING1 after UV irradiation, we analyzed CSIG
and p33ING1 expressions at different time points after UV
irradiation. The results indicated that the expression pattern of
p33ING1 paralleled CSIG after UV irradiation (Figure 2c).

The CSIG and p33ING1 protein expressions were rapidly
induced in as early as 2 h after UV irradiation, reached their
peak at 8–10 h and declined 12 h later. To determine whether
the same kinetics of CSIG and p33ING1 after UV treatment
was due to cell-cycle arrest, expressions of cyclin A, cyclin B
and cyclin D1, which indicated different cell-cycle phase, were
also detected. The results showed that the induction of CSIG
and p33ING1 levels after UV treatment was not consistent
with any phase of cell-cycle progression (Figure 2c).

p33ING1 inhibits CSIG protein degradation after UV
irradiation. To directly determine the correlation of CSIG
and p33ING1 upregulation after UV irradiation, HEK293 cells
were transfected with CSIG or p33ING1 plasmids, and then
subjected to UV irradiation. Protein levels of CSIG under the
condition of p33ING1 overexpression were examined, and
vice versa. Western blot analysis showed that p33ING1
induced endogenous CSIG expression, and the induction of
CSIG remained for at least 24 h after UV radiation (Figure 3a,
Supplementary Figure S3a), while CSIG overexpression was
unable to increase p33ING1 levels after UV (Figure 3b). To
examine whether CSIG protein induction by p33ING1 after
UV irradiation was due to increased CSIG transcription,
CSIG mRNA levels were probed. Under the same conditions
as the p33ING1 transfection, in which CSIG protein was
significantly induced, CSIG mRNA levels just slightly
increased (data not shown), indicating that p33ING1 may
affect CSIG protein levels through other mechanisms. To
examine whether induction of CSIG by p33ING1 was due to
increased CSIG protein stability, we treated cells with
proteasome inhibitor MG-132; adding MG-132 led to
increased CSIG protein levels (Figure 3c). Also, p33
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Figure 2 The protein expression and colocalizaion of CSIG with p33ING1 after UV irradiation. (a) Representative images of cells stained for p33 (green) and CSIG (red) by
indirect immunofluorescence. The localization of endogenous CSIG was immunostained with anti-CSIG antibody, followed by confocal microscopy analysis. The nucleoli were
shown in differential interference contrast (DIC) images (upper panel). HEK293 cells were transfected with control vector or an expression vector for p33, left untreated or
irradiated by UV; 6 h later, cells were immunostained with anti-p33 and anti-CSIG antibodies, followed by confocal microscopy analysis (lower panel). Representative images
are shown. Nuclei were visualized by DAPI staining and images were overlaid (Merge). White arrows indicate localization of proteins after UV irradiation. (b) HEK293, HeLa,
HCT116 p53þ /þ , HCT116 p53�/�, RKO and RKO-E6 cells were irradiated with 50 J/m2 UV; 6 h later, cells were collected separately for western blot analysis of CSIG, p33,
p53 and tubulin. (c) HEK293 cells were irradiated with 50 J/m2 UV and cells were collected at different time points as indicated. Immunoblot analysis was carried out using
anti-CSIG, anti-p33, anti-cyclin A, anti-cyclin B, anti-cyclin D1 and anti-tubulin antibodies
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increased CSIG protein by reducing its ubiquitination after
UV irradiation (Figure 3d). We performed CSIG half-life
assays in control and p33ING1-overexpression cells. After
UV radiation, endogenous CSIG appeared to be unstable
after 10 h of chasing in control cells (t1/2¼ 16.9 h). However,
in the presence of p33ING1 overexpression, CSIG protein
became more stable and its protein level appeared to be
unstable after 18 h of chasing (t1/2¼ 20.5 h) (Figure 3e,
Supplementary Figure S3b). We also examined the half-life
of CSIG protein in control small interfering RNA (siRNA)-
and p33ING1-specific siRNA-transfected cells after UV
irradiation. Knocking down p33ING1 protein destabilized
CSIG protein after UV treatment; endogenous CSIG
appeared to be unstable after 5 h of chasing in p33
knockdown cells (Figure 3f).

p33ING1 interacts with CSIG. p33ING1 can stabilize p53
levels through interaction with it in different cell lines.25–27

Having shown that p33ING1 increases CSIG protein stability
and that they colocalized subcellularly in the nucleolus after
UV irradiation, we investigated whether p33ING1 interacts
with CSIG to stabilize its protein level.

In vitro pull-down assays using purified GST fusion proteins
revealed a specific interaction between GST–CSIG and

in vitro-translated p33ING1, suggesting a direct CSIG–
p33ING1 interaction (Figure 4a). The association between
these two proteins in vivo was studied by immunoprecipitation
(IP), followed by western blotting. Using total protein extracts
from cells transfected with p33ING1 construct, a specific
antibody against CSIG used in IP, we were able to detect both
CSIG and p33ING1 in the immunocomplex. The interaction
was specific, as shown by the use of a non-related serum. The
association could also be observed in a reverse experiment,
using the anti-p33ING1 IP antibody, indicating that the two
proteins can associate in the cell (Figure 4b). Similar results
were obtained using H1299 cells (data not shown). To confirm
whether the observed interaction occurred between the
endogenous proteins, we carried out IP experiments in
untransfected 2BS cells. Using nuclear or cytoplasm protein
extracts, a specific antibody against CSIG was used for IP.
Western blotting revealed a specific band comigrating with
p33ING1 in the CSIG immunoprecipitate of nuclear protein
extracts, indicative of interaction between the endogenous
p33ING1 and CSIG proteins in the nucleus. We did not
detect another nucleolus protein, ARF, which reportedly
mediates nucleolar localization of p33ING1 in the p33ING1/
CSIG complex under these conditions (Figure 4c). After
UV irradiation, the association between p33ING1 and CSIG
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t1/2 of CSIG protein was calculated and listed below each group
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increased (Figure 4d). Together, the data indicate that CSIG
interacts physically with p33ING1 in vitro and in vivo.

The p33ING1 NTS region is required for binding and
stabilizing the CSIG protein. After establishing that
p33ING1 and CSIG coexist in the same complex, we investi-
gated which domains are involved in the p33ING1–CSIG
interaction. We constructed deletion mutants of both
proteins, expressed them in HEK293 cells and tested their
binding using Co-IP. FLAG-tagged CSIG (amino acids
1–490), CSIG-NT (amino acids 1–275) or CSIG-CT (amino
acids 261–490) was expressed in HEK293 cells and
immunoprecipitated with anti-FLAG antibodies. Western
blotting revealed that p33ING1 associates with FLAG-
CSIG and FLAG-CSIG-CT. FLAG-tagged CSIG-NT did not
associate significantly with p33ING1. The association could
also be observed in a reverse experiment, using the
anti-p33ING1 antibody for IP (Figure 5a). On the other
hand, FLAG-tagged p33 (amino acids 1–279), p33-NT
(amino acids 1–212) and p33-CT (amino acids 70–279)
were expressed in HEK293 cells and immunoprecipitated
with anti-FLAG antibodies. Western blotting revealed that
both p33ING1 deletion mutants were able to interact with
CSIG; the association could also be observed in a reverse
experiment, using the anti-CSIG antibody for IP (Figure 5b).
This interaction region of p33ING1 compassed the lamin
interaction domain and nuclear localization signal (NLS).

Reportedly, p33ING1 possess two distinct four amino-acid
sequences in its NTS within the NLS region, directing the
protein to the nucleolus.12 We have shown that CSIG and
p33ING1 colocalized in the nucleolus (Figure 2a). To examine
whether the NTS region of p33ING1 is necessary for binding

CSIG, we constructed point mutations or deletion mutant of
the NTS regions in p33ING1 (Figure 6a), and then investi-
gated their nucleolar localization and interaction with CSIG.
As depicted in Figure 6b, the p33/Q153P, p33/Q153P/K185N/
K186E and p33D142–194 mutants of the NTS region were
impaired in their ability to target p33ING1 to the nucleolus.
Through IP of CSIG from cells expressing wild-type p33,
p33/Q153P, p33/Q153P/K185N/K186E and deletion mutant
p33D142–194, we found that wild-type p33 coimmunopreci-
pitated to a larger extent with CSIG than did the two mutants
p33/Q153P and p33/Q153P/K185N/K186E, and the deletion
mutant of NTS region p33D142–194 completely abolished
binding between p33ING1 and CSIG (Figure 6c). These
results demonstrate that the nucleolus targeting domain of
p33ING1 is essential for binding the CSIG protein C-terminus.

We next investigated whether p33ING1 needs this region to
increase CSIG protein stability after UV irradiation. We found
that wild-type p33ING1 increased CSIG protein stability after
UV irradiation; this effect was abolished when the p33D142–
194 deletion mutant was transfected (Figure 6d).

p33ING1 requires CSIG protein to increase apoptosis
after UV irradiation. Bcl-2-associated X protein (Bax) and
HSP70, which regulate apoptosis, have been identified as
direct downstream targets of p33ING1.15,28,29 We previously
reported that CSIG could regulate PTEN protein translation.5

To determine whether CSIG is required for p33ING1 function
after UV irradiation, HEK293 cells were transfected with
wild-type p33, p33/Q153, p33/Q153/K185N/K186E or
deletion mutant p33D142–194, and the expression levels
of CSIG and their target genes were examined after UV
treatment. p33ING1 overexpression increased CSIG protein
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level and elevated its downstream target Bax expression
after UV radiation, while HSP70 and PTEN expression did
not greatly change. Compared with the effects of wild-type
p33ING1, overexpression of CSIG-binding defective mutants
p33/Q153, p33/Q153/K185N/K186E and particularly the
deletion mutant p33D142–194 reduced the elevation
of CSIG and Bax expressions, while HSP70 and PTEN
expressions did not change much (Figure 7a). Similar results
have been obtained using HeLa cells (Supplementary Figure
S4a). Bax induced the release of apoptotic stimulators, such
as cytochrome c to the cytoplasm, constituting a critical step
in the mitochondrial apoptotic pathway. As wide-type p33,
but not p33D142–194 mutant, induced CSIG and Bax
expressions, we next determined the effects of p33 and
p33D142–194 on Bax-dependent apoptosis in mitochondria
after UV irradiation. The results showed that p33, but not the
p33D142–194 mutant, induced Bax expression and
distribution on the mitochondria, which coincides with the
increased translocation of cytochrome c to the cytoplasm
compared with control vector after UV treatment (Figure 7b).
Consistent with these results, overexpression of p33ING1
enhanced UV-induced apoptosis, as shown by cleaved poly
(ADP-ribose) polymerase (PARP), Annexin-V and PI double
staining. Again, these effects were reduced by expression of
p33ING1 mutants (Figures 7b and c). Thus, p33ING1
requires its NTS sequence to interact with CSIG, increase
CSIG protein stability and activate target gene Bax after
UV irradiation.

To directly determine whether p33ING1 requires CSIG
protein to activate target gene and promote apoptosis after
UV irradiation, HEK293 cells were transfected with vectors
expressing p33ING1 and CSIG, or CSIG-specific siRNA,
alone or in combination, followed by UV irradiation. As shown
in Figure 7d, CSIG overexpression increased Bax expression.
Overexpression of p33ING1 increased CSIG level and the

target gene Bax expression to an extent that was comparable
with cotransfection with CSIG. Knocking down CSIG protein
significantly reduced activation of Bax by p33ING1 introduc-
tion, suggesting that CSIG is essential for p33ING1 signaling.
Moreover, CSIG and p33ING1 overexpression did not
change HSP70 and PTEN expressions. Similar results have
been obtained using HeLa cells (Supplementary Figure S4b).
To further determine the effect of knocking down CSIG on
Bax-dependent apoptosis in mitochondria induced by
p33ING1, we examined the mitochondrial distribution of
Bax and release of cytochrome c to the cytoplasm after UV.
As shown in Figure 7e, knocking down CSIG decreased
induction of mitochondrial Bax expression and translocation of
cytochrome c to the cytoplasm by p33 introduction.

Consistent with these results, overexpression of p33ING1
and CSIG enhanced UV-induced apoptosis, as determined
by cleaved caspase 3, cleaved PARP, and Annexin-V and
PI double staining. Apoptosis analysis by cotransfection
of p33ING1 and CSIG was comparable to transfection with
p33ING1 or CSIG alone, while knocking down CSIG
protein abrogated the effect of p33ING1 (Figures 7d and f).
Overexpression of p33ING1 did not increase CSIG protein
stability and apoptosis markedly without UV treatment
(Supplementary Figure S5). Taken together, these results
demonstrate that p33ING1–CSIG functions in UV-induced
apoptosis and CSIG is required for p33ING1 signaling
after UV irradiation.

The p33ING1–CSIG axis functions in differential
apoptotic responses of the young and old 2BS cells
after UV irradiation. We previously showed that in
human diploid 2BS fibroblasts, senescent fibroblasts
are more resistant than young fibroblasts to apoptosis.30,31

Here, we showed that young 2BS cells were more sensitive
than senescent cells to UV-induced apoptosis, as shown
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by cleavage of PARP (Figure 8a). Based on the above
results, we hypothesized that the p33ING1–CSIG axis has
a role in differential apoptotic responses of 2BS cells during
replicative senescence. To study this possibility, expressions
of CSIG and p33ING1 in early passage (young, B20
population doublings (pdl)) and late-passage (senescent,
B60 pdl) 2BS cells were examined by western blot. As
shown in Figure 8b, compared with early passage 2BS cells

(young, Y), we found CSIG and p33ING1 levels in late-
passage 2BS cells (senescent, S) were significantly reduced.
Expression of p16INK4a is an indication of 2BS cells
undergoing replicative senescence. We then analyzed the
expression and cellular localization of CSIG and p33ING1
in young and senescent 2BS cells after UV irradiation.
As shown in Figure 8c, CSIG and p33ING1 protein increased
within 6 h and remained at relatively high levels after UV
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irradiation in young 2BS cells, while in senescent 2BS
cells, CSIG and p33ING1 levels decreased after UV. Using
immunocytochemistry, we found that after UV irradiation,
p33ING1 colocalized extensively with CSIG to the nucleolus

in young 2BS cells; however, in senescent 2BS cells, the
expression levels and the nucleolar colocalization of
p33ING1 and CSIG decreased (Figure 8d). p33ING1
facilitated UV-induced apoptosis, while knockdown CSIG
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expression reversed the effects of p33ING1 in 2BS cells
(Figure 8e). These results suggest the p33ING1–CSIG axis
may have a role in differential apoptotic responses of the
young and old 2BS cells after UV irradiation.

Discussion

There is now a compelling body of evidence showing that, in
addition to ribogenesis pathway, nucleolar proteins have
important roles in regulating cell-cycle transition, cell pro-
liferation and apoptosis.4,5 We set out to determine if nucleolar
protein CSIG is involved in DNA damage-induced apoptosis,
and found, for the first time, that CSIG is induced after UV
irradiation and overexpression of CSIG increases apoptotic
cells. Although CSIG does not induce apoptosis in the
absence of DNA damage, it promotes apoptosis after UV
irradiation (Figure 1). Ultraviolet irradiation produces DNA
lesions that perturb DNA metabolism, activating some

proteins that regulate cell-cycle arrest or apoptosis. High-
level damage can overwhelm the ability of the repair
mechanism to remove lesion such as 6–4PPs, and it may
lead to cell-cycle arrest at the G2/M phase, which often
precedes the onset of apoptosis. Inability to repair replication-
induced damage over time triggers apoptosis. We showed
here that CSIG could slightly decrease G1-phase cells, and
increase S-phase and G2/M-phase cells, after UV irradiation;
however, there was no significant difference compared with
control. These results suggest that CSIG’s function after UV
irradiation relates to apoptosis rather than cell-cycle control.

The most common isoform of ING1 is p33ING1; agents that
damage DNA could increase p33ING1 expression in certain
cell lines.20,24 Although p33ING1 and p53 have a functional
relevance in certain biological process,22 there are studies
showing p33ING1 could exert a p53-independent function in
apoptosis or cell growth inhibition.23,32 A previous investiga-
tion reported that UV stress could translocate the p33ING1
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protein from the nucleoplasm to the nucleolus though two
distinct four amino-acid sequences in NTS region; this
translocation of p33ING1 is essential for UV-induced apop-
tosis.12 However, the mechanism by which the nucleolar
targeting of p33ING1 promotes apoptosis is not clear.

We found that the proteins p33ING1 and CSIG are highly
colocalized in the nucleolus after UV stress, and p33ING1
expression induction corresponds with nucleolar protein
CSIG after UV irradiation (Figure 2). More importantly, the
NTS region of p33ING1 is required to bind and increase
CSIG protein stability, which in turn is essential for p33-
mediated apoptosis (Figures 3–7). We show here that
CSIG is necessary for the p33ING1 pro-apoptosis function.
Expression of the p33ING1 downstream target gene, Bax, is
controlled by CSIG in UV-induced apoptosis (Figure 7).

After DNA damage, some nucleolar proteins can regulate
p53-dependent apoptosis through inhibition of Mdm2,
enhancing p53 translation and enhancing p53 translocation
to mitochondria.33,34 Therefore, a possible mechanism of
regulatory Bax expression by CSIG could be activation of p53
leading to Bax activation after UV treatment. Some other
nucleolar proteins have pro-apoptotic functions involving
regulation of Bax, Bcl-2, caspase activity or cell surface
receptors.33,34 A subset of nucleolar proteins can directly
control gene transcription or functionally modulate transcrip-
tional regulators.34 Reportedly, CSIG upregulates the uPA
(urokinase-type plasminogen activator) gene transcription.35

The p33ING1 protein is a stoichiometric component of HAT
and HDAC complexes, and p33ING1 can regulate gene
transcription through recognition of H3K4me3.36,37 Therefore,
it is also possible that CSIG may by itself or cooperate with
p33ING1 to regulate target gene expression, and after UV
irradiation, the regulatory functions of CSIG or p33ING1–
CSIG on downstream targets may be enhanced. There are
several possible regulatory mechanisms of this process and
further studies will be required to elucidate the possibilities.

The above observations led us to propose a model for
the pro-apoptotic function of p33ING1–CSIG axis after UV
irradiation. This model is also supported by our findings in
human diploid 2BS fibroblasts, in which p33ING1–CSIG axis
may function in differential apoptotic responses of the
young and senescent 2BS cells after UV treatment (Figure 8).
In summary, our study establishes a novel pro-apoptosis
function of CSIG and its relationship with p33ING1 after
UV irradiation.

Materials and Methods
Antibodies and chemicals. Antibodies for p53 (anti-p53 PAb421, DO-1 and
mouse monoclonal antibody), p27, ARF, HDAC1, HDAC2, PTEN, HSP70, Bax,
caspase-3, cytochrome c, cytochrome c oxidase IV (COX IV) and b-actin were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-CSIG was
used as previously described13 or purchased from Abcam (Cambridge, MA, USA).
Anti-p33ING1 antibodies were from Abcam, Millipore (Billerica, MA, USA) or Santa
Cruz Biotechnology; the antibody from Abcam detects p33ING1 but does not cross
react with p24ING1 or p47ING1, and the antibodies from Millipore and Santa Cruz
Biotechnology recognize all the three isofoms. Anti-FLAG was obtained from Sigma
(St. Louis, MO, USA). Anti-a-tubulin and anti-p16INK4a were obtained from Millipore.
Anti-PARP was obtained from Cell Signaling Technology (Danvers, MA, USA) and
anti-GST was obtained from Abgent (San Diego, CA, USA). Anti-multi-ubiquitin
was obtained from MBL (Woburn, MA, USA). Cisplatin, etoposide, doxorubicin,
cycloheximide, MG-132 and DAPI and G418 are all obtained from Sigma.

Plasmids and siRNA preparations. The full-length p33ING1 cDNA was
kindly provided by Dr Karl Riabowol. The full-length CSIG cDNA was described
previously.13 FLAG-p33ING1, FLAG-p33-NT, FLAG-p33-CT and p33D142–194
were amplified from p33ING1 by PCR using FLAG-tagged primers at the
N-terminus, and inserted between EcoRI and BamHI sites in pIRES neo2 vector
(Clontech, Mountain View, CA, USA). ER:p33ING1 was amplified from p33ING1 by
PCR, and inserted into NotI and SalI sites of xER-LNCX2 vector. FLAG-CSIG, FLAG-
CSIG-NT and FLAG-CSIG-CT were amplified from CSIG by PCR, and inserted into
pIRES neo2 with N-terminus FLAG tags. p33/Q153P and p33/Q153P/K185N/K186E
were generated using the QuikChange Site-Directed Mutagenesis kit (Stratagene,
Santa Clara, CA,USA). GST–CSIG was constructed by cloning full-length CSIG in
pGEX-4T-1 vector (GE Healthcare, Piscataway, NJ, USA). The siRNA was designed
as reported previously. siRNA targeting CSIG was 50-AGAAGGAACAGACGCCAGA-
30 and negative control siRNA was 50-AAGTGTAGTAGATCACCAGGC-30.13 siRNA
targeting p33ING1 was 50-ACCCACGTACTGTCTGTGCAA-30.38

Cell culture and transfection. Human diploid 2BS fibroblasts (National
Institute of Biological Products, Beijing, China), HEK293, HeLa, the wild-type p53
and p53-null HCT116, RKO, RKO-E6 and H1299 cells were cultured in Dulbecco’s
modified Eagle’s medium (Invitrogen, Grand Island, NY, USA) supplemented with
10% fetal bovine serum at 371C in 5% CO2.

Cells were plated on 60-mm or 100-mm culture dishes. For UV irradiation, culture
medium was removed and culture dishes were uncovered in a UV cross-linker
(model UVC-500; Hoefer, Holliston, MA, USA). Cells were irradiated at the range
from 25 to 200 J/m2 UVC in initial dose response assays, and 50 J/m2 was finally
employed. Immediately after irradiation, medium was added back, and cells were
cultured for appropriate time.

All plasmids were transfected using Lipofectamine 2000 (Invitrogen) and siRNA
were transfected using RNAiMAX (Invitrogen) following the manufacturer’s
instructions. Stable cell lines were obtained by sustained selection with G418.

Western blotting, IP and GST pull-down assay. Following treatment,
all the floating and adherent cells were collected. Whole-cell extracts, nuclear
extracts or cytoplasmic extracts were prepared, and western blots were done as
previously described.13 For mitochondrial and cytosolic extracts preparation, cells
were lysed in buffer (250 mM sucrose, 20 mM HEPES, 10 mM KCl, 1.5 mM MgCl2,
1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, 1 mM PMSF, 10 mg/ml aprotinin and
10mg/ml leupeptin at pH 7.5) and incubated for 30 min on ice. Cells were
homogenized by 30 strokes in a 22-guage needle. Homogenates were centrifuged
at 750 g for 10 min at 41C. Supernatants were centrifuged at 10 000 g for 15 min at
41C to collect the mitochondrial pellets.

For IP, cells were collected from a 10-cm-diameter plate using RIPA buffer containing
protease inhibitor cocktail (Roche, Basel, Switzerland). Lysates were precleared by
incubation with 100ml of protein A-Sepharose (50% slurry) for 1 h. The cleared lysate
was then subjected to IP with the indicated antibodies overnight at 41C. Protein A-
Sepharose beads (GE Healthcare) were added and the incubation was continued for 2 h
at 41C. Precipitates were washed four times with RIPA buffer (1 ml), followed by
resuspension in 2� SDS loading buffer. Proteins were separated using gradient SDS-
PAGE gels; western blotting was carried out according to standard procedures.

Recombinant GST or GST–CSIG fusion proteins were expressed in and purified
from BL21 cells as described. In vitro-translated p33ING1 protein was generated
using the TNT-coupled Transcription/Translation system (Promega, Madison, WI,
USA). Wild-type p33ING1 were incubated with GST or GST–CSIG bacterial
recombinant protein immobilized on glutathione–Sepharose 4B resin at 41C for 2 h.
Beads were then washed five times in 1 ml wash buffer (20 mM Tris/HCl pH 8.0,
0.5 mM EDTA, 10% (v/v) glycerol, 0.5% (v/v) NP-40 and 200 mM KCl). The bound
proteins were eluted with 2� SDS sample buffer, fractionated by SDS-PAGE and
subjected to western blot analysis with anti-p33 antibody.

Immunofluorescence. Cells were seeded on coverslips; they were
transfected with indicated plasmids, left untreated or exposed to ultraviolet
irradiation. Cells were fixed with 4% paraformaldehyde in phosphate-buffered saline
(PBS) for 10 min, permeabilized with 0.5% Triton X-100 in PBS for 10 min and
incubated in blocking solution (PBS containing 2% bovine serum albumin) for 2 h at
room temperature. Coverslips were incubated for 1 h in a 1 : 400 dilution of mouse
anti-p33ING1 and rabbit anti-CSIG prepared in blocking buffer. Cells were washed
with PBS (3–4 washes, 15 min each) before incubation with a mixture of Alexa 488
goat anti-mouse (1 : 400; Invitrogen) and Alexa 647 donkey anti-rabbit (1 : 400;
Invitrogen) secondary antibodies. After washing in the same conditions using the
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primary antibodies, chromosomal DNA was examined by staining with DAPI.
Stained cells were mounted on glass slides and examined with a confocal laser
microscope (Leica, Buffalo Grove, IL, USA). Representative photographs from three
independent experiments are shown.

Apoptosis assays. Apoptosis was evaluated by morphological examination
using DAPI staining. Annexin V–FITC double staining assay was performed
according to the manufacturer’s protocol (Calbiochem, San Diego, CA, USA). Cells
were transfected with indicated vectors for 24 h, then irradiated by UV and
recovered for indicated times. Cells were harvested and centrifuged at 1500 r.p.m.
for 5 min at room temperature. Medium was removed and cells were washed once
in PBS. Cells were then resuspended in cold binding buffer and both Annexin V–
FITC and PI were added. Samples were then incubated at room temperature for
15 min in the dark and analyzed by flow cytometry. Cells were also fixed in 70%
ethanol and incubated in PBS containing 50 mg/ml RNase and 2.5mg/mL propidium
iodide. DNA content was analyzed by flow cytometry. The percentage of cells with
sub-G1 DNA was determined with the ModFit LT Program (Verity Software, Verity
Software House, Topsham, ME, USA).

Statistical analysis. The data are reported as mean±S.D. of the indicated
number of experiments. Values were assessed by pairwise one-way analysis of
variance (ANOVA). In all cases, *Pr0.05 was considered significant.
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