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Abstract

Key features of long-term memory (LTM), such as its stability and persistence, are acquired

during processes collectively referred to as consolidation. The dynamics of biological

changes during consolidation are complex. In adult rodents, consolidation exhibits distinct

periods during which the engram is more or less resistant to disruption. Moreover, the ability

to consolidate memories differs during developmental periods. Although the molecular

mechanisms underlying consolidation are poorly understood, the initial stages rely on inter-

acting signaling pathways that regulate gene expression, including brain-derived neuro-

trophic factor (BDNF) and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα)

dependent feedback loops. We investigated the ways in which these pathways may contrib-

ute to developmental and dynamical features of consolidation. A computational model of

molecular processes underlying consolidation following inhibitory avoidance (IA) training in

rats was developed. Differential equations described the actions of CaMKIIα, multiple feed-

back loops regulating BDNF expression, and several transcription factors including methyl-

CpG binding protein 2 (MeCP2), histone deacetylase 2 (HDAC2), and SIN3 transcription

regulator family member A (Sin3a). This model provides novel explanations for the (appar-

ent) rapid forgetting of infantile memory and the temporal progression of memory consolida-

tion in adults. Simulations predict that dual effects of MeCP2 on the expression of bdnf, and

interaction between MeCP2 and CaMKIIα, play critical roles in the rapid forgetting of infantile

memory and the progress of memory resistance to disruptions. These insights suggest new

potential targets of therapy for memory impairment.
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Author summary

Long-term memories (LTMs) are enduring and resistant to disruption. These features are

acquired via processes collectively referred to as consolidation. In adults, the initial stages

of consolidation follow complex dynamics that are believed to emerge from interacting

biochemical signaling pathways, including BDNF and CaMKIIα dependent feedback

loops. Similarly, the acquisition of ability to consolidate memory in infantile animals is

believed to emerge from the functional maturation of these molecular pathways. Here, the

ways in which these pathways contribute to consolidation were investigated using a

computational model. This model provides novel explanations for the apparent rapid for-

getting of infantile memory and for development of resistance to disruption during mem-

ory consolidation.

Introduction

The transformation of an initially fragile memory into a stable long-term memory (LTM) is

known as consolidation and can require days to complete [1,2]. Zhang et al. [3] developed a

computational model of a hippocampal brain-derived neurotrophic factor (BDNF)—cAMP

response element-binding protein (CREB)-CCAAT-enhancer-binding protein (C/EBPβ) posi-

tive feedback loop activated by inhibitory avoidance (IA) training in rats. Simulations pre-

dicted that the dynamics of the BDNF-CREB-C/EBPβ feedback loop have a significant effect

on consolidation of long-term IA memory. Here, the Zhang et al. [3] model was extended to

include additional signaling cascades:

1. Regulation of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is believed to

be critical for the formation of IA memory. Based on empirical findings [4–6], a BDNF–

CaMKIIα-BDNF feedback loop was included in the revised model.

2. The model adopted a ‘dual operation mode’ of regulation of BDNF by MeCP2 [7]. The

effect of MeCP2 on bdnf expression has two components: activation by MeCP2 alone, and

repression by a MeCP2 /HDAC2/Sin3a complex.

We used the revised model to gain insights into apparent rapid decay of infantile memory.

In contrast to memories formed in adults that will be stable and long-lasting, infantile memo-

ries formed early during development are usually more labile in that they commonly are no

longer expressed days after learning, although the latent memory trace may be reinstated by

some specific protocols or artificial reactivation [8–11]. In the hippocampus, many proteins

related to synaptic plasticity have different basal expression levels in infants vs. adults. In infan-

tile rats, the basal level of phosphorylated CaMKIIα (pCaMKIIα) is substantially lower than

that of adult rats, whereas the basal level of phosphorylated CREB (pCREB) is substantially

higher than that of adult [12]. Our revised model simulates IA memory formation with differ-

ent basal levels of pCaMKIIα and pCREB.

We also used the model to study the development of resistance to disruption during mem-

ory consolidation following IA training. The consolidation of memory is a process of develop-

ing resistance to disruption [1]. Initially, memory is vulnerable to protein synthesis inhibitors

(PSIs), but it becomes resistant over time, hence at the later stage of consolidation. IA memory

at 7 days after learning can be impaired by PSI applied at 24 h after learning, but becomes

resistant to PSI applied at 48 h after learning [5]. Empirical and computational studies suggest

self-sustained positive feedback loops contribute to synaptic plasticity and memory formation

and consolidation [3, 5, 13–24]. After positive feedback is activated by learning, its strength
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increases with time. Therefore, the later PSI is applied after learning, the more resistant is the

positive feedback, and memory, to disruption [3].

However, resistance of memory to disruption does not always continuously grow with time

post-learning. In Bekinschtein et al. [25], IA memory at day 7 was impaired by PSI added 12 h

after training, but memory was resistant if PSI was added at earlier times. Some studies sug-

gested that two distinct waves of protein synthesis during consolidation contribute to complex

dynamics of resistance [25–27]. Zhang et al. [3] delayed the initiation of a BDNF feedback

loop to generate two such waves, and consequent time windows of sensitivity to PSI. However,

the time windows found in empirical studies show a large diversity and are to some extent con-

tradictory [25–27]. These differences may, in part, occur because the large number of empiri-

cal variables (e.g., type of training, circadian rhythms, age, areas of the brain, animal) has made

it difficult to consistently characterize the concept of a time window(s). The key mechanisms

underlying the generation of distinct time windows are still poorly understood.

Due to these considerations, we did not aim to replicate any time windows found in empiri-

cal studies. Our model simulated the characteristic features of dynamics of BDNF, bdnf,
pCREB, C/EBPβ and pCaMKIIα, and the binding of Sin3a/MeCP2/HDAC2 after IA training,

as described in Bambah-Mukku et al. [5]. In this relatively biological realistic model, we simu-

lated PSI effects, and investigated biochemical processes that may underlie both the overall

increased resistance to PSI with time, and the observed temporary decrease of resistance dur-

ing a particular period after PSI application.

Methods: Model development

The model of Zhang et al. [3] focused on the BDNF-CREB-C/EBPβ feedback loop in rat hippo-

campal neurons. In simulations, the feedback loop was initiated with a one-trial IA training-

induced release of BDNF, which leads to rapid activation of the transcription factor CREB via
phosphorylation, and a consequent increase in expression of the transcription factor C/EBPβ.

Increased levels of C/EBPβ close the loop by increasing bdnf expression. We extended this

model by adding several new components (Fig 1A):

Fig 1. Schematic model of the signaling pathways essential to consolidation of IA long-term memory (LTM). (A)

Signaling pathways with multiple feedback loops, including positive BDNF-CaMKIIα (blue) and BDNF-C/EBPβ
(green) feedback loops that contribute to memory consolidation. MeCP2, HDAC2 and Sin3a bi-directionally regulate

BDNF expression (red). Details and equations are given in the main text. (B) Scheme of interactions among bound

Sin3a (red), MeCP2 (purple) and HDAC2 (blue), and their effects on the bdnf exon IV promoter. Arrowheads indicate

activation, circular ends indicate repression.

https://doi.org/10.1371/journal.pcbi.1010239.g001
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1. BDNF-CaMKIIα-BDNF positive feedback (Eqs 1, 8–10). Empirical studies indicate that active

CaMKIIα, i.e., phosphorylated CaMKIIα (pCaMKII) in the rat hippocampus remains

increased for at least 20 h after IA training [4,5]. The increase of pCaMKIIα is significantly

reduced by anti-BDNF treatment [5], which in turn blocks memory formation [4], suggesting

activation of CaMKIIα is at least partially dependent on BDNF and accompanies memory for-

mation. pCaMKIIα, in turn, supports extracellular release of BDNF and long-term changes in

dendritic structure at CA3-CA1 hippocampal synapses [6]. Together, these results suggest

autocrine BDNF-TrkB-CaMKIIα-BDNF signaling is important for synaptic plasticity and

memory formation in the dorsal hippocampus. Thus, we included a BDNF-CaMKIIα-BDNF

positive feedback loop (Fig 1A). This loop does not require protein synthesis, thus the dynam-

ics of this loop are faster compared to the BDNF-CREB-C/EBPβ feedback loop.

2. Binding of MeCP2, Sin3a, and HDAC2 to the bdnf promoter (Eqs 11–13). Modeling the

dynamics of MeCP2, Sin3a, and HDAC2 binding to the bdnf exon IV promoter after IA

training based on the empirical findings of Bambah-Mukku et al. [5] (Fig 1). After IA train-

ing, distinct dynamics were observed for the binding of Sin3a, MeCP2 and HDAC2. Bind-

ing of Sin3a significantly increased within 30 min and decreased at 12 h, followed by a

second increase at 48 h. In contrast, binding of MeCP2 and HDAC2 remained near the

basal level for at least 12 h after IA training, but significantly increased at 48 h.

3. Dual effects of MeCP2 on bdnf transcription (Eqs 5–7). The action of MeCP2 on bdnf
expression was modeled with two components: a constitutive function representing up-reg-

ulation of basal bdnf expression by free MeCP2, and a dynamic function to represent

down-regulation by a MeCP2/HDAC2/Sin3a complex (Fig 1). The effects of MeCP2 on

gene expression are complex [28,29]. MeCP2 can act as a repressor or activator of BDNF

transcription depending on context. In neurons, MeCP2 can act constitutively as a bdnf
activator [30]. Constitutive MeCP2 overexpression enhances bdnf expression, and MeCP2

deletion inhibits bdnf expression [31]. Other studies suggest increased MeCP2 can act

directly as a bdnf repressor [5, 32,33]. For example, termination of the BDNF positive feed-

back loop is associated with increased binding of MeCP2, HDAC2, and Sin3a to the bdnf
exon IV promoter region at 48 h post IA training [5]. Li and Pozzo-Miller [7] proposed a

“dual operation model” in which neuronal activity or other dynamical processes can switch

the role of MeCP2 between activation and repression of bdnf. The association of MeCP2

with HDAC2–Sin3a could constitute such a switch component.

4. Downstream signaling cascades to mediate synaptic plasticity (Eqs 14–21). These were

based on synaptic tagging and capture, which is critical for the formation of protein synthe-

sis-dependent long-term potentiation and induction and consolidation of LTM [34–38].

Equations for CaMKIIα-dependent regulation of the BDNF -CREB -C/EBPβ
pathway

Eqs 1–4 describe activation of the BDNF -CREB -C/EBPβ pathway after stimulation, modifed

from those in Zhang et al. [3].

d½BDNF�
dt

¼ rBDNFstimþ kfB
½pCaMKII�

½pCaMKII� þ KCaMKII;BDNF

½bdnf �
½bdnf � þ Ktrans

ð1 � ANIÞ

� kdBDNF
½BDNF�

½BDNF� þ KdB
ð1Þ

In Eq 1, stim represents a stimulus that simulates IA training. Stim induces the initial
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activation of the BDNF pathway during training [39]. Stim is 0 before and after training, and

increases to 30 μM/s for 1 min to simulate training. [BDNF] represents the concentration of

BDNF released via stim or a CaMKIIα-dependent cascade. Released BDNF binds TrkB recep-

tors to activate CREB and CaMKIIα. Active CaMKIIα in turn helps release more BDNF. ANI
(anisomycin) remains at 0 in the absence of PSI and increases to 0.8 for 6 h to simulate PSI,

based on empirical findings [5, 40].

d½pCREB�
dt

¼ ðkbasalp creb þ kphos creb
½BDNF�2

½BDNF�2 þ KCREB BDNF
2
Þ½CREB� � kdphos creb½pCREB� ð2Þ

½CREB� ¼ CREBtotal � ½pCREB� ð3Þ

[CREBtotal] is the concentration of total CREB (Eq 3). [pCREB] is phosphorylated CREB

(pCREB) (Eq 2). Empirical studies indicate that total CREB remains at its basal level for 20 h

after IA training in rat hippocampus, whereas pCREB remains increased for more than 24

hours returning to baseline by 48 h after training [4–5]. The increase of pCREB is blocked by

anti-BDNF treatment [5], suggesting the activation of CREB depends on BDNF.

d½C=EBP�
dt

¼ fðkbasal cebp þ kf creb
½pCREB�2

½pCREB�2 þ KCREB CEBP
2
ÞðCEBPmax � ½C=EBP�Þð1 � ANIÞ

� kd cebp
½C=EBP�

½C=EBP� þ Kcebp
g=tcebp

ð4Þ

[C/EBP] is the total concentration of C/EBPβ protein (Eq 4). Hill functions with coefficient

of 2 are used to describe the effect of pCREB on c/ebp expression and the effect of C/EBPβ on

bdnf expression, based on data suggesting these transcription factors commonly function as

dimers. pCREB significantly increases 30 min after IA training [5], whereas c/ebpβ mRNA and

C/EBPβ protein do not increase until hours after training [5, 41]. The mechanism underlying

the slow response of C/EBPβ is unclear. In the revised model, the arbitrary suppression of the

effect of pCREB on C/EBPβ expression implemented in Zhang et al. [3] was removed. The

response of C/BEPβ to pCREB is assumed slow. The parameter τcebp in Eq 4 determines the

speed of response of C/EBPβ to pCREB. τcebp was adjusted so that two waves of increase in the

release of BDNF protein were induced after stimulus. The first was directly induced by stimu-

lus, whereas the second was ~10 h after stimulus due to the activation of BDNF-C/EBPβ and

BDNF-CaMKIIα feedback loops. C/EBPmax is the maximum amount of C/EBPβ that can be

produced within 48 h as described in Zhang et al. [3].

Regulation of bdnf transcription by C/EBP, MeCP2, Sin3a, and HDAC2

Eqs 5–7 describe the regulation of bdnf transcription by various factors. Eq 5 is modified from

the model of Zhang et al.[3]. Eqs 6 and 7 are new equations.

d½bdnfm�
dt

¼ kb MeCP2ð1þ ½EMeCP2�Þ

þ kf bdnf
½CEBP�2

Ka bdnf
2 þ ½CEBP�2 þ ½EComp�

2
� kdegb

½bdnfm�
½bdnfm� þ Kdb

ð5Þ

d½EMeCP2�

dt
¼ fkf EMeCP2

½BMeCP2� � ½BMeCP2�basal
½BSin3a�½BHDAC2�

ð½EMeCP2�max � ½EMeCP2�Þ

� ½EMeCP2�g=tE MeCP2

ð6Þ
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d½EComp�

dt
¼ fkf compð½BMeCP2� � ½BMeCP2�basalÞð½BSin3a� � ½BSin3a�basalÞ

ð½BHDAC2� � ½BHDAC2�basalÞð½EComp�max � ½EComp�Þ � kd comp½EComp�g=tComp

ð7Þ

Transcription of bdnf is regulated by the activator C/EBPβ and three repressors: Sin3a,

MeCP2, and HDAC2 [5]. In Eq 5, the expression of bdnf mRNA is activated by [C/EBP],

whereas bdnf is repressed by the effect of the Sin3a/MeCP2/HDAC2 complex, represented by

the variable [Ecomp] (‘E’ representing ‘effect’; ‘comp’ representing ‘complex’). [Ecomp] increases

due to increased binding of Sin3a ([Bsin3a]), MeCP2 ([BMeCP2]), and HDAC2 ([BHDAC2])
(Eq 7).

The effect of free MeCP2 on expression of bdnf is represented by [EMeCP2] (Eq 5) (here

‘MeCP2’ represents free MeCP2 unbound to Sin3a or HDAC2). When the binding of MeCP2

to bdnf exon IV promoter is at the basal level, the basal translation rate is kb_MeCP2. Overexpres-

sion or deletion of MeCP2 will increase or decrease [EMeCP2], respectively. [EMeCP2] increases

with increased binding of MeCP2 alone ([BMeCP2] in Eq 6) but decreases with increased bind-

ing of Sin3a ([BSin3a]) and HDAC2 ([BHDAC2]), which bind MeCP2 to form the inhibitory

Sin3a/MeCP2/HDAC2 complex (Eq 6) (Fig 1B). τE_MeCP2 and τComp are time constants gov-

erning how fast MeCP2 alone or MeCP2/Sin3a/HDAC2 complex respectively activate or

repress the expression of bdnf.

Equations for CaMKIIα regulation by BDNF

Eqs 8–10 are new equations describing regulation of CaMKIIα. Empirical studies indicate that

total CaMKIIα remains at its basal level after IA training in rat hippocampus, whereas pCaM-

KIIα is elevated for more than 24 h, returning to baseline by 48 h after training [4,5]. The

increase of pCaMKIIα is significantly reduced by anti-BDNF treatment [5], suggesting this

activation of CaMKIIα is dependent on BDNF (Eq 8). However, pCaMKIIα is also increased

earlier, 30 min after IA training, and this early increase is not reduced by anti-BDNF treatment

[5]. Thus, in the model, stim in Eq 8 is used to directly increase [pCaMKII] immediately after

training. Also, the increase in pCaMKIIα at 12 h is not completely blocked by anti-BDNF

treatment, which might be due to self-sustaining autophosphorylation of CaMKIIα [22, 42].

d½pCaMKII�
dt

¼ ðrCaMKIIstimþ kbasalp CaMKII þ EfeedbackÞ½CaMKII� � kdphos creb½pCaMKII� ð8Þ

½CaMKII� ¼ pCaMKIItotal � ½pCaMKII� ð9Þ

Efeedback ¼ kCaMKII B
½BDNF�2

½BDNF�2 þ KCaMKII BDNF
2
þ kCaMKII F

½pCaMKII�2

½pCaMKII�2 þ KCaMKII feed
2

ð10Þ

Equations describing the dynamics of Sin3a, MeCP2 and HDAC2 binding

Eqs 11–13 are new equations describing the binding of Sin3a, MeCP2 and HDAC2 to the bdnf
exon IV promoter. Binding of MeCP2 does not significantly increase until 48 h after IA train-

ing [5], an effect that may be due to pCaMKIIα [43]. pCaMKIIα can phosphorylate MeCP2 on

S421, decreasing binding of MeCP2 to methylated DNA [43]. The binding of Sin3a increases

within 30 min after IA training [5]. The mechanisms underlying the changes in binding of

Sin3a, MeCP2 and HDAC2 to the bdnf exon IV promoter are unclear. In the model, stim in Eq

11 is used to directly increase [Bsin3a] (the amount of bound Sin3a, Eq 6) after training (Fig
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1B). Binding of Sin3a decreases at 12 h after IA training, followed by a second increase at 48 h,

along with binding of MeCP2 and HDAC2. We hypothesize these similarities in binding

dynamics reflect concurrent binding of Sin3a, MeCP2, and HDAC2 to form the Sin3a/

MeCP2/HDAC2 complex. Thus increasing the binding of any two components (e.g., [BMeCP2]

and [Bsin3a]) will increase binding of the third (i.e., [BHDAC2]) (Eqs 12, 13) (Fig 1B). [BSin3a]max,

[BMeCP2]max and [BHDAC2]max represent the maximal binding of these components.

d½BSin3a�

dt
¼ ððrsin3astimþ kf Sin3a½BMeCP2�½BHDAC2�Þð½BSin3a�max � ½BSin3a�Þ � ½BSin3a�Þ=tsina ð11Þ

d½BHDAC2�

dt
¼ ðkf HDAC2½BMeCP2�½BSin3a�ð½BHDAC2�max � ½BHDAC2�Þ � ½BHDAC2�Þ=tHDAC2 ð12Þ

d½BMeCP2�

dt
¼ ðkf MeCP2½BHDAC2�½BSin3a�ð½BMeCP2�max � ½BMeCP2�Þ�

kd MeCP2

½pCaMKII�2

½pCaMKII�2 þ KpCaMKII MeCP2
2
½BMeCP2�Þ=tMeCP2

ð13Þ

Equations describing the synaptic tagging and capture system

Eqs 14–21 are new equations describing the downstream synaptic tagging and capture system.

These equations are adapted from [34, 44]. CaMKIIα activates a synaptic tag (Tag) in Eq 14.

Tag is required for synaptic ‘capture’ of protein synthesized from a generic gene (GPROD in

Eq 17) necessary for synaptic strengthening and LTM. Phosphorylated CREB activates a

generic transcription factor TF-1 (Eq 15), whereas C/EBPβ activates a second transcription

factor TF-2 (Eq 16) (Fig 1A). The rate of synthesis of GPROD, assumed necessary for synaptic

strengthening, increases with TF-1 and TF-2 activation (Eq 17) (Fig 1A). The rate of increase

of a synaptic weight W (Eqs 18–20) is determined by the product of Tag and GPROD (Fig

1A). The model simulates long-term synaptic potentiation (LTP) (increases in W, correspond-

ing to formation of LTM) but does not currently simulate long-term synaptic depression

(LTD). Thus, regulation of W is modeled by increasing W when the product of GPROD and

Tag increases above its basal level. A Heaviside function, denoted as ()+, is used to represent

regulation by Tag and GPROD (Eq 21). When the product of Tag and GPROD is below a

basal level, [Tag]basal x [GPROD] basal, Tag and GPROD do not affect W.

d½Tag�
dt

¼ ðkf tag½pCaMKKII�ð1 � ½Tag�Þ � kd tag½Tag�Þ=tTag ð14Þ

d½TF � 1�

dt
¼ kf tif1½pCREB�ð1 � ½TF � 1�Þ � kd tif1½TF � 1� ð15Þ

d½TF � 2�

dt
¼ kf tif2½C=EBP�ð1 � ½TF � 2�Þ � kd tif2½TF � 2� ð16Þ

d½GPROD�
dt

¼ ððkbasal GROP þ kf GROD
½TF � 1�

½TF � 1� þ Ktif1

½TF � 2�

½TF � 2� þ Ktif2
Þ

� kd GROD½GPROD�Þ=tGPROD ð17Þ

d½W�
dt
¼ ððkbasal p þ kf wEupstreamÞ

½P�
½P� þ Kp

� kd w½W�Þ=tp ð18Þ
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d½P�
dt
¼ ð½PP� � ðkbasal p þ kf wEupstreamÞ

½P�
½P� þ Kp

� kd w½P�Þ=tp ð19Þ

d½PP�
dt
¼ ðkf pp

½W�2

½W�2 þ Kw pp
2
� ½PP�Þ=tpp ð20Þ

Eupstream ¼ ð½Tag�½GPROD�

� ½Tag�basal½GPROD�basalÞð½Tag�½GPROD� � ½Tag�basal½GPROD�basalÞ
þ
ð21Þ

so that

Eupstream ¼ ½Tag�½GPROD� � ½Tag�basal½GPROD�basal when ½Tag�½GPROD� � ½Tag�basal
½GPROD�basal > 0

Eupstream = 0 when ½Tag�½GPROD� � ½Tag�basal½GPROD�basal <¼ 0

As in Smolen et al. [34, 44], the increase in W is also assumed to be limited by the availabil-

ity of a precursor molecule P (Eq 19). Moreover, in the current model, as a reactivating mecha-

nism to maintain persistent memory (> 7 days), a simple positive feedback loop in which

increased W tends to favor further growth, or stabilization, of W [22] is implemented.

Increased W is assumed to feed back to increase the availability of P, through an intermediate

pathway represented by PP (Eqs 20, 19). This feedback can allow W to remain at 200% or

higher of its unstimulated (basal) value, a threshold set in Zhang et al. [3]. Long-term memory

is assumed to be consolidated if W remains at least 200% or higher of its basal value for more

than 2 days.

The parameter values in Table 1 were adjusted so that the model replicated the characteris-

tic features of dynamics of BDNF, bdnf, pCREB, C/EBPβ and pCaMKIIα, and the binding of

Sin3a/MeCP2/HDAC2 after IA training, as described in Bambah-Mukku et al. [5], and also

maintained W higher than 200% control to simulate IA memory consolidation (Table 1).

Numerical methods

Fourth-order Runge-Kutta integration was used for integration of all differential equations

with a time step of 3 s. Further time step reduction did not lead to significant improvement in

accuracy. The steady-state levels of variables were determined after at least two simulated days,

prior to any manipulations. The model was programmed in XPPAUT, a generally used

numerical tool for simulating, visualizing and analyzing dynamical systems. It can be installed

in various operating systems (http://www.math.pitt.edu/~bard/xpp/xpp.html) [45]. Source

codes are submitted to the ModelDB database [46] (https://senselab.med.yale.edu/modeldb/

ShowModel?model=267364#tabs-1, Access code: 123456) and to GitHub (https://github.com/

YiliZhang8/BDNF-model-for-PLOS-Computational-Biology). XPPAUT files can be converted

to Systems Biology Markup Language (SBML) files by SBML converters (see: https://sbmlutils.

readthedocs.io/en/latest/).

Results

Simulated variations of W following IA training with altered CaMKIIα and

CREB basal activities

Memories formed early during development are usually more labile in that they commonly are

no longer expressed days after learning, although the latent memory trace may be reinstated
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Table 1. Standard parameter values.

Parameter name Value

rBDNF 0.3 s-1

kfB 1.5 x 10−3 mM/s

KCaMKII,BDNF 7.3 x 10−3 mM

Ktrans 3 x 10−2 mM

KdB 0.6 mM

kdBDNF 6.6 x 10−4 mM/s

kbasalp_creb 3.2 x 10−6 s-1

kdphos_creb 9.6 x 10−5 s-1

kphos_creb 4 x 10−3 s-1

KCREB_BDNF 2 mM

CREBtotal 0.085 mM

kbasal_cebp 1.6 x 10−2 s-1

kf_cebp 2.2 s-1

kd_cebp 5.7 x 10−3 mM/s

KCREB_CEBP 0.19 mM

CEBPmax 2.3 x 10−1 mM

Kcebp 7.6 x 10−2 mM

τcebp 3 x 103 s

kb_MeCP2 1.6 x 10−7 mM/s

kf_bdnf 1.6 x 10−4 mM/s

Ka_bdnf 3.2 mM

kdegb 4.5 x 10−5 mM/s

Kdb 0.6 mM

kf_EMeCP2 0.34 mM

[EMeCP2]max 5 mM

τE_MeCP2 1.44 x 104 s

kf_comp 4.5 mM

kd_comp 6.7 x 10−3 mM

[BSin3a]basal 1 mM

[BHDAC2]basal 1 mM

[IComp]max 5 mM

τComp 3.6 x 104 s

rCaMKII 0.15 s-1

kbasalp_CaMKII 3.6 x 10−6 mM/s

kdphos_CaMKII 1.1 x 10−4 s-1

ρCaMKIItotal 0.085 mM

kCaMKII_B 5.3 x 10−5 mM/s

KCaMKII_BDNF 0.28 mM

kCaMKII_F 4.1 x 10−5 mM/s

KCaMKII_feed 0.03 mM

rsin3a 3 x 104 mM-1

kf_Sin3a 0.25 mM-2

τsina 5 x 104 s

[BSin3a]max 5 mM

kf_HDAC2 0.25 mM-2

[BHDAC2]max 5 mM

τHDAC2 1.25 x 105 s

(Continued)
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by some specific protocols [8–9, 12]. This lability is thought to be linked to infantile amnesia,

the inability of adults to remember infantile experiences. Although multiple hypotheses have

been proposed [8–10, 12, 47,48], the mechanisms of rapid forgetting of infantile memory and

reinstatement of latent memory traces remain unclear. Travaglia et al. [12] point out some of

the substantial differences in biological systems of developing and adult brains. In the dorsal

hippocampus of infantile rats, the basal level of pCaMKIIα is substantially lower than that of

adult rats, whereas the basal level of pCREB is substantially higher than in adult [12]. To simu-

late the effects of these changes on the consolidation of IA memory, we gradually increased the

basal phosphorylation rate of CREB, kbasalp_creb in Eq 2, from 100% of its standard value in

Table 1 to ~300%, by steps of 20%. At the same time, we gradually decreased the basal phos-

phorylation rate of CaMKIIα, kbasalp_CaMKII in Eq 8, from 100% of its standard value in Table 1

to 50%, by steps of 10% (arrows in Fig 2A1). In all cases we first simulated several days of stim-

ulus absence until the model reached a new equilibrium, and then simulated how these param-

eter changes affect the response to a stimulus. Basal binding of MeCP2, Sin3a and HDAC2 to

the bdnf exon IV promoter was increased compared to control, due to the reduced basal

pCaMKIIα, releasing its inhibition of MeCP2 binding. The increase in MeCP2 subsequently

increased the binding of Sin3a and HDAC2. Fig 2A2 summarizes the results of these simula-

tions with a 3-D plot of synaptic weight W as a function of both parameters kbasalp_CaMKII and

Table 1. (Continued)

Parameter name Value

kf_MeCP2 0.25 mM-2

[BMeCP2]max 5 mM

kd_MeCP2 4 mM

KpCaMKII_MeCP2 0.011 mM

τMeCP2 1 x 104 s

kf_tag 0.5 mM-1s-1

kd_tag 0.03 s-1

τTag 5 s

kf_tif1 1.1 x 10−4 mM-1s-1

kd_tif1 3 x 10−5 s-1

kf_tif2 2.4 x 10−5 mM-1s-1

kd_tif2 6 x 10−5 s-1

kbasal_GROP 4 x 10−4 mM/s

kf_GROD 7.5 mM/s

kd_GROD 0.05 s-1

Ktif1 1 mM

τGPROD 2 x 103 s

Ktif2 1 mM

kbasal_p 0.48 mM

kf_w 1680 mM

Kp 13.3 mM

kd_w 0.08 s-1

[tag]basal 0.1 mM

[GPROD]basal 0.12 mM

Kw_pp 0.9 mM

τp 2.5 x 104 s

τpp 7.5 x 105 s

kf_pp 0.8 mM

https://doi.org/10.1371/journal.pcbi.1010239.t001
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kbasalp_creb. The light blue area represents W lower than 200% of basal level. Starting from the

control simulation using the standard values of kbasalp_creb and kbasalp_CaMKII in Table 1, if the

basal phosphorylation rate of CaMKIIα was reduced by more than 40%, W at day 7 always fell

Fig 2. Simulated effects of increased pCREB combined with decreased pCaMKIIα on time courses of molecular

pathways and synaptic weight W after IA training. (A1) Modifications of the model of the molecular pathways for

IA conditioning, including increased basal phosphorylation of CREB, kbasalp_creb, concurrent with decreased basal

phosphorylation of CaMKIIα, kbasalp_CaMKII (red arrows). (A2) 3D plot of synaptic weight W at day 7 after training

with kbasalp_creb increasing from the standard value in Table 1 to 300% of the standard value, and kbasalp_CaMKII
decreasing from the standard value in Table 1 to 50% of the standard value, with increased binding of MeCP2, Sin3a

and HDAC2 (A2). The light blue area represents W less than 200% of basal level. (B) Example of dynamics of BDNF

protein/mRNA (B1-2), C/EBPβ protein (B3), pCREB (B4), pCaMKIIα (B5), Sin3a binding (B6), MeCP2 binding (B7),

HDAC2 binding (B8), and W (B9), with the standard parameter values in Table 1 (black dashed) or with kbasalp_creb
increased by ~50% and kbasalp_CaMKII decreased by ~50% from control combined with higher binding levels of MeCP2,

Sin3a and HDAC2 (blue) to simulate IA conditioning in infant rats. Gray dashed line in (B9) represents W at 200%

control.

https://doi.org/10.1371/journal.pcbi.1010239.g002
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below the 200% threshold that represents consolidated LTM, even if kbasalp_creb was substan-

tially increased by more than 100% (light blue area, Fig 2A2). These simulations suggest that

decreased pCaMKIIα in infant animals plays a role in the rapid forgetting of infantile memory.

Fig 2B illustrates an example of a simulation when the basal phosphorylation rate of CaM-

KIIα was decreased by ~50% and the basal phosphorylation rate of CREB was increased by

~50%, relative to control values (Table 1) to simulate IA conditioning in infant rats. Due to the

decrease of basal pCaMKIIα prior to stimulus, releasing its inhibitory effect on MeCP2 bind-

ing; MeCP2, Sin3a and HDAC2 binding were all increased to higher basal levels compared to

the control simulation (Fig 2B6–2B8, blue vs. black curves). Because of the higher level of

bound MeCP2/Sin3a/HDAC2 complex, BDNF protein and bdnf mRNA remained lower than

in the control simulation using the standard values of kbasalp_creb and kbasalp_CaMKII in Table 1

(Fig 2B1–2B2, blue vs. black-dashed curves), and the BDNF- C/EBPβ feedback loop was not

fully activated after stimulus (Fig 2B1–2B4, blue vs. black-dashed curves). W only transiently

increased, passing the threshold of 200%, but decreasing to below threshold at day 7 (Fig 2B9,

blue vs. black-dashed curves). Taken together, these simulations suggest that enhanced binding

of a MeCP2, Sin3a and HDAC2 complex to the bdnf exon IV promoter, caused by decreased

pCaMKIIα in infant animals, might contribute to rapid forgetting of infantile memory. On the

other hand, W did not return to the basal level at day 7 (Fig 2B9), which suggests that the

memory trace is not completely lost, leaving the possibility of memory reinstatement at later

times by specific protocols.

The current model cannot produce bistability (i.e., two steady states for the values of dynamic

variables, with an appropriate perturbation switching between steady states). Bistability does not

exist because the BDNF-dependent positive feedback loop is turned off, in the model, by the

MeCP2/SIN3a/HDAC2 inhibitory complex at ~48 h after IA training, as suggested in Bambah-

Mukku et al. [5]. However, to investigate a possible role of CaMKIIα in bistability, we blocked the

effects of MeCP2, SIN3a, and HDAC2 on BDNF expression (S1A Fig). In this case, a bistable

switch was induced by a transient stimulation. BDNF, bdnf, pCREB, pCaMKIIα, and C/EBP were

all increased to a higher steady state after training (S1B Fig, blue curves). We then repeated the

simulations in Fig 2, by gradually decreasing the basal phosphorylation rate of CaMKIIα, kbasalp_-
CaMKII in Eq 8, from 100% of its standard value in Table 1 to 10%, by steps of 10%. Concurrently,

we gradually increased the basal phosphorylation rate of CREB, kbasalp_creb in Eq 2, from 100% of

its standard value in Table 1 to ~300%, by steps of 20%. In all cases we examined whether these

parameter changes would block the bistable switch of the above variables from the lower steady

states to higher steady states after stimulation. We found that if kbasalp_CaMKII was decreased to

40% or less of its standard value, and kbasalp_creb was less than 140% of its standard value, the bis-

table switch was blocked. BDNF, bdnf, pCREB, pCaMKIIα, and C/EBP remained at the lower

steady states at 48 h after IA training (S1C Fig). The simulation results with this model variant

suggest that lower basal levels of pCaMKIIα in infant rats could suppress any potential bistability

that might otherwise contribute to memory retention.

Simulated dynamics of resistance of W to protein synthesis inhibition (PSI)

The model replicated the characteristic features of dynamics of BDNF, bdnf, pCREB, C/EBPβ
and pCaMKIIα, and the binding of Sin3a/MeCP2/HDAC2 after IA training, as described in

Bambah-Mukku et al. [5]. Based these simulated time courses, we simulated dynamics of resis-

tance of W to protein synthesis inhibition (PSI). Injection of the PSI anisomycin into rat dorsal

hippocampus blocks>80% of protein synthesis for up to 6 h [5,40]. Thus, we reduced the syn-

thesis rates of BDNF, C/EBP, TF1, TF2, GPROD and W by 80% for 6 h to simulate PSI (Fig 3A1,

red Xs). To investigate the dynamics of memory resistance with respect to the time of PSI
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Fig 3. Simulated response to PSI. (A) Schematic model of the pathways that are blocked by PSI (red X’s). (B)

Reduction of synaptic weight W at day 2 (blue curve) and 7 (red curve) after training, with the addition of PSI initiated

at varying times. ‘1’,’2’,’3’ represent different phases. (C-D) Simulated reduction of W response to PSI in the absence of

the BDNF-CaMKIIα feedback loop (C) or of the BDNF-C/EBPβ feedback loop (D) or of the downstream W loop (E)

at day 2 (blue) and day 7 (red). Insert in (E), same as main panel except Y axis scale is expanded to more clearly

illustrate vertical variations in W.

https://doi.org/10.1371/journal.pcbi.1010239.g003
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addition, PSI was initiated from 0 h to 48 h after the stimulus. The curve of resistance of W in

response to PSI (Y axis of Fig 3B) was built by measuring the degree of PSI-induced reduction of

W at day 2 or day 7 post-stimulus (Fig 3B). The Y axis of Fig 3B varies from 0% to 100% of the

control W in the absence of PSI. If W was reduced to zero, then the reduction was 100%. If W

remained intact, then the reduction was 0%. If the attenuation of W in response to PSI decreased,

the resistance of W to PSI increased. As expected, early application of PSI was most effective in

attenuating W, and the resistance of W to PSI increased with the time of PSI application, leading

to an overall decrease in the reduction of W by PSI with time (Fig 3B). However, unexpectedly,

the PSI-induced attenuation at day 2 and day 7 did not show a continuous decrease over time,

instead displaying multiple phases. During the first phase after stimulus, when PSI was initiated

between immediately and 25 h post stimulus, the reduction of W at day 2 and 7 decreased with

respect to the time at which PSI was initiated (arrows #1, Fig 3B), corresponding to an increase

of resistance. During the second phase, when PSI was initiated between 25 and 35 h post stimulus

(arrows #2, Fig 3B), attenuation of W at day 2 remained around the same level (blue curve, Fig

3B), whereas attenuation of W at day 7 increased with respect to the time at which PSI was initi-

ated (red curve, Fig 3B), corresponding to a decrease of resistance. After 35 h post-stimulus,

attenuation of W at days 2 and 7 resumed decreasing with respect to the time at which PSI was

initiated (arrows #3, Fig 3B). Thus, there is a period of time, between 25 and 35 h post-stimulus,

during which the resistance of late W (at 7 days) paradoxically decreases with respect to the time

of PSI application. These dynamics predict distinct periods during which memory consolidation

is differentially affected with respect to the time of PSI application.

To investigate whether the model can also produce a multi-phased response to other disrup-

tions as it did to PSI, we simulated the effects of anti-BDNF oligodeoxynucleotide (ODN) and

anti-C/EBP ODN (S2A Fig). To make the results comparable to PSI treatments, we suppressed

80% of BDNF activity for 6 h to simulate the effects of anti-BDNF ODN (S2A Fig). We suppressed

80% of C/EBPβ activity for 6 h to simulate the effects of anti-C/EBP ODN (S2B Fig). We also sim-

ulated the effects of suppressing 80% of MeCP2 activity for 6 h (S2C Fig). We found multiple

phases of W reduction in response to all of these treatments, qualitatively similar to those resulting

from PSI (S2 Fig). These results suggest that distinct periods of memory resistance to disruptions

during memory consolidation may be a general phenomenon, not only a response to PSI.

To test the effects of the BDNF dependent feedback loops on the multiple phases of W reduc-

tion in response to PSI, the simulations were repeated, blocking either the BDNF-CaMKIIα
feedback loop (Fig 3C) or the BDNF-C/EBPβ feedback loop (Fig 3D). Blocking either feedback

loop eliminated the second phase during which the reduction of W did not significantly

decrease with the time of PSI, for W at day 2 (Fig 3C and 3D, blue curves) and day 7 (Fig 3C

and 3D, red curves). Instead, attenuation of W continuously decreased. Thus, both BDNF

dependent feedback loops are necessary for generating multiple phases of W resistance to PSI.

To test the effects of the independent downstream W positive feedback loop on the multiple

phases of W resistance in response to PSI, the simulations of Fig 3B were repeated in Fig 3E,

blocking the downstream W feedback loop. Blocking this loop enhanced the reduction of W

by PSI. However, the three phases of resistance of W in response to PSI were still present

(arrows #1, 2, 3, Fig 3E). Thus, this characteristic dynamics of the resistance of W with respect

to the time to initiate PSI are not dependent on the downstream W feedback.

The role of dual effects of MeCP2 on expression of BDNF in the complex

dynamics of resistance of W in response to PSI

We compared the time courses of model variables, in the presence vs. absence of PSI applied at

different times, in order to further examine the mechanism underlying the distinct dynamics
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of W reduction with respect to the time of PSI initiation during the second phase (Fig 4). We

selected the time points of 25 h and 35 h post stimulus because these two time points are the

beginning and end of the second phase (Fig 3B). Here we investigated why W at day 7 with

PSI added at 25 h was greater than W with PSI added at 35 h, (i.e., the reduction of W by PSI

applied at 25 h was less than the reduction of W by PSI applied at 35 h). With PSI added 25 or

35 h post stimulus, BDNF decreased in both cases, leading to a decrease in pCaMKIIα (Fig 4A

and 4E, blue vs. red vs. black dashed curves), releasing its inhibitory effect on MeCP2 binding

(Fig 4G, blue vs. red vs. black dashed curves). However, when PSI was added at 25 h, MeCP2

binding quickly increased (Fig 4G, blue arrow), faster than the increase of Sin3a and HDAC2

binding which remained low for several hours before their increase (Fig 4F and 4H, blue

arrows). Thus, MeCP2 alone bound to bdnf exon IV promoter to increase the expression of

bdnf, before Sin3a and HDAC2 could bind it to form the inhibitory complex. The increase in

bdnf expression occurred after PSI was removed, due to the increased binding of MeCP2 alone

Fig 4. Simulated dynamics of model variables when PSI was added 25 h or 35 h post-stimulus. Example of

dynamics of BDNF protein/mRNA (A-B), C/EBPβ protein (C), pCREB (D), pCaMKIIα (E), and Sin3a binding (F),

MeCP2 binding (G), HDAC2 binding (H), Tag (I), GROD (J), PP (K), and W (L), without PSI (black dashed) or with

PSI added at 25 h post- stimulus (blue), or at 35 h post- stimulus (red).

https://doi.org/10.1371/journal.pcbi.1010239.g004
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(Fig 4B, blue arrow). Translation of excess mRNA generated a late increase of BDNF that

enhanced the recovery of the BDNF-dependent feedback loops, including BDNF, pCREB1

and pCaMKIIα (Fig 4A, 4D and 4E, blue curves), which led to a second wave of increase in

Tag and GPROD (Fig 4I and 4J, blue arrows). The enhanced Tag and GPROD subsequently

increased W and its precursor PP (Fig 4K, blue arrow), with PP initiating the downstream

feedback loop, leading to a second wave of increase in W (Fig 4L, blue arrow). In contrast,

when PSI was added later, 35 h post-stimulus, Sin3a and HDAC2 binding were already

increasing (Fig 4F and 4H, red arrows), so that increased MeCP2 binding was directed more

to the MeCP2/Sin3a/HDAC2 complex, repressing bdnf. Therefore, no enhanced recovery was

induced in any variables (Fig 4A–4L, red curves) and the late increase of W was diminished.

Thus, due to the dual effects of MeCP2 on the BDNF-dependent feedback loops, W at day 7

had a paradoxically higher value when PSI was added at 25 h than when PSI was added later at

35 h post-stimulus (Fig 4L, blue vs. red curves). These dynamics generate the period within

which the resistance of W to PSI decreased with respect to the time of PSI application.

Parameter sensitivity analysis to identify additional factors that affect the

complex dynamics of resistance of W in response to PSI

Many pathways are involved in the PSI resistance profile. However, the core components of

the model are two BDNF-dependent feedback loops, the MeCP2/Sin3a/HDAC2 complex, and

synaptic tagging and capture. All the pathways directly or indirectly modulate these four com-

ponents. Instead of exhaustively listing the sensitivity of all metrics of model function, we

investigated which components are critical for determining the temporal profile of resistance

to PSI. Fig 3 suggests that the BDNF-dependent feedback loops are necessary for the multiple

phases of W response to PSI. Parameter sensitivity analysis was performed to further examine

the extent to which the MeCP2/Sin3a/HDAC2 complex and synaptic tagging and capture

might contribute to the dynamics of resistance of W dynamics to PSI (Fig 5). In Fig 5A, τcomp,

the time constant for the inhibitory effects of the MeCP2/Sin3a/HDAC2 complex on bdnf
exon promoter, was reduced to 30% of the standard value in Table 1. The second phase of W

reduction was eliminated. In Fig 5B, τE_MeCP2, the time constant of activating effects of free

MeCP2 on bdnf exon promoter, was increased to 300% of the standard value in Table 1. The

second phase of W reduction was eliminated. Thus, the time scales of the dynamics governing

the effects of the MeCP2/Sin3a/HDAC2 complex, and the effects of free MeCP2, played critical

roles in the generation of the multiple phases of W reduction in response to PSI. Analogous

simulations demonstrated that decreasing τHDAC2 (the time scale of HDAC2 binding to bdnf)
to 30% of its standard value or enhancing the response of Sin3a binding to stimulus, rsin3a, by

300% eliminated the second phase of W reduction in response to PSI (Fig 5C and 5D).

In Fig 5E, varying τTag, the time constant of Tag activation, from 30% to 300% of the stan-

dard value, did not substantially change the multiple phases of W reduction in response to PSI.

Likewise, in Fig 5F, varying τGPROD, the time constant of GPROD production, from 30% to

300% of its standard value, also did not substantially change the multiple phases of W reduc-

tion in response to PSI. This parameter sensitivity analysis suggests that the variables of the

tagging and capture system did not play important roles in the generation of the multiple

phases of W reduction in response to PSI. The parameters governing the multiple phases of W

reduction are those related to the dynamics of MeCP2, Sin3a and HDAC2 effects on bdnf
expression.

These simulations also suggest that although BDNF-dependent feedback loops are neces-

sary for the multiple phases of W reduction response to PSI (Fig 3C and 3D), they are not suffi-

cient in the absence of further parameter constraints. The multiple phases of response of W
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only occur within a specific range of the time constants governing the dynamics of regulation

of bdnf expression by MeCP2, Sin3a and HDAC2. Thus MeCP2, Sin3a and HDAC2 binding

kinetics may constitute potential targets for rescuing memory impaired by disruptions.

Discussion

Empirical studies indicate that recurrent rounds of de novo protein synthesis are required to

maintain hippocampal memory formation and consolidation for a week or longer [5, 25,26].

However, the ways in which the dynamics of these molecular components of consolidation

correlate with different temporal domains of memory is not well understood. BDNF, with lev-

els elevated by feedback, may enhance the expression of downstream proteins such as C/EBP,

rendering memory consolidation resistant to disruption during specific post-training periods.

In Zhang et al. [3], we developed a differential-equation based model to describe this feedback

loop. In the current study, the model of Zhang et al. [3] was revised to further investigate the

roles of a BDNF-CREB-C/EBPβ feedback loop and of a BDNF-CaMKIIα dependent feedback

loop in the development of resistance to PSI during memory consolidation.

A characteristic feature of a positive feedback loop is that if PSI is not sufficient to reduce

the protein synthesis rate to below a threshold for substantial time, then the positive feedback

loops will fully recover after PSI is removed [24, 40]. In the model of Zhang et al. [24], after the

feedback loops were initiated and the strength grew with time, the resistance of W to PSI was

gradually enhanced with time. However, empirical studies suggest that, for some common

learning protocols, the resistance of memory to PSI does not continuously increase with the

delay in the time to initiate PSI [25–26, 39, 49–51]. In some periods, the resistance decreases

with respect to the time of PSI initiation. Because there are too many variables (e.g., type of

training, circadian rhythms, age, areas of the brain, animal) to definitively characterize the

concept of a time window(s), the data surrounding time windows is too vague and paradigm

sensitive. We did not use our model to replicate the time windows found in empirical studies.

In this study, we used the revised model to investigate the dynamics of variation of synaptic

weight W with respect to the time of PSI. We found multiple phases of W resistance in

response to PSI (Fig 3B). The dual effects of MeCP2 on the expression of bdnf helped generate

a specific period during which the resistance of W at day 7 post-stimulus to PSI decreased with

respect to the time of PSI application.

When PSI was added, the synthesis of BDNF was reduced, leading to a decrease of pCaM-

KIIα, which subsequently increased binding of MeCP2 to the bdnf exon IV promoter (Fig 4).

If binding of MeCP2 increased before the increase of Sin3a and HDAC2 binding, MeCP2

alone increased the expression of bdnf, enhancing the ability of the BDNF feedback loops to

recover after PSI was removed. In contrast, if binding of MeCP2 to the bdnf promoter

increased together with increased Sin3a and HDAC2 binding, then the MeCP2/Sin3a/HDAC2

complex would inhibit the expression of bdnf, suppressing the ability of BDNF feedback loops

to recover after PSI was removed. Thus, the multiple phases of W in response to PSI applica-

tion depend on the temporal difference in the dynamics of binding of MeCP2, Sin3a and

HDAC2, vs. binding of MeCP2 alone, to regulate the expression of bdnf (Figs 4 and 5). Simula-

tions also suggest that both BDNF-related feedback loops, but not the downstream W feed-

back, are required for the multiple phases of W resistance in response to PSI (Fig 3). The

dependence of these phases of response of W to PSI on the dual regulation of bdnf by MeCP2

Fig 5. Simulated effects of various parameters on the multiple phases of W resistance in response to PSI. The

dynamics of reduction of W at day 2 and 7 post-stimulus, with the addition of PSI initiated from 0 h to 48 h, varied

when altering τComp (A), τE_MeCP2 (B), τHDAC2 (C), rSin3a (D), τTag (E), τGPROD (F). ‘1’,’2’,’3’ represent different phases.

https://doi.org/10.1371/journal.pcbi.1010239.g005
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suggests that the special MeCP2 binding kinetics may provide a possible explanation of com-

plex effects of MeCP2 on gene expression [28–29, 52] and a potential therapeutic target for res-

cuing memory impaired by disruptions.

Dual regulation of bdnf by MeCP2 might also help explain apparent rapid forgetting of

infantile memory. Multiple hypotheses have been proposed to explain the mechanism of infan-

tile amnesia and reinstatement of latent memory traces [8, 10, 47,48, 53]. In Travaglia et al.

[12], in infantile rats, the basal level of pCaMKIIα in dorsal hippocampus is substantially lower

than that of adult rats, whereas the basal level of pCREB in dorsal hippocampus is substantially

higher than that of adult. We therefore simulated a stimulus response given a decreased basal

phosphorylation rate of pCaMKIIα and increased basal phosphorylation rate of pCREB (Fig

2). Increased pCREB led to an increase of C/EBPβ, tending to augment the BDNF-C/EBPβ
feedback loop. However, the decreased pCaMKIIα led to an increased level of the MeCP2/

Sin3a/HDAC2 complex, suppressing the BDNF-C/EBPβ feedback loop. The net result of these

effects was that although the synaptic weight W post-stimulus transiently increased due to the

increase in pCREB, this increase was not sufficient to overcome the suppression of feedback

and maintain W at day 7 post-stimulus at a sufficiently high level to retrieve memory (Fig 2B,

blue curves). However, W did remain at an elevated level, compared to pre-stimulus baseline,

at day 7, suggesting memory reinstatement due to specific protocols may be elicited at later

times. The simulation results also help explain why exogenous application of BDNF can

restore infantile memory [9]. It is possibly via overcoming the suppression of bdnf expression

by MeCP2/Sin3a/HDAC2 complex. Multiple signaling cascades in addition to those modeled

here are involved in infantile amnesia [54] (e.g., changes in glutamate receptor composition [9,

55]). It is not currently possible to quantitively or qualitatively assign a relative importance to

any of these changes individually or in combination. The data are insufficient at this time to

make such a specific determination. Here, we have offered a first step toward addressing this

issue by developing a model that simulates aspects of infantile amnesia as well as other

dynamic features of memory consolidation, such as its susceptibility to protein synthesis inhi-

bition. We chose to focus on dynamics of pCaMKIIα and pCREB for two reasons. First, empir-

ical studies have measured the time courses of on pCaMKIIα and pCREB activation after IA

training in adult rats [5]. Second, significant differences in pCaMKIIα and pCREB basal activi-

ties have been found between infant and adult rats [12], which provide data for model simula-

tions. These simulations suggest that in infant animals, decreased basal CaMKIIα activity and

increased basal levels of bound MeCP2/Sin3a/HDAC2 complex may contribute to fast for-

getting of infantile memory in the early phase. As more data become available, models such as

our will be a valuable tool in evaluating the complex and dynamic features of memory and the

ways in which specific neuronal processes contribute to memory.

The model is of a single compartment. We did not model subcellular or separate synaptic

compartments. We note that kinases (e.g., CaMKIIα) in different compartments might have

differential contributions to long-term synaptic plasticity, and the contribution of synaptic tag-

ging and capture may also differ based on the area of brain region involved in memory consol-

idation [56,57]. However, a single compartment model has the advantage of reducing the

number of parameters, avoiding the introduction of a large number of relatively poorly con-

strained, compartment-specific parameters. Therefore, our analyses and model are simplified

and focus on the activating roles of kinases and on synaptic tagging and capture in the induc-

tion and consolidation long-term synaptic potentiation. We will, however, evaluate on an

ongoing basis whether a multi-compartment model would be likely to improve predictions.

Although the revised model is based on some relatively speculative assumptions, several

predictions can be derived from the present simulations. First, for adult rats, the simulations

predict critical roles of MeCP2 in helping to delineate the multiple phases of resistance of W to
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PSI. Second, for adult rats, the model also predicts ways in which the dynamics of W and other

variables would be altered by changing kinetics of the BDNF-related feedback loops, or bind-

ing of the transcription factors MeCP2, Sin3a, or HDAC2 to the bdnf exon promoter. Finally,

for infant rats, the model also predicts that decreased activation of CaMKIIα, combined with

increased MeCP2/Sin3a/HDAC2 binding, underlies in part the rapid forgetting of infantile

memory. If these predictions can be validated by empirical studies, they may suggest paths

towards novel potential therapeutic targets for rescuing memory impairment.

Besides infantile amnesia, signaling pathways in the model (e.g., BDNF, CREB, HDAC, syn-

aptic tagging and capture) are directly or indirectly involved in memory forgetting under vari-

ous situations, such as aging, sleep deprivation, or aberrant protein degradation [58–62]. To

simulate altered dynamics of model components in these situations might also suggest novel

methods to rescue memory deficits. For example, CREB and BDNF levels are decreased in

sleep deprived mice [60], which would tend to suppress BDNF-dependent feedback loops after

training. Based on this, we predict that an inhibitor of MeCP2/Sin3a/HDAC2 complex forma-

tion or activity might help to overcome effects of reduced CREB and BDNF due to sleep depri-

vation, and activate BDNF-dependent feedback loops to restore long-term memory.

Supporting information

S1 Fig. Simulated effects of increased pCREB combined with decreased pCaMKIIα on bist-

ability. (A1) Modification of model. Increased basal phosphorylation of CREB kbasalp_creb, con-

current with decreased basal phosphorylation of CaMKIIα kbasalp_CaMKII, in the absence of the

effects of MeCP2/HDAC2/Sin3a (red) ([Ecomp] = 0; [EMeCP2] = 0). (B) Example of dynamics of

BDNF protein/mRNA (B1-2), C/EBPβ protein (B3), pCREB (B4), and pCaMKIIα (B5) after

training in the presence (black dashed) or absence (blue) of the effects of MeCP2/HDAC2/

Sin3a. In the absence of MeCP2/HDAC2/Sin3a inhibitory complex, the variables were

switched to a higher steady states after training (blue). However, decreasing kbasalp_CaMKII by

~50% blocked the bistable switch (red). (C) Summary table. The steady states of variables 48 h

after training with kbasalp_creb increasing from the standard value in Table 1 to ~300% of the

standard value, and kbasalp_CaMKII decreasing from the standard value in Table 1 to 10% of the

standard value.

(TIF)

S2 Fig. Simulated response to memory disruptors. (A) Reduction of synaptic weight W at

day 2 (blue curve) and 7 (red curve) after training, with the addition of anti-BDNF ODN initi-

ated at varying times. (B) Reduction of synaptic weight W at day 2 (blue curve) and 7 (red

curve) after training, with the addition of anti-C/EBP ODN initiated at varying times. (C)

Reduction of synaptic weight W at day 2 (blue curve) and 7 (red curve) after training, with the

addition of MeCP2 inhibitor initiated at varying times. ‘1’,’2’,’3’ represent different phases.

(TIF)
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