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Abstract

Background: The generalized relevance network approach to network inference reconstructs network links based on the
strength of associations between data in individual network nodes. It can reconstruct undirected networks, i.e., relevance
networks, sensu stricto, as well as directed networks, referred to as causal relevance networks. The generalized approach
allows the use of an arbitrary measure of pairwise association between nodes, an arbitrary scoring scheme that transforms
the associations into weights of the network links, and a method for inferring the directions of the links. While this makes
the approach powerful and flexible, it introduces the challenge of finding a combination of components that would perform
well on a given inference task. Results: We address this challenge by performing an extensive empirical analysis of the
performance of 114 variants of the generalized relevance network approach on 47 tasks of gene network inference from
time-series data and 39 tasks of gene network inference from steady-state data. We compare the different variants in a
multi-objective manner, considering their ranking in terms of different performance metrics. The results suggest a set of
recommendations that provide guidance for selecting an appropriate variant of the approach in different data settings.
Conclusions: The association measures based on correlation, combined with a particular scoring scheme of asymmetric
weighting, lead to optimal performance of the relevance network approach in the general case. In the two special cases of
inference tasks involving short time-series data and/or large networks, association measures based on identifying
qualitative trends in the time series are more appropriate.
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Introduction

The genome plays a central role in the control of cellular pro-
cesses in an organism. The sequencing efforts for different or-
ganisms have led to the identification of genes, i.e., individual
components of the genome. However, the functions of each gene
and its product cannot be studied in isolation. To fully under-
stand genome functionality, we have to consider genes and gene
products as highly connected and structured networks of infor-
mation that flow through a cell. These biological networks are
typically referred to as gene regulatory networks (GRNs), where

nodes correspond to genes or gene products and edges corre-
spond to biological or chemical interactions among them.

Here, we address the task of inference of GRNs from gene ex-
pression data. The rapid advance and wide availability of tech-
nology for measuring cellular activities at genome-wide scale
have caused enormous interest in methods addressing the GRN
inference task in contemporary biology. As a result, a wide reper-
toire of inference methods has been established [1,2,3,4]. In gen-
eral, methods for GRN inference take one of two major perspec-
tives on the task [5]. One is the statistical perspective, where the
focus is on predicting the presence or absence of interactions
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between genes and gene products. The other, the mathemati-
cal modeling perspective, focuses on establishing models that
allow for emulating the dynamical activity of the observed nat-
ural system.

Methods following the statistical perspective employ a sim-
ple ”guilt-by-association” heuristic [6,7], a conjecture that sim-
ilarity of the expression profiles of a set of genes indicates a
shared regulation regime among them. Initially, this conjecture
led to methods for inferring undirected, co-expression, and as-
sociation networks [3], commonly referred to as relevance net-
works [8]. Later, these methods were first enriched with statisti-
cal techniques for estimating conditional independence to dis-
tinguish between direct and indirect interactions [9]. Later still,
techniques for inferring the direction of a given network inter-
action were added to the overall inference methods employed,
leading to methods for inferring causal, directed networks [10].

Taken together, these developments have led to a generalized
relevance network approach [10] that follows the statistical per-
spective of GRN inference and predicts network links based on
the pairwise associations between node expression levels. The
degree of a pairwise association is evaluated using a measure of
similarity (or distance) between the expression levels of the two
corresponding genes. Furthermore, the generalized approach in-
cludes scoring methods for refining the original similarity scores
toward link weights that distinguish between direct and indirect
influences. Finally, the extended approach includes methods for
inferring the link directions from data. To make a clear distinc-
tion between the original relevance networks and their general-
ized instances, introduced by [10], we refer to the latter as causal
relevance networks (CRNs).

Data for GRN inference come typically from microarray ex-
periments perturbing and stressing genes that produce highly
resolved time-series and steady-state measurements of tran-
script levels. Steady-state measurements are made by perturb-
ing every gene in the network and recording the pseudo state
reached after the perturbation. Perturbing every gene is not nec-
essary for time-series data that record gene expression levels
over a certain period of time after the perturbation. For both
data types, the captured dynamic response of the regulatory ef-
fects within a cell should provide robust information about the
GRN under consideration [11]. While the original relevance net-
work approach [8] and its extensions toward causal networks [9]
have been dealing with steady-state data, the generalized rele-
vance network approach has been proven capable of also han-
dling time-series data [10].

The variety of similarity measures and scoring schemes that
can be applied within the generalized relevance network ap-
proach makes the approach flexible and applicable in various
scenarios. Many surveys emphasize and focus on the flexibility
of the relevance network approach by presenting and categoriz-
ing its variants. The distinctive aspect of the survey presented
here is the focus on selecting an appropriate variant of the rel-
evance network approach for a given dataset. Our basic conjec-
ture is that some variants of the approach perform better than
others, in general, and that the performance of the variant is
related to the properties of the dataset at hand. Another contri-
bution of our survey is that it includes inference tasks from the
two types of data, i.e., steady-state and time-series data.

To test the validity of our conjecture, we perform an exten-
sive comparative analysis of the performance of 114 variants of
the relevance network approach on 86 tasks of inferring GRN
from data, 47 from time-series data, and 39 from steady-state
data. The tasks include inference from real microarray measure-
ments of the microorganisms Escherichia coli and Saccharomyces

cerevisiae (Yeast) [12–14], as well as of their simulation counter-
parts (networks) [10,15]. Additionally, simulated data from in sil-
ico networks from [12] and [13,16,17] have been included in the
study.

Our conjecture is analyzed through three dimensions: the
impact of the type of data (steady-state vs time-series), time-
series length, and network size on the performance of the dif-
ferent variants of the relevance network approach. The perfor-
mance of network inference is measured using three different
performance metrics widely used for assessment of inferred
networks by comparing them to the gold standard, i.e., the set
of known ”true” interactions among the network nodes.

The study is organized as follows. First, we introduce the gen-
eralized relevance network approach and review its variants that
stem from different measures of association between network
nodes. The survey of the variants of the relevance network ap-
proach expose their theoretical advantages and disadvantages,
as well as the history of their applications for inference of gene
regulatory networks. Section Materials & Methods introduces the
experimental setup of the comparative analysis in terms of the
GRN tasks addressed, datasets employed, and metrics used to
measure the performance of the network inference methods.
Following section presents and discusses the results, with an
emphasis on what they tell as about the most appropriate vari-
ant of the relevance network approach for a given GRN inference
task. Finally, the last section provides a brief summary of the
comparative analysis and an outline of the directions for further
research.

The generalized (causal) relevance network
approach

The generalized relevance network approach infers network
structure by measuring the pairwise associations between the
data observed in the individual network nodes. It follows the
more general statistical perspective of GRN inference, where no
explicit model of the data is built or assumed. The retrieved
knowledge about the pairwise association between nodes is in-
terpreted as the relevance of the individual network links [1,18].

The relevance network approach has been introduced by [8],
where pairwise association between gene expression profiles is
measured by using mutual information. Different measures of
association based on Euclidean distance and correlation coeffi-
cients have been previously used for identifying co-expression
of genes [19] or association GRNs [19,20]. In more recent stud-
ies, the generalized network approach has been extended to in-
clude other association measures and additional steps for in-
terpreting the measured associations, such as the symmetry-
breaking methods for identifying directions of links or methods
for marginal control of the association [10,13,21]. Since they in-
fer link directions and remove spurious links, we can interpret
the inferred networks as causal networks, hence the reference
causal relevance networks.

Hempel et al. [10] decomposes the CRN approach into
three components of (1) inference of pairwise associations, (2)
marginal control of association, and (3) breaking symmetry. The
first step employs a distance measure, a correlation coefficient,
or a mutual-information measure to assess the association be-
tween two network nodes. The result of the first step is a sym-
metric matrix, the elements of which indicate the strength of the
undirected network links. The second step of the marginal con-
trol of the association scores includes various scoring schemes,
which transform the association-scores matrix into a symmet-
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ric or an asymmetric matrix of weights of the network links. The
last component, as its name indicates, breaks the symmetry of
the symmetric network weights matrices, typically by using a
time-shifting technique. Note that the latter can only be used
on time-series data.

Overall, the main idea behind the CRN approach is to as-
sign a higher relevance to a hypothesized network link, which is
identified with a strong pairwise association between the corre-
sponding nodes. Thus, the relevance score provides an opportu-
nity for differentiating the possibilities of existence of individual
network links. Finally, to obtain the inferred network structure,
one has to decide upon a threshold value used to map the nu-
meric relevance score into a discrete binary value to indicate the
validity of the initial hypothesis, i.e., the presence of a network
link.

The remainder of the section follows the decomposition of
the CRN approach into the three components introduced above.
First, we introduce all the measures used to estimate pairwise
association between nodes in our comparative study of the
CRN-approach variants. Next, we introduce the scoring schemes
for marginal control of association. Finally, we introduce the
time-shifting method for breaking the symmetry of the associ-
ation/weight matrices.

Association measures

The association measures used in this study can be broadly cat-
egorized into three clusters of correlation-based, information-
based, and distance-based measures. Correlation-based mea-
sures treat the expression profiles as data samples and calcu-
late a correlation coefficient between them. Information-based
measures treat the expression profiles as random variables and
calculate their nonlinear dependence using mutual information.
Distance-based measures calculate the association as an inverse
of the distance between the observed profiles and can be fur-
ther clustered in three subgroups. Simple distance measures in
the first group treat profiles as vectors. The second group in-
cludes a single distance measure of dynamic time wrapping that
operates on time series directly. The symbolic measures in the
third group operate on symbolic (or qualitative) representations
of time-series trends.

In each of the following subsections, we present one of the
groups of association measures introduced above. Throughout
this section, we use the Greek lower-case letter μ to denote pair-
wise associations between gene expression profiles and δ for dis-
tances between them.

Correlation-based measures
Correlation-based measures consider the expression profiles x =
〈x1, x2, . . . xn〉 and y = 〈y1, y2, . . . yn〉 as population samples. This al-
lows for the use of an arbitrary correlation coefficient over these
samples. In particular, we use three of them in this study: the
Pearson, Spearman, and Kendall rank correlation coefficients.

The Pearson correlation coefficient quantifies the linear relation-
ship between the samples x and y as

μP (x, y) =
∑n

k=1(xk − x̄)(yk − ȳ)√∑n
k=1(xk − x̄)2 ·

√∑n
k=1(yk − ȳ)2

,

where x̄ and ȳ denote the sample means of x and y, respectively.
As mentioned before, the Pearson correlation coefficient was

first employed for identifying clusters of co-expressed genes by
[19]. Later, it has been regularly used as a state-of-the-art asso-

ciation measure integrated and compared with other methods
[1,10,22].

The Spearman rank correlation coefficient is based on the rank
distribution of the observed expression values. It can be used
as a more general measure of interdependencies that is not re-
stricted to linear relationships and defines the interdependency
between x and y as:

μS(x, y) = μP (R(x), R(y))

where R(u) = 〈r(u1), r(u2), . . . r(un)〉 and r(uk) denotes the rank
of u in uk, respectively. The Spearman rank correlation is often
used as an association measure in variants of the CRN approach
[1,23,24].

The Kendall rank correlation coefficient is a measure of correla-
tion between ranks of two samples x and y defined as [25]:

μK (x, y) = 2(nc − nd)
n(n − 1)

,

where nc is the number of concordant pairs of points in x and y,
while nd is the number of discordant pairs. A concordant pair of
time points i and j is concordant if both xi > xj and yi > yj or both
xi < xj and yi < yj. Otherwise, the pair is discordant. The Kendall
rank correlation is rarely used as an association measure in the
variants of the CRN approach, with a few notable exceptions in
recent studies [10].

Correlation-based measures applied for inferring associa-
tions among genes in a GRN have been widely used in the do-
main of network inference. The rank correlation coefficient does
not necessarily consider a continuous scale of expression vec-
tors; it considers discrete ranks instead. Note, furthermore, that
correlation-based measures dismiss the time component of the
time-series data. Finally, note that the resulting pairwise asso-
ciation matrices are symmetric and cannot be used to infer the
direction of the network links.

Information-based measures
Information-based or information-theoretic measures calculate
the association between expression profiles x = 〈x1, x2, ...xn〉 by
considering them to be random variables. The most commonly
used metric of this group is simple mutual information [26]. In
our study, we use it in a combination with different statistical
estimators of entropy and discretization methods, introduced
below.

Mutual information quantifies the possibly nonlinear interde-
pendencies between two random variables X and Y. It can be
computed by using different entropy estimators but usually fails
to discover indirect links, representing them as direct links in-
stead, between the nodes in the reconstructed network [27]. The
general form of mutual information (MI) relates the marginal en-
tropies of X and Y, H(X) and H(Y), and their joint entropy H(X, Y):

μI (x, y) = H(X) + H(Y) − H(X, Y).

Three estimators of entropy of a given random variable are
being widely used for GRN inference: the maximum likelihood
estimator, the Miller-Madow estimator, and the shrink entropy
estimator.

The maximum likelihood estimator assesses the entropy of a
given empirical distribution of a random variable X following the
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Shannon entropy definition [28]:

Hemp(X) = −
n∑

k=1

p(xk) · log(p(xk)).

This estimator is highly dependent on the number of bins n and
the length of observations, which can increase the bias, while
the estimator variance is kept minimal.

The Miller-Madow estimator is based on maximum likelihood
estimator but corrected with a second additive term represent-
ing the asymptotic bias:

Hmm(X) = Hemp(X) + |X| − 1
2n

,

where |X| is the number of bins with non-zero probability. The
Miller-Madow estimator is preferred over the maximum likeli-
hood estimator due to the reduction of the bias without increas-
ing the variance or the computational cost [28].

The shrink entropy estimator [29] regularizes the maximum
likelihood estimator. The idea is to combine two different es-
timators, one with low variance and another one with low bias,
by using a shrinking factor λ ∈ [0, 1]:

Hshrink(X) = −
n∑

k=1

pλ(xk) · log(pλ(xk)),

where pλ is defined as follows:

pλ(xk) = λ
1

|X| + (1 − λ)p(xk).

If the value of λ is close to zero, the estimated entropy is close
to the value of the basic maximum likelihood estimator. Other-
wise, if it is close to 1, the entropy estimation tends to be closer
to the bias term.

The statistical estimators are combined with two different
methods for discretization of numeric random variables: equal
width and equal frequency. All six possible combinations of esti-
mators and discretization methods are used in the comparative
analysis of the CRN-approach variants.

Equal width is a fixed bin-width discretization method that
discretized the values of the numeric variable into equally sized
bins, i.e., ranges of variable values. The equal frequencies dis-
cretization method partitions the range of the given random
variable X into ranges of an equal number of data points. Thus,
it results in bins with different sizes [30]. In both cases, the de-
fault number of bins equals the squared root of the number of
observations of the variable [31].

The literature overview reveals that the CRN approach of-
ten uses mutual information as a measure of association
[1,10,13,22,23,27]. In that context, [1] consider mutual informa-
tion as a baseline relevance network approach variant. Mutual
information is capable of discovering nonlinear interdependen-
cies but, as with other simple association measures, is not able
to infer the direction of influences and produces undirected net-
works.

Simple distance measures
Simple distance measures assess the strength of gene regula-
tory interactions by calculating the distance between gene ex-
pression profiles. In general, they operate over vectors of val-
ues and share the same approach or ground norm. Three dif-

ferent measures have been included in the study: the L10 Norm
(Minkowsky), Euclidean, and Manhattan distance.

The ground norm that appears as a basis for all three distance
measures is the so-called Ls Norm or Minkowsky distance:

δL (x, y) = (
n∑

k=1

|xk − yk|s)(1/s),

where s represents the dimension of the space in which vectors
x and y are compared [32]. We consider three distance measures
corresponding to the three norms of L10 Norm (s = 10), Euclidean
distance (s = 2), and Manhattan distance (s = 1).

The three distance measures share a common limitation of
detecting linear interdependencies between expression profiles.
The determination of gene regulatory interactions is based on
raw vectors, the time component of which is dismissed. They
have been applied in the context of relevance networks from the
early stage of development of this approach [20] and since then
are being regularly used and surveyed [1,3,10,13].

Dynamic time warping
Dynamic time warping (DTW) relies on finding an optimal dis-
tance mapping between two time series. It tries to capture dif-
ferences between time series with regard to time and speed of
change. Originally developed in the context of speech recogni-
tion [33], it has found its use in a wide range of applications in
the domains of medicine and bioinformatics [34,35].

The algorithm for calculating the DTW measure proceeds in
two steps. First, local distances are calculated for all pairs of
points from the two time series using the simple Euclidean dis-
tance. Then, the pairs of time points are aligned so that a min-
imal path is found, where each point is included at least once
and the sum of all the distances is minimized. DTW allows spec-
ifying constraints of the alignment paths; here we use three of
them, symmetric1, symmetric2, and asymmetric. The descriptions
of the constraints can be found in the documentation of the
”dtw” R-package [36] used in our experiments.

Symbolic measures
The simple qualitative distance is based on a qualitative com-
parison of the shape or trends of time series. In essence, the sim-
ple qualitative distance observes the qualitative trend of change
of the time-series values between each pair of time points. It
compares the observed qualitative trends in the time-series x
against the ones observed in y:

δQD (x, y) =
n−1∑
k=1

n∑
j=k+1

2 · Diff (q(xk, xj ), q(yk, yj ))
n · (n − 1)

,

with Diff(q1, q2) a function that defines the difference between
different qualitative changes, which are defined as increase if xk

< xj, no-change if xk ≈ xj, and decrease if xk > xj.
The simple qualitative distance has been proposed by [37]

and has been used in the context of clustering gene expression
time series by [38]. The simple qualitative distance can be com-
puted for very short time series, without decreasing the quality
of the estimate of the association between them. Furthermore,
it captures the nonlinear interdependencies between gene ex-
pressions.

Symbolic similarity measures operate on symbolic dynam-
ics in order to uncover patterns of interaction. These similarity
measures have been applied in the domain of bioinformatics by
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[39]. Later, [10] report upon exhaustive research and application
of symbolic similarity measures in the domain of relevance net-
works.

Symbolic similarity measures transform the observed time
series into sequences of symbols [40]. The complete guidance of
performing this step is also presented in the work by [10]. In this
study, we include three symbolic similarity measures of sym-
bol sequence similarity, mutual information over symbol vec-
tors, and linear combination of both.

An important disadvantage of these measures is the com-
putation time if the time series are longer. Hence, possible con-
straints are applicable with regard to the length of symbol se-
quences α, which in our case has been determining as follows:

α =
{

[1/n], if n < 10
5, otherwise

where n denotes the time-series length.

Scoring schemes

Scoring schemes are considered in order to control the resulting
association scores, henceforth weights. There are various scoring
schemes that can go along with the above-mentioned associa-
tion measures, but here we limit the set to the ones listed by [10]:
reconstruction of accurate cellular networks, context likelihood
of relatedness, maximum relevance/minimum redundancy net-
work, and asymmetric weighting.

Accurate Reconstruction of Accurate Cellular NEtworks
(ARACNE) is based on the data processing inequality [41]
paradigm and states that post-processing cannot improve the
already acquired knowledge. In essence, it tests all gene triplets
i, j, and k, where all three pairs have mutual information greater
than some threshold I0. For each such triplet, the edge corre-
sponding to the lowest mutual information I1 is eliminated from
the adjacency matrix:

Ai ′ j ′ = Aj ′ i ′ =
{

0, if Ii ′ j ′ ≥ I2(1 − ε)
1, otherwise

(1)

where Ii ′ j ′ = argmin{Ii j , I jk, Iik} is the lowest mutual information
of the three, I2 is the second lowest mutual information, and fac-
tor ε is a tolerance parameter with a value between 0 and 1 [9,42].
Moreover, ARACNE removes all edges satisfying Ii ′ j ′ < τ , where τ

is predefined threshold [10].
ARACNE is capable of controlling the regulation of a gene over

another gene by modifying the initially inferred network on the
basis of mutual information. However, the resulting network is
still undirected.

Context Likelihood of Relatedness (CLR) [43] is an extension
to the basic relevance network approach proposed by [8]. Unlike
ARACNE, CLR performs pairwise comparison of mutual informa-
tion values. In the second step, it estimates the statistical like-
lihood of a mutual information value for a given pair of genes
(Ikj) by comparing it to the marginal (gene-specific) distribution.
Thus, two scores are derived, one for gene k and one for gene j.
By making the normality assumption about these distributions,
the corresponding scores zk and zj are calculated as follows:

zk = max(0,
1
σk

− Īk

Ikj · σk
), (2)

zj = max(0,
1
σ j

− Ī j

Ikj · σ j
). (3)

The final score for a pair of genes is obtained as follows:

zkj =
√

z2
k + z2

j . (4)

In contrast to ARACNE, CLR does not rely on a global threshold
but on local background values computed for of each gene sep-
arately. The outcome of CLR is an undirected network.

Maximum Relevance/minimum redundancy NETwork (MR-
NET) is a supervised method that performs a series of maximum
relevance/minimum redundancy gene selection procedures [44].
The expression of a given gene is considered as a target y = xk

and the rest of genes from V = x\xk as descriptive variables in
the supervised procedure. Given the set M of selected variables
and pairwise weights wkj, the procedure updates M by choosing
the variable:

xMRMR
j = argmax(sj ), xj ∈ V \ M, (5)

that maximizes the score:

sj = uj − r j , (6)

where r j = 1
|M|

∑
xi ∈M w ji is the redundancy term and uj = wjk is

the relevance term.
The above procedure tries to differentiate between direct and

indirect links. Direct links are assigned higher importance (rele-
vance) and indirect links lower importance (higher redundancy).
Thus, the entries in the final matrix fkj are calculated as:

fkj = max[(w jk − r j ), (wkj − rk)]
wkj

. (7)

MRNET assigns weights w based on simple mutual informa-
tion and employs an additional parameter τ that is used for elim-
inating edges with an unimportant score. The algorithm is not
capable of inferring directionality in the GRN.

Asymmetric WEighting (AWE) is an asymmetric weighting
schema based on the topological aspects of a complete set of
pairwise weights obtained from a particular association method
[10]. Given a matrix, AWE assumes its columns are genes that
are regulated by other genes and its rows are genes that regu-
late other genes. The asymmetric weights ckj are then calculated
by dividing each entry by the sum of the corresponding column
scores:

ckj = wkj · f j , (8)

f j = (
m∑

k=1

wkj )−1. (9)

where fj corresponds to the amount of regulation received by
gene j and ckj to the probability that gene j is regulated by gene
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k. The probabilities that the jth gene is regulated by each of the
other genes sum up to unity:

m∑
k=1

ckj =
m∑

k=1

wkj · f j = 1, (10)

This scoring schema is capable of inducing directionality in
a GRN. The first application of the schema in the domain of gen-
eralized relevance networks is given in [10].

Time shifting

Time shifting is a method for inferring the direction of an undi-
rected link between two network nodes from time-series data.
The main idea is to shift one of the time series, e.g., X in one di-
rection, and observe the change of the association μ(X, Y) using
a particular association measure μ. The change of the associa-
tion measure with the time shift provides information that can
be used to infer the direction of the influence, i.e., the direction
of the network link. The complete procedure is described by [10]
and [45].

We use the time-shifting method as a third, obligatory com-
ponent of the CRN approach in all cases where the scoring
scheme results in undirected network. For the AWE scoring
scheme, where the result is a directed network, the use of the
time-shifting method is optional. In that case, we have two al-
ternative CRN-approach variants: one with and one without ap-
plying time shifting. The time-shifting method is not applicable
in case of steady-state data.

Materials and Methods

In the comparative evaluation of the variants of the CRN ap-
proach, we have considered all combinations of association
measures and scoring schemes, with time shifting applied
where appropriate. There are 114 candidate combinations cor-
responding to 114 variants of the relevance network approach.
Each of the 114 variants was applied to the 47 tasks of GRN in-
ference from time-series data and 39 tasks of GRN inference
from steady-state data. Performance was measured by compar-
ing the inferred network structure with the structure of the given
network (in case of reconstructing known networks from simu-
lated data) or with the structure of the best known network (in
case of real measurements). We use performance measures, one
of which is the area under the receiver-operator characteristics
curve, and the other two are different versions of the area under
the precision-recall curve.

The goal of the comparative analysis is to identify the best-
performing variants of the CRN approach and the properties
thereof. We are especially interested in finding out what associa-
tion measures and scoring schemes work best and what are the
interactions between them that lead to the best performance.
We also investigate the impact of the time-series length and net-
work size on the best-performing variants of the CRN approach.

To identify the best-performing methods for a given set of
GRN inference tasks, we proceed as follows. First, for each per-
formance measure and each task, we sort and rank the meth-
ods in decreasing order with respect to their performance on the
task, so the top-performing method gets the rank of 1 and the
worst-performing method the rank of 114. Furthermore, for each
performance measure, for each method we calculate the average
ranks of the method for the given set of tasks. Finally, we per-
form a Pareto analysis of the three-dimensional space of perfor-

mance metrics to identify Pareto fronts of points corresponding
to the best-performing methods, i.e., methods with the lowest
average ranks.

The remainder of this section provides further details on the
experimental setup for performing the comparative analysis. We
first introduce the tasks of GRN inference, then provide a de-
tailed description of the performance metrics used and conclude
with a brief overview of the implementation details.

Data description

The comparative study has been conducted using real and simu-
lated micro-array data over time-course and steady-state condi-
tions. In particular, the data or the simulation model used for ob-
taining data are based on in silico networks and real networks of
two microorganisms: Escherichia coli and Saccharomyces cerevisiae
(Yeast). We use datasets from five previously published studies
on GRN inference and related benchmarks.

The first data source is [10], where datasets were generated
by the tool SynTReN [46] on the basis of the well-known gene
regulatory networks in E.coli and Yeast. We consider subnet-
works of 100, 150, and 200 genes, characterized by 121, 202, and
303 existing links with an average node degree of 2.42, 2.46, and
3.03, respectively. In order to guarantee consistency between
subnetworks and expression data, SynTReN generates differ-
ent expression data for each selected subnetwork. Additionally,
three level of noise have been considered: 0.0 (deterministic -
without noise), 0.1, and 0.5. These values represent the σ pa-
rameter of the log-normal distribution ∼logX(0, σ ), according to
which the noise is generated by SynTReN. For each configura-
tion, 6 technical replicates of 10 time points have been generated
and the expression data associated with each gene obtained as
the average over the replicates. This is necessary to cope with
the nondeterministic nature of the SynTReN data generation al-
gorithm. This source has been employed for time-series analysis
only (the 18 dataset labels starting with E1 and Y1 in Table 1).

Another source of data are the DREAM4 [16,17] and the
DREAM5 challenges [12,13]. The former is considered in the analy-
sis of steady-state data, where 10 different in silico networks (five
of size 10 and five of size 100 genes) have been perturbed with
three different approaches, producing, in total, 30 datasets (in
Table 2 given with labels starting with IS2).

The latter (DREAM5 challenge) is considered in the analysis of
both time-series and steady-state data. Originally, the challenge
provides five networks, of which we consider three: Network1,
Network3, and Network4, based on Affymetrix gene expression
data of In silico, E.coli, and Yeast networks, respectively, taken
from the Gene Expression Omnibus database [47] and collected
under a wide range of biological conditions. For each network, a
set of experiments has been performed over its genes.

For the case of time-series analysis, we consider Network3
and Network4 with two experiments per network and create
four tasks (datasets). Network3 contains 4,511 genes and 2,066
known (existing) links with density of 1.1−3, while Network4 has
5,950 genes, 3,940 known links, and density of 3.8−4. Time-series
lengths vary from 5 to 48 time points. The four rows in Table 1
with dataset labels containing E2 and Y2 provide summary de-
scription of the four tasks corresponding to the DREAM5 data
source for time-series data.

For steady-state data, all three networks are considered, each
with one dataset. Network1 contains 1,643 genes and 3,940 inter-
actions (links). Steady-state datasets from Network 1 and Net-
work 3 contain 342 records (observations), while the dataset
from Network4 has 238 records. Complete references are given
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Table 1. Properties (columns) of the time-series datasets for 47 GRN
inference tasks (rows): organism, dataset label, percentage of net-
work nodes covered in the dataset, number of network nodes, and
time-series length

Organism Dataset Coverage Size Length Noise

E. coli E1 1 100 100 10 0.0
E. coli E1 2 100 150 10 0.0
E. coli E1 3 100 200 10 0.0
E. coli E1 4 100 100 10 0.1
E. coli E1 5 100 150 10 0.1
E. coli E1 6 100 200 10 0.1
E. coli E1 7 100 100 10 0.5
E. coli E1 8 100 150 10 0.5
E. coli E1 9 100 200 10 0.5
E. coli E2 1 100 4,511 6 0
E. coli E2 2 100 4,511 5 0
Yeast Y1 1 100 100 10 0.0
Yeast Y1 2 100 150 10 0.0
Yeast Y1 3 100 200 10 0.0
Yeast Y1 4 100 100 10 0.1
Yeast Y1 5 100 150 10 0.1
Yeast Y1 6 100 200 10 0.1
Yeast Y1 7 100 100 10 0.5
Yeast Y1 8 100 150 10 0.5
Yeast Y1 9 100 200 10 0.5
Yeast Y2 1 100 5,950 5 0
Yeast Y2 2 100 5,950 48 0
Yeast Y3 1 2 100 42 5 0
Yeast Y3 1 3 100 42 5 0
Yeast Y3 1 11 97.6 41 8 0
Yeast Y3 1 13 100 42 5 0
Yeast Y3 1 14 100 42 5 0
Yeast Y3 1 15 100 42 10 0
Yeast Y3 2 2 96 72 5 0
Yeast Y3 2 14 96 72 5 0
Yeast Y3 3 2 96.3 289 5 0
Yeast Y3 3 3 95.7 287 5 0
Yeast Y3 3 10 95.3 286 7 0
Yeast Y3 3 13 96.7 290 5 0
Yeast Y3 3 14 95.7 287 5 0
Yeast Y3 4 2 96.3 181 5 0
Yeast Y3 4 3 95.7 180 5 0
Yeast Y3 4 13 95.2 179 5 0
Yeast YI SON 1 100 5 10 0
Yeast YI SON 2 100 5 15 0
Yeast YI SON 3 100 5 9 0
Yeast YI SON 4 100 5 9 0
Yeast YI SOFF 1 100 5 15 0
Yeast YI SOFF 2 100 5 18 0
Yeast YI SOFF 3 100 5 18 0
Yeast YI SOFF 4 100 5 20 0
Yeast YI SOFF 5 100 5 20 0

in Table 2, marked with labels: IS1 1, E2 3, and Y2 3, respectively,
for Network1, Network3, and Network4.

The fourth data source provides real measurements, col-
lected as a part of the study conducted by [14], which aims to
explore changes in expression levels of Yeast genes under di-
verse environmental stresses, such as heat shock, diauxic shift,
diamide treatment, and amino acid starvation. The measure-
ments have been taken at different time points, using microar-
rays. One network has been observed, where four different inde-
pendent subnetworks were identified, which are considered as

Table 2. Properties (columns) of the steady-state datasets for 39 GRN
inference tasks (rows): organism, dataset label, percentage of net-
work nodes covered in the dataset, number of network nodes, and
number of records (observations)

Organism Data set Coverage Size Records

E. coli E2 3 100 4,511 342
Yeast Y2 3 100 5,950 238
Yeast YI GLU 1 100 5 6
Yeast YI GLU 2 100 5 6
Yeast YI GLU 3 100 5 6
Yeast YI GAL 1 100 5 6
Yeast YI GAL 2 100 5 6
Yeast YI GAL 3 100 5 6
In silico IS1 1 100 1,643 342
In silico IS2 1 1 100 10 10
In silico IS2 1 2 100 10 10
In silico IS2 1 3 100 10 10
In silico IS2 2 1 100 10 10
In silico IS2 2 2 100 10 10
In silico IS2 2 3 100 10 10
In silico IS2 3 1 100 10 10
In silico IS2 3 2 100 10 10
In silico IS2 3 3 100 10 10
In silico IS2 4 1 100 10 10
In silico IS2 4 2 100 10 10
In silico IS2 4 3 100 10 10
In silico IS2 5 1 100 10 10
In silico IS2 5 2 100 10 10
In silico IS2 5 3 100 10 10
In silico IS2 6 1 100 100 100
In silico IS2 6 2 100 100 100
In silico IS2 7 1 100 100 100
In silico IS2 7 2 100 100 100
In silico IS2 8 1 100 100 100
In silico IS2 8 2 100 100 100
In silico IS2 9 1 100 100 100
In silico IS2 9 2 100 100 100
In silico IS2 10 1 100 100 100
In silico IS2 10 2 100 100 100
In silico IS2 11 1 100 100 100
In silico IS2 12 1 100 100 100
In silico IS2 13 1 100 100 100
In silico IS2 14 1 100 100 100
In silico IS2 15 1 100 100 100

separate networks within this study, with node sizes of 42, 75,
300, and 300. For the observed subnetworks, 13 different stresses
have been monitored, thus 52 datasets are available. Since some
datasets provide limited coverage of the network nodes, we con-
sider only 20 datasets that have network coverage greater than
95%. The time series observed are of different lengths, from 5 to
11 time points (the last 16 rows in Table 1).

The last data source is a benchmark study that proposes a
synthetic network for in vivo benchmarking, based on a Yeast
gene network [15]. The network is composed of five genes, where
the genes regulate each other through a variety of interactions.
Microarrays have been measured over time-course and steady-
state conditions upon multiple perturbations. Table 1 shows the
properties of the time-series datasets, from this source labeled
with YI at the beginning. Similarly, Table 2 presents the proper-
ties of the steady-state datasets.
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Performance metrics

To evaluate the performance of the inference method on a given
task, we perform a matching between the structure (links) of the
given/known GRN (true network) and the structure (links) of the
inferred GRN (inferred network). Since the output of the infer-
ence method is a network connectivity matrix containing nu-
meric link weights, we can perform the matching after setting
the threshold value that would decide upon the presence and
absence of links. To this end, we set aside metrics that require
prior assumptions, i.e., performance metrics that require a pre-
defined or default discrimination threshold. Instead, we follow
the standard framework for evaluating network inference and
employ thresholding metrics, which consider the variability of
the discrimination threshold and avoid setting it to a default
value. Thus, methods are evaluated with regard to the complete
set of possible thresholds, which results in an analysis of the
performance space. For this purpose, two different spaces have
been applied: receiver operating characteristic (ROC) curve and
precision-recall (PR) curve space.

Both spaces are defined over quantities derived from a confu-
sion matrix. A confusion matrix [48,49] is a matrix that consists
of four basic numbers that represent the correctness of link pre-
dictions: number of correctly recognized true network links (true
positives [TP]), number of correctly recognized absent links in
the true network (true negatives [TN]), and links that either have
been incorrectly predicted to be present (false positives [FP]) or
true network links that were predicted as absent (false negatives
[FN]). These basic numbers are further combined in order to ex-
press more specific performance perspectives. In the following
formulas, we use P to denote the number of true network links
and N to denote the number of absent links in the true network.

ROC curve. This is a two-dimensional space that illustrates
the performance of a binary classifier as its discrimination
threshold is varied [50]. Its dimensions correspond to the two
performance metrics of the TP rate (TPR) (Eq. 11) and false pos-
itive rate (FPR) (Eq. 12), for various threshold settings. It depicts
the relative trade-offs between TPs and FPs, which are inter-
preted as benefit and cost, respectively.

TPR = TP
P

= TP
TP + FN

(11)

FPR = FP
N

= FP
FP + TN

(12)

Since the ROC curve is two dimensional, various summary
statistics can be derived from it. Most commonly used is the
area under the curve (AUC) that quantifies the area that is found
below the curve, which is also considered in our study for the
comparative evaluation. The AUC is calculated by integrating
the AUC and expressing it as a single quantity (area in two-
dimensional space).

The ROC space is a unit two-dimensional space with a to-
tal area of 1. Thus, it can be plotted on a two-dimensional plot
with both axes ranging from 0 to 1. Furthermore, the ROC curve
is monotonic, which to a certain extent guarantees that by con-
sidering the curve, an optimal threshold can be found. The ROC
curve or analysis overall is suitable for comparison of a classifier
with a default classifier (random selection), which is represented
in the space as a diagonal line from (0,0) to (1,1).

However, ROC analysis has disadvantages, as well. Mainly,
it can be misinterpreted if the problem under consideration is

characterized with an imbalanced distribution of class values.
This disadvantage can appear due to the fact that true nega-
tives are considered as correct classifications of examples, even
though the problem focuses on the correct classification of posi-
tive examples (classification of minority class) only. Reconstruc-
tion of GRNs is such a problem where we face networks with
many nodes, but a very small number of existing links (minority
class), and many nonexisting links (majority class). Hence, cor-
rect classification of the former is a much more complex task
than the correct classification of the latter. The ROC analysis dis-
misses the complexity of the classification tasks and considers
the correct classification of the minority class of existing links to
be equally important as the correct classification of nonexisting
links.

The AUC quantity also has its own properties. Its values
range from 0 to 1; values close to 1 represent better classifiers,
while values around 0.5 mean that the classifier is no better than
the default (random) classifier. Values below 0.5 mean that the
evaluated classifier behaves worse than the default classifier.
The disadvantages of the ROC curve are reflected also in the AUC
quantity. Namely, considering the problem of GRN reconstruc-
tion, we can end up with overall high AUC, increased mainly by
the accurate classification of the majority class (correctly pre-
dicting nonexisting links).

The PR curve is also a two-dimensional space that defines the
performance of a binary classifier as its discrimination thresh-
old is varying [51,52]. Commonly, it is used as a replacement for
the ROC curve in the case of highly imbalanced class distribu-
tion [53]. The space is defined with two metrics derived from
the confusion matrix: recall (Eq. 13) and precision (Eq. 14).

recall = TPR = TP
P

= TP
TP + FN

(13)

precision = TP
TP + FP

(14)

Summary statistics can also be derived from the PR curve,
such as the commonly used area under the PR curve (AUPRC). In
this analysis, we used two different portions of the area under
the curve: partial AUPRC-0.2 and total area AUPRC. Guided by the
importance of discovering only true links, without an expecta-
tion that all of them would be discovered, we consider the 20% of
the AUPRC that corresponds to lower recall (up to 0.2), referred to
as AUPRC-0.2. It means that we try to evaluate a classifier in ac-
cordance with the top scored predictions for true links. So, if the
classifier has high precision within this region (subspace), then
it is considered to be good classifier and can ensure that those
links that are predicted with very high scores are true links.

Unlike the ROC curve, the PR curve is not monotonic and,
therefore, the performance can vary by varying the discrimi-
nation threshold. The curve is plotted in two-dimensional unit
space, with a total area of 1, starts from the point (0,1) and fin-
ishes at the point (1,0). There is no PR curve for a default (ran-
dom) classifier, but some agreement exists on how it could be
plotted on a graph [53]. The advantage of PR curves over ROC
curves is the fact that, for the former, the class imbalance does
not affect correct performance estimation. This is because TNs
are excluded from the calculations. The exclusion of TNs, how-
ever, breaks the monotonic property of the curve. The PR curve
can be very sparse in terms of points when dealing with imbal-
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anced data. Therefore, interpolation is recommended [53,54]. To
this end, we employ the implementation by [55].

Similarly to AUC, AUPRC values range from 0 to 1, while
AUPRC-0.2 values range from 0 to 0.2, where higher values indi-
cate better performance. In the remainder of this article, we refer
to the three performance measures introduced here as AUROC,
AUPRC, and rAUPRC (restricted AUPRC).

Ranking of methods

The methods we evaluate are the 114 variants of the CRN ap-
proach. An exhaustive list of the variants is given in Appendix A,
Table 1-5. The tables (and first letter of the labels used to denote
the variants) correspond to the groups of association measures
mentioned previously.

To rank the variants of the CRN approach according to their
performance on the 47 tasks for GRN inference from time-series
data and 39 tasks for GRN inference from steady-state data,
we first filter out the low-performing methods by testing the
statistical significance of the difference between the measured
method performance and the performance of a random classi-
fier. In particular, we employ the one-sample Student t test to
check whether the average performance of a given method on
the GRN inference task is significantly higher than 0.5 and 0.1,
respectively, for the expected AUROC and AUPRC performance of
a random classifier, and 0.2 (for the rAUPRC performance mea-
sure). Methods that are not significantly better than a random
classifier with respect to at least one of the three performance
measures are excluded from further analysis.

In the next step, for each performance measure and each
GRN inference task, we rank the CRN-approach variants accord-
ing to their performance on the particular task. Then, we aver-
age each method’s ranks over all the tasks to obtain three mean
rankings of the CRN-approach variants with respect to the AU-
ROC, AUPRC, and rAUPRC measures. To obtain a joint ranking
along the three performance measures, we employ the nondom-
inated sorting algorithm used in multi-objective decision the-
ory [56]. We first embed the variants into a three-dimensional
space, where each dimension corresponds to a ranking of the
CRN-approach variants with respect to one of the performance
measures. Each CRN-approach variant corresponds to a single
point in that space, where each coordinate value is the rank
of the method according to a particular performance measure.
Note that we normalize the method rankings on the [0, 1] scale
using a simple linear transformation (rM − 1)/(N − 1), where rM

is the rank of the method M, while N denotes the number of all
compared methods. Figure 1 depicts the projection of the three-
dimensional space in two dimensions, obtained by using multi-
dimensional scaling [57]. The red, green, and blue labels and gray
points in the graph correspond to the compared CRN-approach
variants.

To identify the top-ranked CRN-approach variants, we search
for a set of nondominated points in the three-dimensional
space, i.e., we identify the Pareto front of the nondominated
points in the space. The points in the Pareto front correspond
to the methods that are the best performers according to at
least one performance measure. After we assign the top ranks to
these (Fig. 1) CRN-approach variants, we remove the correspond-
ing points from the three-dimensional space and iteratively con-
tinue to identify Pareto fronts in the reduced sets of points until
all the methods are ranked.

Table 3 presents the joint ranking along the three perfor-
mance measures obtained with the nondominated sorting al-
gorithm described above. For each Pareto front, we can calcu-

Figure 1 The first three Pareto fronts (PF) in the three-dimensional space of mean

rankings of the variants of the CRN approach with respect to the three per-
formance measures of AUROC, AUPRC, and rAUPRC. The rankings of the vari-
ants are averaged over all the network reconstruction tasks from Table 1. Each
number in the legend represents the hypervolume dominated by the points in

the corresponding Pareto front. The two-dimensional projection of the three-
dimensional space was obtained using multidimensional scaling.

late the hypervolume of the space dominated by the points on
the front. The volume change indicates the magnitude of dif-
ferences between rankings of the methods in two Pareto fronts.
Figure 1 depicts the first three Pareto fronts (red, green, and
blue points) in the two-dimensional projection of the original
three-dimensional space. They include the 13 top-performing
methods according to the three performance measures taken to-
gether simultaneously.

Results

In the comparative analysis of the performance of the CRN-
approach variants, the focus on the top-ranked variants in-
cluded in the first three Pareto fronts identified with the non-
dominated sorting algorithm. For each CRN-approach variant
in these Pareto fronts, we analyze its composition in terms of
the association measure and the scoring scheme employed. We
proceed with the analysis as follows. First, we identify the over-
all top-performing methods on the 47 tasks of GRN inference
from time-series data listed in Table 1 and on the 39 tasks of
GRN inference from steady-state data listed in Table 2. Next,
for experiments with time-series data, we analyze the impact of
time-series length and network size on the performance of CRN-
approach variants. For the experiments with steady-state data,
we analyze the impact of network size only, since the number
of records in the dataset (its size) is strongly correlated to the
network size (compare the values in the last two columns of Ta-
ble 2).

Time-series data

The comparison of performance on all the tasks of GRN infer-
ence from time-series data identifies the correlation-based mea-
sures (Fig. 2, left) as the top-performing ones. Correlation-based
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Figure 2 The association measures (left-hand side) and scoring schemes (right-hand side) used by the 11 top-ranked variants of the CRN approach from the first three
Pareto fronts (PF) in the three-dimensional space of AUROC-AURPC-rAUPRC mean rankings. The rankings are averaged over the 47 tasks of GRN inference from time-
series data listed in Table 1. Legend on the left-hand side: S: the class of symbolic and qualitative association measures; M: association measures based on mutual
information; C: correlation-based; W: dynamic time warping; and D: distance-based measures. Legend on the right-hand side: WN: the AWE scoring scheme without

time shifting; WS, MS, CS, and AS: the AWE, MRNET, CLR, and ARACNE with time shifting; and NS: the time-shifting method without a scoring scheme.

Table 3. The joint ranking of the CRN-approach variants along the
mean rankings with respect to the three performance measures of
AUROC, AUPRC, and rAUPRC

PF-I Dom-HV CRN-approach variants

1 0.3789 cpr-ns cpr-ws csp-ws ckd-ws sqd-cs
2 0.3504 cpr-wn csp-wn ckd-wn mfm-ns
3 0.2778 csp-ns ckd-ms
4 0.2586 ckd-ns mfm-ws
5 0.2368 mfm-wn saf-wn
6 0.2141 csp-ms mfo-ms mwo-ws mfm-ms

saf-ns saw-ns saw-wn saw-ws
7 0.1976 cpr-cs mwo-wn mwo-ms mfm-as

sqd-ms saf-ws
8 0.1730 mwo-cs mfs-wn mfs-ms smf-wn saw-cs
9 0.1657 csp-cs mfo-wn mfm-cs mfs-ws smf-ws

smw-wn
10 0.1563 ckd-cs mfo-ns mfo-as mfo-ws smw-ns

smw-ws
11 0.1339 cpr-ms mfo-cs mwo-ns smf-cs
12 0.1166 mfs-ns smf-ns saf-cs
13 0.1073 ws1-as mfs-as smw-cs
14 0.0943 dmn-as dec-as mfs-cs sss-cs
15 0.0822 d10-as sqd-wn sqd-ws smw-ms saw-ms
16 0.0767 sqd-ns smf-ms saf-ms
17 0.0637 ckd-as mwo-as sqd-as
18 0.0501 csp-as sss-ms
19 0.0293 sss-ns sss-as sss-wn sss-ws

The method rankings are averaged over all the tasks from Table 1. Each row cor-

responds to a single Pareto front of nondominated points. The column PF-I re-
ports the Pareto front index, Dom-HV reports the volume of the space dominated
by the Pareto front, and the last column includes the CRN-approach variants cor-
responding to the Pareto-front points. The labels of the CRN-approach variants

are explained in Appendix A. For example, the third Pareto front consists of two
variants csp-ns and ckd-ms. The first letter of both variants (c) corresponds to cor-

relation group of association measures. The second and the third letters describe
the association measure itself: Spearman and Kendall correlation coefficients, re-

spectively, for both variants. Finally, the last two letters refer to a combination of
scoring scheme and time-shifting approach, where the first n of the first variant
corresponds to None (constant or ID scoring scheme applied) and the first letter
of the second variant (m) shows that MRNET scoring scheme has been applied. In

both cases, the last letter that refers to time shifting use is s, which corresponds
to Spearman time-shifting approach.

association measures appear most frequently among the best
performers in all three Pareto fronts, dominating by total num-
ber of CRN-approach variants. In total, 9 (out of the 11) variants
use correlation coefficient in the top three Pareto fronts. In the
first Pareto front, correlation-based measures are represented in
four (out of five) variants, followed by three appearances (out
of four) in the second Pareto front, and two in the third. Vari-
ants based on the symbolic and mutual-information measures
represent the second most-frequent group in the CRN-approach
variants that dominate the performance space. They appear in
the first two Pareto fronts, once in each.

In contrast with the clear differences in performance among
the association measures, the scoring schemes cannot be so
clearly differentiated (Fig. 2, right). Namely, all scoring schemes
(except ARACNE) appear within the top three dominant Pareto
fronts. The AWE scoring scheme is the most frequent one; it ap-
pears in six CRN-approach variants in the first two Pareto fronts.
In the first Pareto front, AWE is a component of three variants; in
all three variants, it is combined with the time-shifting method
(label WS). In the second Pareto front, the AWE scoring scheme
is used without the time-shifting method (label WN). The time-
shifting method used without scoring scheme (label NS) appears
three times among the top-performing CRN-approach variants
(once per each Pareto front). Each of the remaining two scoring
schemes (MS and CS) appears once among the top-performing
CRN-approach variants in the three Pareto fronts.

The impact of time-series length
To investigate the impact of time-series length (l) on the per-
formance of the CRN-approach variants, we clustered the 47
datasets into two groups of tasks with short (l <10, 20 tasks) and
long (l ≥10, 27 tasks) time series.

Figure 3A provides an overview of the seven top-performing
CRN-approach variants on the tasks involving short time series.
The most frequent association measure among the top perform-
ers is the symbolic measure (label S, Fig. 3A, left). Four CRN-
approach variants that include symbolic association measures
are found in the top two Pareto fronts. Association measures
based on mutual information (label M) appear in two variants
in the second and third Pareto front. Scoring scheme analy-
sis (Fig. 3A, right) does not show dominance of any particular
scoring scheme, except MRNET; all are found among the top-
performing variants. The first Pareto front includes two differ-
ent scoring schemes (labels WN and WS representing AWE as
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Figure 3 The association measures (left-hand side) and scoring schemes (right-hand side) used in the 7 (A) and 12 (B) top-ranked variants of the CRN approach from

the first three Pareto fronts in the three-dimensional space of AUROC-AURPC-rAUPRC mean rankings. The rankings are averaged on the GRN inference tasks involving
short (A, 20 tasks) and long (B, 27 tasks) time series.

well as CS representing CLR, the latter two combined with time
shifting), indicating that the symbolic association measures can
be equally well combined with the two scoring schemes of AWE
and CLR when tackling tasks involving short time-series data.

The comparison of CRN-approach variants on tasks involv-
ing long time series, presented in Fig. 3B, leads to different
results. Among the 12 top-ranked CRN-approach variants, the
correlation-based association measures prevail; they partici-
pate in eight variants distributed among all three Pareto fronts
(Fig. 3B, left). Association measures based on mutual informa-
tion appear in three variants, two of them being in the first
Pareto front. A single variant that uses a symbolic association
measure is found in the third Pareto front. The results indicate
that for long time series, one should prefer correlation over al-
ternative association measures. Differences with respect to the
results on short time series are visible for scoring schemes as
well (Fig. 3 C, right). The AWE scoring scheme appears in nine
variants among the 12 top performers: four times in combina-
tion with time shifting and five times without.

In sum, we can conclude that the selection of an appropri-
ate association measure for a given task depends on the time-
series length. For short time series, symbolic association mea-
sures should be used, while for long ones, one should opt for
the correlation-based association measures.

The impact of network size
We consider the number of network nodes or genes (n) to be
a measure of the network size. When analyzing its impact on
the performance of the CRN-approach variants, we cluster the

GRN inference tasks into two groups of tasks of inferring small
(n ≤100, 23 tasks) and large (n >100, 20 tasks) networks.

Figure 4 depicts the top-performing variants of the CRN ap-
proach for tasks involving networks with different sizes. The
single top-performing association measure for tasks involving
small networks is correlation (see Fig. 4A, left). The distribution
of scoring schemes among the seven top-performing variants
emphasizes AWE with and without time shifting (labels WS and
WN, respectively) present in five out of seven top-ranked vari-
ants. Two variants without a scoring scheme appear in the sec-
ond and third Pareto front (Fig. 4A, right). In sum, for GRN infer-
ence tasks involving small networks, one should opt for a combi-
nation of a correlation-based association measure and the AWE
scoring scheme.

A slightly different distribution of association measures is
observed among the top-performing CRN-approach variants on
tasks involving large networks (Fig. 4B). Among the 15 top-
performing variants approach, 6 employ symbolic association
measures, 4 employ measures based on correlation, and a single
one in the third Pareto front employs mutual information (Fig. 4
B, left). Similar to the results on the small networks, AWE is pre-
vailing as a scoring scheme used by the top-performing variants
(appearing in 11 out of 15), followed by variants without a scor-
ing scheme (Fig. 4B, right).

In sum, the selection of an appropriate association measure
for a given task depends on the network size. For tasks involving
small networks (up to 100 nodes), correlation-based association
measures should be used, while for large ones, one should also
consider symbolic measures as another valid option.
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Figure 4 The association measures (left-hand side) and scoring schemes (right-hand side) used in the 7 (A) and 15 (B) top-ranked variants of the CRN approach from the

first three Pareto fronts in the three-dimensional space of AUROC-AURPC-rAUPRC mean rankings. The rankings are averaged over the GRN inference tasks involving
small (A, 20 tasks of inference from time-series data) and large (B, 27 tasks of inference from time-series data) networks.

Figure 5 The association measures (left-hand side) and scoring schemes (right-hand side) used by the 12 top-ranked variants of the CRN approach from the first three
Pareto fronts (PF) in the three-dimensional space of AUROC-AURPC-rAUPRC mean rankings. The rankings are averaged over the 39 tasks of GRN inference from steady-

state data listed in Table 2. Legend on the left-hand side: M: the class of association measures based on mutual information; C: correlation-based and D: distance-based
association measures. Legend on the right-hand side: WN, MN, CN, and AN: CRN-approach variants using the AWE, MRNET, CLR, and ARACNE scoring scheme; NN:
variants without scoring scheme.

Steady-state data

The comparison of performance on all the tasks of GRN infer-
ence from steady-state data identifies the CRN-approach vari-
ants involving association measures based on correlation and
mutual information (Fig. 5, left) as the top-performing ones. As-
sociation measures based on mutual information are involved
in 5 of the 12 top-performing variants (all 5 being in the first two
Pareto fronts). Correlation-based association measures appear
among the best performers in all three Pareto fronts, dominat-
ing by total number of CRN-approach variants. In total, seven

variants using correlation coefficients are found in the leading
three Pareto fronts.

In contrast with the notable differences in performance
among the variants with different association measures, all
scoring schemes can be found among the 12 top-performing
variants (Fig. 2, right). The AWE scoring scheme (label WN) can
be found in 4 of 11 top-performing variants, while MRNET can
be found in 3.

Note that the results obtained on steady-state data tasks re-
semble the one obtained on tasks involving time-series data.
Again, the top-performing CRN-approach variants are the ones
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using association measures based on correlation and mutual in-
formation. Both can be considered valid options for composing
a CRN variant to tackle an inference task involving time-series
or steady-state data.

In contrast, the experimental results of evaluating the im-
pact of network size on the performance of CRN-approach vari-
ants on tasks involving steady-state data show no impact of the
network size on the performance (Fig. 6). For both small (Fig. 6A,
left) and large (Fig. 6B, left) networks, the association measures
of choice are based on correlation and mutual information. The
results on the selection of the scoring scheme are once again
inconclusive, since all scoring schemes are used by the top-
performing variants in both groups of tasks involving small and
large networks (Fig. 6, right). In any case, we can conclude from
Fig. 6 that the network size does not influence the selection of
an appropriate CRN-approach variant.

Discussion

The goal of the discussion presented here is to address the main
questions raised in the introduction, i.e., the issue of ”What
works where?” or What would be a reasonable choice of association
measure and scoring scheme in the generalized relevance network ap-
proach for a given task of GRN inference? The overview of the results
of the experiments on all 86 tasks provides a relatively simple
answer: the CRN-approach variants using correlation-based as-
sociations measure and the AWE scoring scheme perform best.
Furthermore, the results show that the AWE scoring scheme
works equally well with or without time shifting for inferring
link directions from time-series data.

Note that both correlation-based measures and the AWE
scoring scheme work over data samples and vectors. This fact
already indicates that the particular combination would work
equally well for time-series (where the temporal component is
largely ignored) and steady-state data. Furthermore, correlation-
based measures perform well with other scoring schemes, ex-
cept for ARACNE. The observation that correlation-based meth-
ods, when combined with a certain scoring scheme, yield over-
all performance improvements on time-series tasks leads to the
conclusion that they can perform well with time shifting only,
but, in fact, performance improvements can also be gained by
selecting an appropriate scoring scheme.

Symbolic association measures have been identified as the
second best-performing group of measures that are frequently
present among the top-performing CRN-approach variants. In
contrast with the correlation-based measures, they operate on
temporal data only and are therefore useful only in the context
of time-series data. Also, symbolic measures appear to perform
well only in combination with the AWE scoring scheme.

Overall, correlation-based association measures show ro-
bustness with regard to the selection of a scoring scheme, while
the AWE scoring scheme improves performance in general,
without limiting the choice of an association measure. For tasks
involving steady-state data, top-performing CRN-approach vari-
ants also include association measures based on mutual infor-
mation.

The results of the analysis of method performance on
datasets with varying time-series length reveal further what
works where insights. For short time series, symbolic and mutual
information association measures lead to top-performing vari-
ants of the CRN approach. Symbolic measures behave robustly
and work well in combination with all scoring schemes, except
the one that applies time shifting only. This leads to the conclu-
sion that symbolic association measures are robust in general

and give more flexibility in choosing a scoring scheme but need
to be corrected by a scoring scheme prior to inferring the links
directions. Unlike the symbolic association measures, the ones
based on mutual information do not show robustness with re-
spect to the selection of a scoring scheme. They perform well
only if combined with the ARACNE scoring scheme or the time-
shifting method applied without any scoring scheme.

The dominance of the correlation-based association mea-
sures increases in the setting of a long time series. Namely,
they have been identified in most of the tasks as part of the
best-performing method compositions. However, they seem to
perform well only in combination with scoring scheme AWE,
while time shifting only and MRNET are observed among top
performers in one case only. Competing with correlation-based
CRN-approach variants are those based on mutual information
with strong limitation in choosing a scoring scheme, i.e., AWE
with or without time shifting. In sum, when addressing an in-
ference task involving short time series, symbolic association
measures are recommended as a robust solution. For long time
series, these measures become more dependent on a limited set
of scoring schemes. This is a result of the fact that they examine
the associations exhaustively throughout the time point’s space.
Therefore, for shorter time series, they are capable of complete
search of the space, which is not a case for longer time series,
where they are constrained due to computational complexity.
Conclusively, correlation-based measures can be recommended
as a robust solution for long time series, since they are not con-
strained by the computational complexity issue for retrieval of
knowledge from a larger amount of data.

The comparative analysis of method performance over dif-
ferent network sizes shows more consistent results over differ-
ent settings on the tasks involving steady-state data. Namely,
correlation-based association measures outperform all other
measures across all network sizes.

For tasks involving inference of small networks from time-
series data, the correlation-based group of measures performs
well in combination with all scoring schemes, except ARACNE
and MRNET. As in the general case, ARACNE performs aggres-
sive cutoffs of inferred links, without considering the differ-
ence between estimated associations. However, from these ob-
servations, we can conclude that correlation-based association
measures are the most robust solution and allow flexibility in
choosing a scoring scheme and construction of a customized
CRN approach. For tasks involving inference of large networks
from time-series data, the association measures of choice are
the symbolic ones and mutual information. The former are to
be combined with the AWE scoring scheme, while the latter can
be used without a scoring scheme or combined with AWE.

Finally, worth mentioning is the observation that distance-
based association measures have not been identified among
the best-performing association measures in either of the set-
tings considered. Thus, they are excluded from the list of recom-
mended groups of association measures worth considering for
tasks of GRN inference from time-series or steady-state data.

Conclusion

The comparative analysis presented here is based on an exten-
sive empirical evaluation of the performance of 114 variants of
the general relevance network approach on 86 tasks of infer-
ring gene regulatory networks from time-series and steady-state
data. The 114 CRN-approach variants are based on six general
classes of association measures (with a variety of parameter
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Figure 6 The association measures (left-hand side) and scoring schemes (right-hand side) used in the six (A) and nine (B) top-ranked variants of the CRN approach

from the first three Pareto fronts in the three-dimensional space of AUROC-AURPC-rAUPRC mean rankings. The rankings are averaged over the GRN inference tasks
involving small (A, 21 tasks of inference from steady-state data) and large (B, 18 tasks of inference from steady-state data) networks.

settings) and six scoring schemes, some of which are accom-
panied by a time-shifting method for inference of the direction
of network links from time-series data. The performance of the
CRN-approach variants is measured using three different per-
formance metrics widely used in other studies on inferring gene
regulatory networks from data.

The main contribution provided here is the general frame-
work for comparative evaluation of the numerous variants of the
general relevance network approach to inference of gene regu-
lation networks. The proposed framework is flexible and mod-
ular; one can easily extend it along any dimension of compari-
son, such as adding new association measures, scoring schemes,
performance metrics, or network inference tasks. The publicly
available source code of the implemented framework allows for
simple implementation of such extensions, as well as reproduc-
ing the results presented in this study.

The main motivation for the evaluation that we performed
is answering the question, ”What works where?” The answer pro-
vides important guidance for applying the generalized relevance
network approach in a particular situation in terms of select-
ing an appropriate combination of an association measure and
a scoring scheme that would lead to reasonably good perfor-
mance on a given dataset. Another important aspect of our sur-
vey and comparative analysis is that it involves tasks of infer-
ence from both time-series and steady-state data. The results
of the comparative analysis lead to the following recommen-
dations for configuring the generalized relevance network ap-
proach:

� In general, the safest combination is a correlation-based as-
sociation measure with the AWE scoring scheme for both
time-series and steady-state data.

� The association measures based on simple distances and dy-
namic time warping never lead to a top-performing variant
of the CRN approach.

� For short time series (with less than 10 time points), the gen-
eral class of symbolic association measures (and the qualita-
tive distance measure, in particular) leads to best-performing
variants of the CRN approach. These measures can be com-
bined with an arbitrary scoring scheme.

� For long time series (of at least 10 time points), the general
recommendation is to combine a correlation-based associa-
tion measure with the AWE scoring scheme.

� For large networks with more than 100 nodes, symbolic asso-
ciation measures (combined with the AWE scoring scheme)
gain an edge over the correlation-based ones when inducing
GRNs from time-series data.

While this set of recommendations provides clear guidance
for selecting an appropriate variant of the generalized rele-
vance network approach, further experiments are necessary to
strengthen the generality of the results. This is especially true
for the results on the impact of network size; too few large-size
networks are included in the current set of inference tasks. In
future work, one would extend the set of inference tasks with
ones that involve networks with a varying number of nodes. Fu-
ture work could also exploit an important source of input for
the relevance network approach, not considered in this study,
namely, expert knowledge about the presence or absence of cer-
tain links in the network. Note, however, that none of these lim-
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itations of our study should represent an obstacle for applying
the proposed framework for empirical evaluation. The frame-
work is flexible enough to be used for comparative analysis on
extended sets of GRN tasks and CRN-approach variants (meth-
ods).

Availability of supporting data

We implemented all the components and the variants of the
CRN approach in the R software environment for statistical com-
puting. We implemented most of the components using stan-
dard R functions, except for the association measure based on
the dynamic time warping (DTW) measure of distance between
time series, for which we used the DTW implementation in the
R package dtw [36]. The source code of our implementation of
the CRN-approach variants in R are publicly available:

� Project name: RN-approach project
� Project home page: https://vkuzmanovski@bitbucket.org/vku

zmanovski/rn-approach.git
� Operating system(s): Platform independent
� Programming language: R
� Other requirements: None
� License: FreeBSD
� RRID: SCR 016488 (SciCrunch.org)

To calculate the values of the performance metrics, we used
the functions implemented in the R package for evaluating the
performance of classifiers ROCR [58]. For performing the Pareto
analysis, we used the implementation of the nondominated
sorting algorithm in the R package for multi-objective optimiza-
tion emoa [59]. The source code of the R functions used to per-
form the comparative analysis of the CRN-approach variants
that allows for complete reconstruction of its results is also pub-
licly available:

� Project name: RN-evaluation project
� Project home page: https://vkuzmanovski@bitbucket.org/vku

zmanovski/rn-evaluation.git
� Operating system(s): Platform independent
� Programming language: R
� Other requirements: None
� License: FreeBSD

The complete materials, including data and source code, are
also available publicly through the GigaDB repository [60].
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13. Marbach D, Costello JC, Küffner R et al.. Wisdom of crowds for
robust gene network inference.. Nature methods 2012; 9(8):
796–804. 10.1038/nmeth.2016

14. Gasch AP, Spellman PT, Kao CM et al.. Genomic expression
programs in the response of yeast cells to environmental
changes.. Molecular biology of the cell 2000; 11(12): 4241–
4257. 10.1091/mbc.11.12.4241

15. Cantone I, Marucci L, Iorio F et al.. A Yeast Synthetic
Network for In Vivo Assessment of Reverse-Engineering
and Modeling Approaches.. Cell 2009; 137(1): 172–181.
10.1016/j.cell.2009.01.055

16. Marbach D, Schaffter T, Mattiussi C et al.. Generating real-
istic in silico gene networks for performance assessment of
reverse engineering methods.. Journal of computational bi-
ology 2009; 16(2): 229–239. 10.1089/cmb.2008.09TT

17. Marbach D, Prill RJ, Schaffter T et al.. Revealing strengths and
weaknesses of methods for gene network inference.. Pro-
ceedings of the national academy of sciences 2010; 107(14):
6286–6291. 10.1073/pnas.0913357107

18. Werhli AV, Grzegorczyk M, Husmeier D.. Comparative eval-
uation of reverse engineering gene regulatory networks
with relevance networks, graphical gaussian models and
bayesian networks.. Bioinformatics 2006; 22(20): 2523–2531.
10.1093/bioinformatics/btl391

19. Eisen MB, Spellman PT, Brown PO et al.. Cluster analysis and
display of genome-wide expression patterns.. Proceedings of
the National Academy of Sciences 1998; 95(25): 14863–14868.
10.1073/pnas.95.25.14863

20. Rays M, Chen Y, Su YA.. Use of a cDNA microarray to analyse
gene expression patterns in human cancer.. Nature genetics
1996; 14: .

21. Ceci M, Pio G, Kuzmanovski V et al.. Semi-supervised multi-
view learning for gene network reconstruction.. PloS one
2015; 10(12): e0144031. 10.1371/journal.pone.0144031

22. Hempel S, Koseska A, Nikoloski Z.. Data-driven reconstruc-
tion of directed networks.. The European Physical Journal B
2013; 86(6): 250. 10.1140/epjb/e2013-31111-8

23. Zhang B, Horvath S et al.. A general framework for weighted
gene co-expression network analysis.. Statistical applica-
tions in genetics and molecular biology 2005; 4(1): 1128.
10.2202/1544-6115.1128

24. Horvath S, Dong J.. Geometric interpretation of gene coex-
pression network analysis.. PLoS comput biol 2008; 4(8):
e1000117. 10.1371/journal.pcbi.1000117

25. Kendall MG.. A new measure of Rank correlation.. Biometrika
1938; 30(1-2): 81. 10.1093/biomet/30.1-2.81

26. de Matos Simoes R, Emmert-Streib F.. Influence of Statistical
Estimators of Mutual Information and Data Heterogeneity on
the Inference of Gene Regulatory Networks.. PLOS ONE 2011;
6(12): 1–14.

27. Soranzo N, Bianconi G, Altafini C.. Comparing association
network algorithms for reverse engineering of large-scale
gene regulatory networks: synthetic versus real data.. Bioin-
formatics 2007; 23(13): 1640. 10.1093/bioinformatics/btm163

28. Paninski L.. Estimation of entropy and mutual infor-

mation.. Neural computation 2003; 15(6): 1191–1253.
10.1162/089976603321780272
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APPENDIX A: List of CRN variants

All variants of CRN-approach considered in the study are given
in the following tables with full description of their abbrevia-
tions. As mentioned before, each variant consists of combina-
tion of association measure, scoring scheme and time-shifting,
each of which is given as a column in the tables below. All vari-
ants are categorized in five categories, based on type of associ-
ation measure: distance-based measures, dynamic time warp-
ing variants, correlation-based measures, mutual information-
based measures, and symbolic measures. The last column in
each table shows the data type(s) over which particular method
has been applied: ts refers to ”time-series” and ss refers to
”steady-state” data type.

http://dx.doi.org/10.5524/100492
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Table A1. List of CRN variants within distance-based association measures.

Abbreviation Association measure Scoring scheme Time-shifting Data type

dmn-nn Manhattan None None ss
dmn-ns Manhattan None Spearman ts
dmn-an Manhattan ARACNE None ss
dmn-as Manhattan ARACNE Spearman ts
dmn-wn Manhattan AWE None ts,ss
dmn-ws Manhattan AWE Spearman ts
dmn-cn Manhattan CLR None ss
dmn-cs Manhattan CLR Spearman ts
dmn-mn Manhattan MRNET None ss
dmn-ms Manhattan MRNET Spearman ts
dec-nn Euclidean None None ss
dec-ns Euclidean None Spearman ts
dec-an Euclidean ARACNE None ss
dec-as Euclidean ARACNE Spearman ts
dec-wn Euclidean AWE None ts,ss
dec-ws Euclidean AWE Spearman ts
dec-cn Euclidean CLR None ss
dec-cs Euclidean CLR Spearman ts
dec-mn Euclidean MRNET None ss
dec-ms Euclidean MRNET Spearman ts
d10-nn L-10 norm (Minkowsky) None None ss
d10-ns L-10 norm (Minkowsky) None Spearman ts
d10-an L-10 norm (Minkowsky) ARACNE None ss
d10-as L-10 norm (Minkowsky) ARACNE Spearman ts
d10-wn L-10 norm (Minkowsky) AWE None ts,ss
d10-ws L-10 norm (Minkowsky) AWE Spearman ts
d10-cn L-10 norm (Minkowsky) CLR None ss
d10-cs L-10 norm (Minkowsky) CLR Spearman ts
d10-mn L-10 norm (Minkowsky) MRNET None ss
d10-ms L-10 norm (Minkowsky) MRNET Spearman ts
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Table A2. List of CRN variants within dynamic time warping (DTW) association measure with variants.

Abbreviation Association measure Scoring scheme Time-shifting Data type

was-ns DTW - Asymmetric
constraint path

None Spearman ts

was-as DTW - Asymmetric
constraint path

ARACNE Spearman ts

was-wn DTW - Asymmetric
constraint path

AWE None ts

was-ws DTW - Asymmetric
constraint path

AWE Spearman ts

was-cs DTW - Asymmetric
constraint path

CLR Spearman ts

was-ms DTW - Asymmetric
constraint path

MRNET Spearman ts

ws1-ns DTW - Symmetric
constraint path (1)

None Spearman ts

ws1-as DTW - Symmetric
constraint path (1)

ARACNE Spearman ts

ws1-wn DTW - Symmetric
constraint path (1)

AWE None ts

ws1-ws DTW - Symmetric
constraint path (1)

AWE Spearman ts

ws1-cs DTW - Symmetric
constraint path (1)

CLR Spearman ts

ws1-ms DTW - Symmetric
constraint path (1)

MRNET Spearman ts

ws2-ns DTW - Symmetric
constraint path (2)

None Spearman ts

ws2-as DTW - Symmetric
constraint path (2)

ARACNE Spearman ts

ws2-wn DTW - Symmetric
constraint path (2)

AWE None ts

ws2-ws DTW - Symmetric
constraint path (2)

AWE Spearman ts

ws2-cs DTW - Symmetric
constraint path (2)

CLR Spearman ts

ws2-ms DTW - Symmetric
constraint path (2)

MRNET Spearman ts
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Table A3. List of CRN variants within correlation-based association measures.

Abbreviation Association measure Scoring scheme Time-shifting Data type

cpr-nn Pearson None None ss
cpr-ns Pearson None Spearman ts
cpr-an Pearson ARACNE None ss
cpr-as Pearson ARACNE Spearman ts
cpr-wn Pearson AWE None ts,ss
cpr-ws Pearson AWE Spearman ts
cpr-cn Pearson CLR None ss
cpr-cs Pearson CLR Spearman ts
cpr-mn Pearson MRNET None ss
cpr-ms Pearson MRNET Spearman ts
csp-nn Spearman None None ss
csp-ns Spearman None Spearman ts
csp-an Spearman ARACNE None ss
csp-as Spearman ARACNE Spearman ts
csp-wn Spearman AWE None ts,ss
csp-ws Spearman AWE Spearman ts
csp-cn Spearman CLR None ss
csp-cs Spearman CLR Spearman ts
csp-mn Spearman MRNET None ss
csp-ms Spearman MRNET Spearman ts
ckd-nn Kendall None None ss
ckd-ns Kendall None Spearman ts
ckd-an Kendall ARACNE None ss
ckd-as Kendall ARACNE Spearman ts
ckd-wn Kendall AWE None ts,ss
ckd-ws Kendall AWE Spearman ts
ckd-cn Kendall CLR None ss
ckd-cs Kendall CLR Spearman ts
ckd-mn Kendall MRNET None ss
ckd-ms Kendall MRNET Spearman ts
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Table A4. List of CRN variants within mutual information-based association measures.

Abbreviation Association measure
Scoring
scheme Time-shifting Data type

mfo-nn Mutual information - Equal frequency (Miller-Madow estimator) None None ss
mfo-ns Mutual information - Equal frequency (Miller-Madow estimator) None Spearman ts
mfo-an Mutual information - Equal frequency (Miller-Madow estimator) ARACNE None ss
mfo-as Mutual information - Equal frequency (Miller-Madow estimator) ARACNE Spearman ts
mfo-wn Mutual information - Equal frequency (Miller-Madow estimator) AWE None ts,ss
mfo-ws Mutual information - Equal frequency (Miller-Madow estimator) AWE Spearman ts
mfo-cn Mutual information - Equal frequency (Miller-Madow estimator) CLR None ss
mfo-cs Mutual information - Equal frequency (Miller-Madow estimator) CLR Spearman ts
mfo-mn Mutual information - Equal frequency (Miller-Madow estimator) MRNET None ss
mfo-ms Mutual information - Equal frequency (Miller-Madow estimator) MRNET Spearman ts
mwo-nn Mutual information - Equal width (Miller-Madow estimator) None None ss
mwo-ns Mutual information - Equal width (Miller-Madow estimator) None Spearman ts
mwo-an Mutual information - Equal width (Miller-Madow estimator) ARACNE None ss
mwo-as Mutual information - Equal width (Miller-Madow estimator) ARACNE Spearman ts
mwo-wn Mutual information - Equal width (Miller-Madow estimator) AWE None ts,ss
mwo-ws Mutual information - Equal width (Miller-Madow estimator) AWE Spearman ts
mwo-cn Mutual information - Equal width (Miller-Madow estimator) CLR None ss
mwo-cs Mutual information - Equal width (Miller-Madow estimator) CLR Spearman ts
mwo-mn Mutual information - Equal width (Miller-Madow estimator) MRNET None ss
mwo-ms Mutual information - Equal width (Miller-Madow estimator) MRNET Spearman ts
mfm-nn Mutual information - Equal frequency (Maximum likelihood estimator) None None ss
mfm-ns Mutual information - Equal frequency (Maximum likelihood estimator) None Spearman ts
mfm-an Mutual information - Equal frequency (Maximum likelihood estimator) ARACNE None ss
mfm-as Mutual information - Equal frequency (Maximum likelihood estimator) ARACNE Spearman ts
mfm-wn Mutual information - Equal frequency (Maximum likelihood estimator) AWE None ts,ss
mfm-ws Mutual information - Equal frequency (Maximum likelihood estimator) AWE Spearman ts
mfm-cn Mutual information - Equal frequency (Maximum likelihood estimator) CLR None ss
mfm-cs Mutual information - Equal frequency (Maximum likelihood estimator) CLR Spearman ts
mfm-mn Mutual information - Equal frequency (Maximum likelihood estimator) MRNET None ss
mfm-ms Mutual information - Equal frequency (Maximum likelihood estimator) MRNET Spearman ts
mfs-nn Mutual information - Equal frequency (Shrink entropy estimator) None None ss
mfs-ns Mutual information - Equal frequency (Shrink entropy estimator) None Spearman ts
mfs-an Mutual information - Equal frequency (Shrink entropy estimator) ARACNE None ss
mfs-as Mutual information - Equal frequency (Shrink entropy estimator) ARACNE Spearman ts
mfs-wn Mutual information - Equal frequency (Shrink entropy estimator) AWE None ts,ss
mfs-ws Mutual information - Equal frequency (Shrink entropy estimator) AWE Spearman ts
mfs-cn Mutual information - Equal frequency (Shrink entropy estimator) CLR None ss
mfs-cs Mutual information - Equal frequency (Shrink entropy estimator) CLR Spearman ts
mfs-mn Mutual information - Equal frequency (Shrink entropy estimator) MRNET None ss
mfs-ms Mutual information - Equal frequency (Shrink entropy estimator) MRNET Spearman ts
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Table A5. List of CRN variants within symbolic association measures.

Abbreviation Association measure
Scoring
scheme Time-shifting Data type

sqd-ns Simple qualitative distance None Spearman ts
sqd-as Simple qualitative distance ARACNE Spearman ts
sqd-wn Simple qualitative distance AWE None ts
sqd-ws Simple qualitative distance AWE Spearman ts
sqd-cs Simple qualitative distance CLR Spearman ts
sqd-ms Simple qualitative distance MRNET Spearman ts
sss-ns Symbol sequence similarity None Spearman ts
sss-as Symbol sequence similarity ARACNE Spearman ts
sss-wn Symbol sequence similarity AWE None ts
sss-ws Symbol sequence similarity AWE Spearman ts
sss-cs Symbol sequence similarity CLR Spearman ts
sss-ms Symbol sequence similarity MRNET Spearman ts
smw-ns Mutual information (equal width) over symbol

vectors
None Spearman ts

smw-as Mutual information (equal width) over symbol
vectors

ARACNE Spearman ts

smw-wn Mutual information (equal width) over symbol
vectors

AWE None ts

smw-ws Mutual information (equal width) over symbol
vectors

AWE Spearman ts

smw-cs Mutual information (equal width) over symbol
vectors

CLR Spearman ts

smw-ms Mutual information (equal width) over symbol
vectors

MRNET Spearman ts

smf-ns Mutual information (equal frequency) over symbol
vectors

None Spearman ts

smf-as Mutual information (equal frequency) over symbol
vectors

ARACNE Spearman ts

smf-wn Mutual information (equal frequency) over symbol
vectors

AWE None ts

smf-ws Mutual information (equal frequency) over symbol
vectors

AWE Spearman ts

smf-cs Mutual information (equal frequency) over symbol
vectors

CLR Spearman ts

smf-ms Mutual information (equal frequency) over symbol
vectors

MRNET Spearman ts

saw-ns Average of sss-ns and smw-ns None Spearman ts
saw-as Average of sss-as and smw-as ARACNE Spearman ts
saw-wn Average of sss-wn and smw-wn AWE None ts
saw-ws Average of sss-ws and smw-ws AWE Spearman ts
saw-cs Average of sss-cs and smw-cs CLR Spearman ts
saw-ms Average of sss-ms and smw-ms MRNET Spearman ts
saf-ns Average of sss-ns and smf-ns None Spearman ts
saf-as Average of sss-as and smf-as ARACNE Spearman ts
saf-wn Average of sss-wn and smf-wn AWE None ts
saf-ws Average of sss-ws and smf-ws AWE Spearman ts
saf-cs Average of sss-cs and smf-cs CLR Spearman ts
saf-ms Average of sss-ms and smf-ms MRNET Spearman ts


