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Abstract: Despite advances in treatment, prognosis for most patients with high-grade serous carci-
noma (HGSC) remains poor. Genomic alterations in the homologous recombination (HR) pathway
are used for cancer risk assessment and render tumours sensitive to platinum-based chemotherapy
and poly (ADP-ribose) polymerase inhibitors (PARPi), which can be associated with more favourable
outcomes. In addition to patients with tumours containing BRCA1 or BRCA?2 pathologic variants,
there is emerging evidence that patients with tumours harbouring pathologic variants in other HR
genes may also benefit from PARPi therapy. The objective of this study is to assess the feasibility
of primary-tumour testing by examining the concordance of variant detection between germline
and tumour-variant status using a custom hereditary cancer gene panel (HCP). From April 2019 to
November 2020, HCP variant testing was performed on 146 HGSC formalin-fixed, paraffin-embedded
tissue samples using next-generation sequencing. Of those, 78 patients also underwent HCP germline
testing using blood samples. A pathogenic variant was detected in 41.1% (60/146) of tumours tested,
with 68.3% (41/60) having either a BRCA1 or BRCA2 variant (n = 36), or BRCA1/2 plus a second
variant (n = 5), and 31.2% (19/60) carrying a pathogenic variant in another HCP gene. The overall
variant rate among the paired germline and tumour samples was 43.6% (34/78), with the remaining
56% (44/78) having no pathogenic variant detected in the germline or tumour. The overall BRCA1/2
variant rate for paired samples was 33.3% (26/78), with germline variants detected in 11.5% (9/78).
A non-BRCA1/2 germline variant in another HCP gene was detected in 9.0% (7/78). All germline
variants were detected in the tumour, demonstrating 100% concordance. These data provide evidence
supporting the feasibility of primary-tumour testing for detecting germline and somatic variants in
HCP genes in patients with HGSC, which can be used to guide clinical decision-making, and may
provide opportunity for improving patient triage and clinical genetic referral practices.

Keywords: ovarian carcinoma; BRCA; molecular testing; solid tumour

1. Introduction

BRCA1/2 germline testing in patients with high-grade epithelial ovarian carcinoma
(EOC) is now considered the standard of care [1]. Germline genetic testing in patients with
EOC enables hereditary cancer detection that triggers specific cancer-prevention strategies
and the genetic testing of family members [2,3]. In addition, patients with germline and
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somatic BRCA-mutated high-grade EOC are eligible for poly (ADP-ribose) polymerase in-
hibitor (PARPi) maintenance therapy [4]. Several trials have shown that PARPi maintenance
therapy can prolong progression-free survival in ovarian cancer patients [5-8].

Tumour testing can identify somatic variants, independent of germline status [1,9]. In
contrast to germline testing, which identifies inherited variants, tumour testing enables
the identification of both germline and somatic variants and therefore expands potential
eligibility for therapeutics [10,11]. Specifically, tumour testing for BRCA1/2 variants can
identify more patients who might be eligible for PARPi treatment [3,12-14]. Germline
BRCA1/2 pathogenic variants occur in 22.6% of high-grade serous carcinomas (HGSCs),
while somatic BRCA1/2 pathogenic variants have been shown in an additional 6-7% of
HGSCs [15]. Thus, all patients with a BRCA1/2 pathogenic variant (germline or somatic)
can benefit from PARPi therapy after the completion of front-line chemotherapy.

In 2016, the use of PARP4i for recurrent high-grade epithelial carcinoma of the ovary, fal-
lopian tube, and peritoneum was approved for patients with BRCA1/2 germline or somatic
pathogenic variants in Canada [16]. This approval led to the increased utilisation of genetic
testing, and a proposal for reflexive tumour testing to provide actionable information
for treatment purposes was made [17]. Moreover, because of the increasing shortage of
genetic counselling capacity, a more focused germline testing approach is needed [11,18].
Reflex tumour testing could improve the efficiency of this process by focusing genetic
counselling referrals on patients with somatic variants in hereditary cancer genes. A recent
study comparing BRCA1/2 variant status between germline and somatic testing results
showed 100 percent concordance, providing validation for the use of tumour testing to the
determine potential utility of treatment, as well as hereditary cancer risk [19].

While germline and somatic BRCA1/2 variants are currently considered the most
clinically relevant, patients with variants in other HR pathway genes (either in germline or
tumour) may also benefit from PARPi therapy [13]. It is therefore necessary to establish a
robust method for detecting these variants. While Ong et al. analysed several other variants,
including ATM, PALB2, TP53, and APC, in tumours from patients with HGSC [20], no
studies have investigated the concordance rate of a more comprehensive panel of hereditary
cancer genes between tumour and germline testing.

The objective of this study is to examine the concordance of hereditary cancer gene
variants between germline and tumour testing in patients with HGSC using an institutional
hereditary cancer gene panel (HCP) of 37 genes. We aim to demonstrate the feasibility of
primary-tumour testing and assess the extent to which tumour testing can reliably capture
germline pathogenic cancer gene variants.

2. Materials and Methods
2.1. Study Population

The study population included a retrospective cohort of all patients with HGSC at
our institution from April 2019 to November 2020. Genetic tumour testing was previously
performed on patient samples; this consisted of a clinically validated 37-gene Hereditary
Cancer Panel (HCP), which enabled the simultaneous detection of both sequence and
copy-number variations (CNV) of the target genes using next-generation sequencing (NGS).
Germline testing was also previously reported and blinded prior to the assessment of
tumour specimens. Tumour test results were compared with matched germline testing
results, for those available. Access to funded genetic testing in Ontario is limited to patients
meeting the criteria defined by government regulations, and therefore, only a subset of
cases had previous germline testing results available.

2.2. Sample Preparation and Testing
2.2.1. Hereditary Cancer Panel

The previously clinically validated 37-gene HCP examined all coding exons and 20 bp
of flanking intronic sequences for the 37 genes (File S1), and was designed to achieve a
> 500X mean read depth coverage and a minimum 100X coverage at a single-nucleotide
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resolution. HCP is used in the clinical setting for more than one referral indication and
filtered for the genes requested as an effective way to test for multiple indications. For
clinical referrals of EOC, BRCA1/2 are assessed only. TP53 is included in the HCP, but was
not assessed for the purposes of this study. The sensitivity detection of this custom NGS
pipeline has been validated previously for minor allele detection levels at 2-5%, along with
sub-exon-level CNV detection [21].

2.2.2. DNA Isolation

Three 20 um sections from formalin-fixed paraffin-embedded (FFPE) tissue samples
with adequate tumour cellularity were obtained for DNA extraction using a sterile protocol.
Genomic DNA was isolated using the Invitrogen RecoverAll total nucleic acid isolation kit
(Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s protocol.

Genomic DNA from each peripheral blood sample was isolated by standard protocols
using the MagNA Pure system (Roche Diagnostics, Laval, QC, Canada).

2.2.3. Next-Generation DNA Sequencing (NGS)

NGS libraries were prepared as described previously [22,23]. Briefly, 100 ng of frag-
mented genomic DNA was ligated with a specific barcode and pooled with 23 other sample
libraries for a 24-plex run that was captured using the SeqCap EZ Choice Library system
according to the manufacturer’s protocol (Roche NimbleGen, Inc., Madison, WI, USA).
Captured libraries were diluted to 8 pM or 1.3 pM for sequencing with the MiSeq v2 or
NextSeq v2.5 mid output kits, respectively (Illumina, San Diego, CA, USA). Sequencing
reads were generated as 2 x 150 bp paired-end reads with post-sequencing file conversion
to FASTQ for alignment with NextGene software version 2.4.2.3 (SoftGenetics, LLC, State
College, PA, USA) using standard alignment settings. Variants were filtered at an allelic
fraction of > 10% to minimise the impact of sequence artifacts and mutational burden
and were classified by a clinical molecular geneticist based on the College of American
Pathologists (CAP) and the American College of Medical Genetics and Genomics (ACMG)
standards and guidelines for pathogenicity [24,25]. For this study, all assessed Tier I/1I
variants (variants of strong and potential clinical significance (therapeutic, prognostic and
diagnostic)) [24] and ACMG 1/2 variants (pathogenic or likely pathogenic variants) [25]
were reported.

2.2.4. Detection of Copy-Number Variants by NGS

Base coverage distribution reports were created using NextGene software (SoftGenet-
ics, LLC) and processed through a normalisation algorithm described previously [22,23].
CNYV assessment was performed through quantile normalisation for all 37 genes on the
HCP to eliminate ambiguous findings. Detected CNVs were then filtered for the genes of
interest prior to assessment. For FFPE samples, the limit of detection of whole gene dele-
tions for BRCA1 or BRCA2 was 30%. Sub-gene-level events were identified by a minimum
of 50% deviation from the nomalised values of the remainder of the gene.

2.3. Data Analysis

Results are reported using descriptive statistics. For samples in which tumour and
matched germline testing was available, variant identification was compared to determine
concordance. In order to assess if tumour analysis could further direct germline assessment,
type of variants by origin, tumour variant allelic fraction (VAF) based on origin, and
sequence variant origin based on gene distribution were examined.

3. Results
3.1. Tumour Testing Analysis
A total of 150 tumour samples from patients with HGSC were received for somatic

tumour testing during the 19-month study period; however, 4 were removed from analysis
due to an insufficient amount of DNA extracted (1 = 1) and duplicate specimens received
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(n = 3). Of the 146 FFPE HGSC tumour specimens tested, 41 (28%) carried a Tier I/1I variant
in either BRCA1 or BRCA2 (n = 36), or BRCA1/2 plus a second variant (n = 5). An additional
19 (13%) specimens carried one or multiple Tier I/1I variants in the remaining HCP genes:
APC (n=1), ATM (n =1), BARD1 (n = 1), BRIP1 (n = 1), CDKN2A (n = 2), MSH3 (n = 3),
MUTYH (n =4), NBN (n = 1), PALB2 (n = 1), PMS2 (n = 1), POLE (n = 2), PTEN (n = 3),
RADS51C (n=1), RAD51D (n = 2), and SDHB (n = 1). A complete list of variants identified
are available in Table S1. The remaining 86 (59%) tumour specimens showed no evidence
of Tier I/1I variants in any of the 36 HCP genes tested (Figure 1).

Positive (Germline)

Tumour
Cases

(n = 146)

i 9/26; 35%
Positive BRCA1/2 Germline ( )
Cases
41/146; 28%
( 0) (n = 26) Negative (Somatic)

(17/26; 65%)

Positive (Germline)

i 7/8; 87.5%
Positive Non-BRCA1/2 Germline (7/ 6)
Cases
(19/146; 13%)
(n=8) Negative (Somatic)

(1/8; 12.5%)

Positive
Negative Germline (0/44; 0%)
Cases
. 0,
(86/146; 59%) = a2) —

(44/44; 100%)

Figure 1. Summary of HGSC tumour and matched germline results. Tumour samples were divided
into three groups: 1. Tumour cases testing positive for a BRCA1 or BRCA2 Tier I/1I variant; 2. Tumour
cases testing positive for a Tier I/1I variant in an HCP gene excluding BRCA1, BRCA2, or TP53; and 3.
Tumour cases with no detected Tier I/1I variant. Cases that carried a BRCAI or BRCA2 variant, as well
as a second variant in another gene, were classified as BRCA1/2-positive. Of the cases with tumour
results, matched germline analysis was assessed in a subset of cases. Tumour variants that were also
present in germline analysis were deemed inherited while all tumour variants absent from germline
analysis were considered somatic. Matched negative tumour cases showed 100% concordance.

3.2. Germline Testing Analysis

A total of 78 tumour specimens had matching germline assessments completed
(Figure 1). Cases in which tumour variants were identified in germline DNA (n = 16;
20.5%) were labelled as germline-positive while ones without germline variants (n = 18;
23.1%) represented somatic events.

In the BRCA1/2 tumour-positive cohort, 26 cases had matching germline assessments,
with 9 (35%) being a germline event and 17 (65%) representing a somatic event. One of the
somatic cases (Case 031) carried two BRCA1 variants and both were deemed somatic in
origin (Table S1). Another somatic case (Case 060) carried a BRCA2 somatic variant, but
also a germline MUTYH variant (Table S1). The non-BRCA1/2 tumour cohort showed that
7/8 (87.5%) were of germline variant origin and 1/8 (12.5%) was a somatic event (Figure 1).
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Two of the germline cases (Case 014, 016) identified one germline and one somatic variant,
while an additional case (Case 017) showed two germline variants (Table S1). Overall,
germline assessment identified 18 ACMG 1/2 variants, with 100% concordance in tumour
analysis. Germline assessment of the negative tumour cohort was performed on 44 cases,
and all were negative by germline analysis, indicating that the tumour assessment was
100% sensitive for the detection of germline variants (Figure 1).

3.3. Variant Origin Analysis

Although there were a greater number of somatic variants (n = 21) than germline
variants (n = 18), all types of sequence variants were represented across both variant origins.
However, all large, whole-gene deletion events (1 = 10) were observed as somatic in origin
(Figure 2). This copy-number pipeline is designed to detect sequence CNVs; however, the
span of the copy-number alteration beyond the NGS target gene locus and the type of the
chromosomal structural abnormality cannot be determined.

HGermline W Somatic

12

10

j_ILI

Missense Splice Nonsense Frameshift Deletion (CNV)
VARIANT TYPE

NUMBER OF VARIANTS
E- (o)

3]

Figure 2. Distribution of variant type based on variant origin. Large full-gene copy-number variation
(CNV) deletion events were only observed as somatic in origin while all other variant types were
observed across both types of inheritance.

Germline sequence variants demonstrated a tumour VAF ranging from 33.3% to 96.3%,
with 16/18 (89%) showing a VAF greater than 40% (Figure 3A,B). Somatic sequence variants
demonstrated a tumour VAF ranging from 11.4% to 90.5%, with 8/11 (64%) showing
a VAF of less than 40% (Figure 3A,C). The distribution of variants of unknown origin
(tumour assessment only) paralleled that of the combined germline and somatic variants
(Figure 3D,E). All germline variants had a tumour VAF greater than 30%.

Finally, we assessed sequence variant origin based on gene distribution. BRCA1
sequence variants accounted for 11/29 (38%) variants and 5/11 (45%) were of germline
origin (Figure 4A). BRCA2 sequence variants accounted for 6/29 (21%), and 4/6 (67%) were
of germline origin (Figure 4B). The other (non-BRCA1/2) HCP genes, which accounted for
12/29 (41%) and 9/12 (75%), were of germline origin (Figure 4C).
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Figure 3. Distribution of sequence variant origin based on tumour variant allelic fraction (VAF).
The number of variants of somatic, germline and unknown origin with tumour VAFs are shown
in (A). The proportion of variants with a VAF greater than and less than 40% for germline origin
(B) demonstrates that germline variants are more likely to have a high VAF, while the opposite is true
for somatic variants (C). The distribution of variants that were present in tumour analysis, but did
not have matching germline analysis (D) show a distribution very similar to the combined germline
plus somatic origin (E).
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A BRCA1

B BRCA2

C Other (Non-BRCA1/BRCA2) Gene

Figure 4. Distribution of all sequence variants between BRCA1, BRCA2 and another HCP gene (APC,
BRIP1, CDKN2A, MSH3, MUTYH, PALB2, PTEN, RAD51C, and RAD51D). Distribution of variant
origins are demonstrated for BRCA1 (A), BRCA2 (B), and other HCP genes (C). The other category

demonstrates a high proportion of germline variants that would not be detected with isolated BRCA1
and BRCA2 tumour analysis.
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4. Discussion

Our results indicate that EOC tumour testing can detect both BRCA1/2 Tier I/1I and
ACMG 1/2 variants. In this patient cohort, representing a retrospective assessment of
sequential patient samples that were clinically tested in a tertiary hospital setting using the
standardized clinical assessment protocols, no variant was detected in the germline that
was not detected by tumour testing. On the contrary, tumour testing identified somatic
variants in 23.1% of patients without germline variants. Of these, BRCA1/2 variants were
the most common (17/78, 21.8%), rendering patients eligible for PARPi therapy.

In terms of somatic tumour testing, our results mirror those of Fumagalli et al., who
found that 5/23 (21.7%) pathogenic/likely pathogenic variants were identified through
tumour testing only and would not have been detected using germline testing alone [10].

In addition to expanding patient eligibility for access to targeted therapy, tumour
testing, which can be performed reflexively as part of the routine pathology assessment
at the time of diagnosis, has implications for hereditary cancer syndrome detection. In
Canada, there are significant wait times for genetic counselling and reported referral rates
can be extremely low (6.6%) [26]. However, since the implementation of reflex tumour
testing for BRCA1/2 variants, one institution has seen improvements in the rate of genetic
referral (12.88% versus 7.10%) and time to genetic counselling appointment (59 days
versus 33 days) [27]. Similarly, our study shows that tumour testing can be used to triage
patients for genetic counselling by prioritizing those with a positive tumour result, since all
germline-positive patients were also positive by tumour testing. Previously, our institution
has shown that high genetic counselling referral rates (>99%) can be achieved through
a direct referral pathway [28]; however, this puts significant burden on clinical genetics
resources and triaging patients based on tumour testing has the potential to ensure only
those with increased genetic risk are referred.

Our study shows that tumour testing can be performed to detect pathogenic variants in
other HR pathway genes. Importantly, several studies have reported the efficacy of PARPi
in patients with non-mutated BRCA high-grade EOC [29-34] and data from randomised
controlled trials indicate that when compared with placebo, PARPi therapy improves
progression-free survival in patients with HRD-positive tumours, and the degree of PFS
benefit was greater in this group compared to patients with BRCA wild-type and HRD-
negative tumours [7,35,36]. As such, in addition to BRCA1/2, other genes in the HR repair
pathway, which may provide information for more complete ovarian cancer management,
should also be analysed in tumour samples. Specifically, non-BRCA1/2 variants were
identified in an additional 13% of tumour samples in our study (APC, BRIP1, CDKN2A,
MSH3, MUTYH, PALB2, PTEN, RAD51C, and RAD51D).

At this time, in Ontario, only BRCA1/2 testing is mandated for the determination of
PARPi therapy eligibility, and as such, tumour testing cannot supplant germline testing.
As reported by others, and reiterated in our study, tumour testing for BRCA1/2 variants
is a robust way to triage patients with BRCA1/2 variants, not only for PARPi therapy,
but possibly also for genetic counselling [10,37]. Recognizing that non-BRCA1/2 variants
still have clinical relevance, until tumour testing is expanded, germline testing cannot
be replaced. The American Society of Clinical Oncology (ASCO) guidelines recommend
multigene panel germline testing for patients with ovarian carcinoma; this includes, at
least, BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, MLH1, MSH2, MSH6, PMS2, and PALB2,
as these have been associated with the risk of inherited ovarian cancer [1]. This could have
implications for further cancer screening in patients and risk-reduction strategies, such as
salpingo-oophorectomy, in at-risk family members [38]. In our study, germline mutations in
RAD51C, RAD51D, BRIP, MSH3, APC, MUTHY, and PALB2 were identified. In addition to
the association between inherited ovarian cancer and RAD51, BRIP, and PALB2 pathogenic
variants, MUTHY pathogenic variants confer an increased risk of ovarian cancer and may
demonstrate resistance to platinum-based agents, much like tumours with mismatch repair
deficiency [39]. Our study provides further support for the expansion of tumour testing
to include other HCP genes, as a higher proportion of non-BRCA1/2 variants detected in
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tumours were of germline origin. In addition, expanding tumour testing may offer further
information for tailoring targeted therapies.

Examining BRCA1/2 VAF to gain insights on variant origin has been previously exam-
ined [19]. While a study at a single institution found that the VAF in all germline BRCA1/2
pathogenic variants was over 40% (44-94%), there was a wider range in VAF for variants
of uncertain significance (5-90%) [19]. In our study, using a VAF cut-off of 40% would
have identified nearly, but not all, germline variants (89%); this urges further caution that
relying on VAF cut-offs may miss important groups. All germline variants in our study
had a tumour VAF greater than 30%, indicating a possible cut-off value for referral to
follow-up germline testing. As there is pressure to streamline the flow of genetic testing
in Ontario, setting this value would minimise the number of referrals to clinical genetics,
and it is likely to capture all potential germline cases. However, since we demonstrated
100% sensitivity for the detection of germline variants by tumour testing, we could still
decrease the number of HGSC genetic counselling referrals by nearly 60% if we referred all
cases with a positive tumour genetic profile, regardless of VAF. Although there is support
for suggesting tumour testing as the initial screen for the detection of potential germline
variants, it is still important to consider personal and family history in those with a negative
genetic tumour profile.

There are some general limitations to this study. First, the HCP utilised was a 37-gene
panel; further expansion of the panel may detect other relevant variants. Moreover, al-
though included in the HCP, TP53 analysis was not reported on tumour samples as the
pathogenesis of HGSC is driven by p53 dysfunction and TP53 pathologic variants are
present in almost all HGSCs [40]. Therefore, any potential TP53 germline variants were
not reported. As one of the goals of this study is to provide support for tumour testing as
a potential way to triage patients for genetic counselling and follow-up germline testing,
including TP53 pathologic variants would flag high numbers of patients for further testing
and would not be practical in our healthcare system. Second, this was a retrospective
study of a 146-patient cohort; prospective studies with a larger patient cohort will pro-
vide further insight into the utility of tumour genetic testing for the purposes of therapy
eligibility and genetic testing referrals. Studying FFPE tissue also comes with limitations
due to the quality of the DNA specimens obtained, which can impact the detection of
more complex variants, such as CNVs. The detection of all CNVs in this study were of
somatic origin and mostly full-gene events. This could indicate the involvement of larger
chromosomal rearrangements that were not assessed in this study. Without the assessment
of any germline cases that carry a large CNV, additional studies are needed to determine the
feasibility of primary detection in tumour specimens before the adaptation of this workflow.
Alternatively, supplementary techniques, such as MLPA, could be performed in parallel to
rule out any CNVs. Finally, the limit of detection for somatic variants in this study was
10%, but it has not been evaluated if those with a lower tumour heterogeneity could also
benefit from targeted PARPi therapy.

The failure rate of tumour testing was low at our institution (0.67%), and reliable
results were obtained from tumour samples following neoadjuvant chemotherapy (33.3%
of cases). Proof of an efficient and robust tumour testing pathway has several advantages
in clinical practice. First, by examining the molecular characteristics of a tumour at the
time of diagnosis, timely and appropriate therapeutic decision-making can be made. In the
context of HGSC, somatic BRCA1/2 variants allow for the identification of more patients
who would be suitable for PARPi therapy. Additionally, tumour testing has the potential to
enhance the efficiency of genetic testing. Because both germline and somatic cancer variants
can be detected in tumours, tumour testing could act as an initial screen for eligibility for
germline testing and could potentially replace initial germline testing. Lastly, for deceased
patients with HGSC who did not undergo BRCA1/2 genetic testing, testing of archived
tumour tissue to detect possible germline HCP variants could provide essential information
to family members.
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5. Conclusions

This study provides support for reflex tumour testing with a comprehensive NGS
panel that includes BRCA1/2 and other HR genes in order to determine treatment eligibility
and aid in triaging patients for germline testing and genetic counselling referrals. Further
studies are required to examine the concordance of variant detection in tumour tissue,
normal tissue, and germline to help further determine the validity of tissue testing directly
as an initial screen for germline variant detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/genes13081398/s1, File S1: 37-gene Hereditary Cancer Panel;
Table S1: Variants identified in HGSC tumour specimens.
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