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Abstract: Therapy-induced senescence (TIS) is a state of stable proliferative arrest of both normal
and neoplastic cells that is triggered by exposure to anticancer treatments. TIS cells acquire a
senescence-associated secretory phenotype (SASP), which is pro-inflammatory and actively promotes
tumor relapse and adverse side-effects in patients. Here, we hypothesized that TIS cells adapt their
scavenging and catabolic ability to overcome the nutritional constraints in their microenvironmental
niches. We used a panel of mechanistically-diverse TIS triggers (i.e., bleomycin, doxorubicin, alisertib,
and palbociclib) and Biolog Phenotype MicroArrays to identify (among 190 different carbon and
nitrogen sources) candidate metabolites that support the survival of TIS cells in limiting nutrient
conditions. We provide evidence of distinguishable TIS-associated nutrient consumption profiles
involving a core set of shared (e.g., glutamine) and unique (e.g., glucose-1-phosphate, inosine, and
uridine) nutritional sources after diverse senescence-inducing interventions. We also observed a
trend for an inverse correlation between the intensity of the pro-inflammatory SASP provoked by
different TIS agents and diversity of compensatory nutritional niches utilizable by senescent cells.
These findings support the detailed exploration of the nutritional niche as a new metabolic dimension
to understand and target TIS in cancer.
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1. Introduction

A well-established hallmark of cancer cells is their ability to evade senescence [1,2], a
non-proliferative but metabolically active survival state that serves to prevent the propa-
gation of genetically unstable, oncogenically-activated, and/or dysfunctional cells [3–9].
Tumor cells can, nevertheless, be forced into senescence by exposure to therapeutic agents,
a phenomenon termed therapy-induced senescence (TIS). Through the expression and
secretion of a variety of pro-inflammatory cytokines and chemokines, referred to as the
senescence-associated secretory phenotype (SASP) [10–14], TIS cells represent a double-
edged sword that promotes tumor elimination but also generates chronic inflammatory
environments that can trigger or exacerbate cancer progression and normal tissue dysfunc-
tion [15–19].

TIS can render some cancer cells highly immunogenic while promoting the arrest
of neighboring cancer cells, creating an environment that strongly activates anti-tumor
immunity [20–23]. The long-term persistence of TIS in normal and tumor tissues may,
however, be detrimental by increasing the likelihood of tumor relapse and undesirable
adverse effects associated with cancer treatment. For instance, TIS cells that persist after
therapy can elude immunosurveillance and accumulate at sites of aging pathologies [24–26].
They can also reprogram into stem-like states with associated drug resistance, which
ultimately contributes to tumor relapse [27–30]. Similarly, the accumulation of TIS cells
in inflammatory niches can activate epithelial-to-mesenchymal (EMT)-like programs that
promote metastatic behavior in surrounding non-senescent cancer cells [30–34]. Finally, the
local and systemic SASP signaling from persisting senescent cells in non-cancerous tissues
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actively contributes to short- and medium-term adverse reactions to cancer interventions in
patients, including cardiac dysfunction, bone marrow suppression, bone loss, fatigue, and
physical decline [15,35–37]. Indeed, studies in adult survivors of childhood cancer have
highlighted several chronic gerontogenic effects of chemotherapy, including an increase in
the prevalence of second malignancies, heart disease, and pulmonary events [38]. These
observations led to the development of novel strategies aiming to selectively kill TIS cells
(senolytics) and/or suppress all or at least some of their characteristics by blocking SASP
(senostatics or senomorphics) [39–45].

A novel concept in TIS is the existence of distinct subtypes of senescent cells that
can develop distinguishable phenotypes on the basis of epigenetic traits and environ-
mental constraints [46–49]. Two major environmental variables are oxygen and nutrient
availability, which vary among and within tissues. Oxygen is a known determinant for pro-
inflammatory SASP expression, and physiological hypoxia can modulate the development
of various senescence-associated phenotypes [50]. In relation to nutrient availability, we
hypothesized that the scavenging and catabolic abilities of TIS cells would balance the fluc-
tuations in available nutrient types and levels in their microenvironmental niches [51–54].
To provide a preliminary assessment of what nutrients are “on the menu” for TIS cells and to
determine if they vary with mechanistically-diverse senescence-inducing interventions, we
used Biolog Phenotype Microarrays (PM) to phenotype the preferred carbon and nitrogen
sources utilized by TIS cells among 190 different nutritional sources under nutrient-poor
conditions [55–60]. To assess senescence trigger-dependent effects, we investigated the
utilization of different nutritional substrates by TIS cells and how they modulated the
oxidation of major metabolic fuels (glucose and glutamine) to match nutrient availability
while meeting energy demands. We then surveyed the metabolites that could be scavenged
and catabolized by TIS cells as alternative fuels in the absence of glucose. Finally, we
searched for correlations between the intensity of the pro-inflammatory SASP provoked by
TIS agents and the diversity of compensatory nutritional niches utilizable by TIS cells.

2. Materials and Methods
2.1. Cell Lines and Culture

Human A549 lung cancer cells and embryonic kidney HEK293T cells were obtained
from the ATCC (Manassas, VA, USA) and cultured in complete Dulbecco’s modified Eagle’s
medium (Gibco/Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal bovine
serum, 2 mmol/L L-glutamine, and 100 IU/mL penicillin-streptomycin (all from Gibco).
All cells were tested for Mycoplasma contamination using a PCR-based assay prior to
experimentation and were intermittently tested thereafter.

2.2. Senescence Induction

A549 cells were seeded in 150-mm dishes (800,000 cells/plate) for 24 h before treat-
ment with bleomycin (20 µmol/L), doxorubicin (50 nmol/L), alisertib (500 nmol/L), or
palbociclib (5 µmol/L). After 7 days of treatment, the cultures reached 70–80% confluency
and were mostly senescent. Untreated (proliferative) controls (400,000 cells) were seeded
in 150-mm dishes and cultured in parallel for 7 days, reaching ~90% confluency. For
downstream applications, cells from one 150 mm dish were reseeded into 6-well (colony
formation assays) or 96-well plates (metabolite phenotypic screening).

2.3. Colony Formation Assay

Proliferative and senescent cells (1000 cells/well) were grown for 10 days in a drug-
free medium. Colonies were fixed with 4% paraformaldehyde (v/v) and stained with 0.5%
crystal violet (w/v) for visualization.

2.4. Staining for Senescence-Associated β-Galactosidase Activity

Cell β-galactosidase activity was detected with the Senescence β-Galactosidase Stain-
ing Kit (Cat. #9860, Cell Signaling Technology, Danvers, MA, USA).
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2.5. Biolog Metabolite Phenotypic Screening

In total, 50 µL/well of 400,000 cells/mL suspensions of TIS and proliferative cells
(20,000 cells per well) in Biolog IF-M1 medium (RPMI-1640 medium lacking phenol
red and depleted of carbon-energy sources, low glutamine [0.3 mmol/L], and low FBS
[5%]), were transferred to Phenotype PM-M1 and PM-M2 MicroArrays (Biolog, Hay-
ward, CA, USA) containing 190 biochemical substrates that could potentially be metab-
olized and provide energy for cells. The content of plates PM-M1 and PM-M2 can be
found at https://www.biolog.com/wp-content/uploads/2020/04/00P-134-Rev-F-PMM-
MicroArrays-Brochure-PM-M1-to-PM-M14.pdf (accessed on 28 August 2022). After a 48 h
incubation, a period that allows cells to use any residual carbon energy sources in the 5%
serum (~0.35 mmol/L glucose plus lipids and amino acids) and minimizes the background
color in the negative control wells that have no added biochemical substrate, the respective
utilization of substrates to generate NADH was measured as an optical density (OD) at
590 nm for 1.5 h and imaged.

2.6. Mitochondrial Fuel Oxidation Analyses

Oxidation rates of glucose and glutamine were measured using an XFp Extracellular
Flux Seahorse Analyzer (Agilent Technologies, Palo Alto, CA, USA). The Agilent Seahorse
XF Mito Fuel Flex Test Kit was used in a standard protocol https://www.agilent.com/
cs/library/usermanuals/public/XF_Mito_Fuel_Flex_Test_Kit_User_Guide%20old.pdf (ac-
cessed on 4 August 2022). The test measures the dependency, capacity, and flexibility
of cells to oxidize three mitochondrial fuels in real-time: glucose (pyruvate), glutamine
(glutamate), and long-chain fatty acids. The test determines the rate of oxidation of each of
these fuels by measuring the oxygen consumption rate in the presence or absence of fuel
pathway inhibitors: the glucose oxidation pathway inhibitor UK5099 (2 µmol/L), which
blocks the mitochondrial pyruvate carrier; the glutamine oxidation pathway inhibitor
BPTES (3 µmol/L), which allosterically inhibits glutaminase-1; and the long-chain fatty
acid oxidation inhibitor etomoxir (4 µmol/L), which inhibits carnitine palmitoyl-transferase
1A, a critical enzyme of mitochondrial β-oxidation. Seahorse Wave Desktop software was
used for data generation and analysis, and GraphPad PRISM 8 (San Diego, CA, USA) was
used for statistical analysis and data presentation.

2.7. Lentiviral Transduction

The PHAGE-PmiR-146a-GFP-PGK-puro plasmid was a kind gift from Stephen Elledge
(Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and
Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA). Viral particles
were produced in 293T cells by co-transfection of the PHAGE-PmiR-146a-GFP-PGK-puro
plasmid with a 3rd generation lentivirus packaging system, consisting of pCMV-VSV-G
(Addgene, Cambridge, MA, USA, #8454) and pCMV-dR8.2 dvpr (Addgene, Cambridge,
MA, USA, #8455). Transient transfection was performed in 293T cells to produce lentiviral
supernatants, and A549 cells were infected with lentiviral supernatants using 8 µg/mL
polybrene. After a 48 h incubation, the supernatant was replaced by a medium containing
10 µg/mL puromycin for a further 48 h.

2.8. IncuCyte Assay

Cells (2000/well) were seeded into 96-well plates and cultured up to 10 days. Phase
and green fluorescence (400 ms acquisition) images were collected at 37 ◦C every 4 h over
10 days using the IncuCyte Zoom (IncuCyte S3; Essen BioScience, Ann Arbor, MI, USA).

2.9. Flow Cytometry

miR146a-EGFP reporting-containing A549 cells were harvested and suspended in
300 µL of a medium. GFP positivity was determined using a 488 nm laser excitation
wavelength (FITC channel) on a BD Accuri C6 Flow Cytometer (BD Biosciences, San
Jose, CA, USA). Data were analyzed using FCS Express 7 software (De Novo™ Software,
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Pasadena, CA, USA) and were depicted as mean fluorescence intensities (arbitrary units)
of three independent experiments.

2.10. Data Handling

To circumvent the lack of well-established analytical and statistical methodology to an-
alyze the endpoint mode of Biolog PM plates, including systematic biases towards increased
or decreased metabolic signals due to various causes (e.g., plate batch inter-variability and
color development in the negative-control wells due to substrate reservoirs) [59], experi-
mental data were not pooled from independent readings. Rather, the data shown are from
a representative experiment (from at least two separate experiments for each TIS trigger
and performed with n = 3 replicate measurements) performed in a single run. Arbitrary
thresholds were set to disregard changes that commonly arise when performing pairwise
two-tailed t-tests on color intensity readings, especially when the arrays are dominated by
non-active profiles. All nutritional sources that exceeded the established thresholds (±1.5
or larger [±2.0]) for each pair of TIS/proliferative cells were included in the flower model
Venn diagrams when qualitative substrate discrepancies did not exist between independent
replicates. Data from Seahorse-based mitochondrial fuel oxidation analyses and IncuCyte
assays are presented as mean ± S.D.

3. Results
3.1. Establishment of Therapy-Induced Senescence Models

We first established the conditions to screen carbon and nitrogen sources for TIS cells
using A549 cells, a widely used model of lung adenocarcinoma and an in vitro model of
type II pulmonary epithelial cells [61,62]. Cells were treated with increasing concentrations
of four clinically-relevant senescence triggers: (1) Bleomycin, an anti-tumor antibiotic that
promotes oxidative DNA damage mediated by reactive oxygen species (ROS), and is com-
monly used to treat Hodgkin’s lymphoma and testicular germ-cell tumors and to induce
pulmonary fibrosis in cancer-free mice [61]; (2) Alisertib (MLN8237), a selective aurora A
kinase inhibitor that is under investigation for several malignancies, including hematologic
(non-Hodgkin’s lymphoma) and solid tumors [42,63]; (3) Doxorubicin, a topoisomerase II
inhibitor used to treat a variety of cancers including lung, breast, lymphoma, and acute lym-
phocytic leukemia [64–66]; (4) Palbociclib, a selective inhibitor of cyclin-dependent kinases
4 and 6 (CDK4/6) that is approved for the treatment of advanced or metastasized estrogen
receptor (ER)-positive and epidermal growth factor receptor 2 (HER2)-negative breast
cancer [67–69]. These treatments (for up to 7 days) resulted in decreased confluency and
cell proliferation arrest, and the so-called optimal senescence-inducing concentrations were
selected as those allowing cultures to reach about 70–80% confluency while promoting the
occurrence of the major classical markers of senescence, namely an enlarged and flattened
cell shape and enhanced senescence-associated β-galactosidase (SA-β-gal) activity [9,70,71],
in the highest number of cells. Treatment with optimal senescence-inducing concentrations
of bleomycin (20 µmol/L), doxorubicin (50 nmol/L), and alisertib (500 nmol/L) resulted
in 80–100% SA-β-gal-positive populations (Figure 1A, top). Treatment with palbociclib
(5 µmol/L) resulted in 60–70% SA-β-gal-positive populations (Figure 1A, top).

To test the stability of the senescent state, untreated and TIS cells (7-day-treatment)
were seeded at low-density (1000 cells/well) under drug-free conditions during 10 days to
allow the formation of colonies. TIS cells previously exposed to bleomycin, alisertib and
doxorubicin showed no clonogenic capacity, demonstrating the stability of the senescent
phenotype (Figure 1A, bottom). By contrast, palbociclib-induced senescent cells showed a
partial recovery of proliferation potential upon drug release (Figure 1A, bottom).

3.2. Senescence Trigger-Dependent Metabolic Fingerprints

Proliferative and TIS cells grown in parallel were simultaneously plated onto PM-
M1 and PM-M2 microplates with wells coated with substrate nutrients that could serve
as carbon and/or nitrogen sources, creating 190 unique nutritional “niches” comprising
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carbohydrates, nucleic acids, glycosylamines, metabolic intermediates, amino acids, and
dipeptides [55–60] (Figure 1B). Blank wells and wells pre-coated with glucose were in-
cluded as negative and positive controls, respectively. The proliferative and TIS cells were
incubated under nutrient-limiting conditions with a Biolog IF-M1 medium (RPMI 1640, no
glucose, 0.3 mmol/L glutamine, and 5% serum), providing all nutritional requirements at
sufficient levels other than major carbon and nitrogen sources, which were omitted. Assays
were conducted over 48 h.
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Figure 1. Metabolic fingerprinting of therapy-induced senescence: an experimental approach.
(A) A549 cells were cultured for 7 days with bleomycin (20 µmol/L), alisertib (0.5 µmol/L), dox-
orubicin (50 nmol/L), and palbociclib (5 µmol/L). Top: representative images of SA-β-gal staining
from three independent experiments. Scale bar: 200 µm. Bottom: representative images from 6-well
plates of 10-day clonogenic survival analyses of A549 cells previously cultured for 7 days with
therapy-induced senescence agents. (B) Schematic representation of metabolite utilization analysis
workflow in proliferative versus TIS cells using the Phenotype MicroArrays PM-M1 and PM-M2.

To assess senescence trigger-dependent effects, we first determined the substrate
utilization of paired proliferative/TIS cells in each nutritional niche using a colorimetric
dye that is reduced when cells catabolize the extracellular substrate and generate energy-
rich NADH. The optical density (OD) values of each substrate at 590 nm (purple color)
resulting from the accumulation of reduced dye over a 90 min period were normalized to
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those of the negative-control wells included in each microplate (Figure 2A; source data are
available online at Tables S1 and S2). The PM-M1 plate contained primarily carbohydrate
and carboxylate substrates, whereas the PM-M2 plate contained individual L-amino acids
and dipeptide combinations. We then calculated the absolute ratio between normalized OD
values of senescent versus proliferative states. Detailed consumption maps of nutritional
substrates that showed ±1.5 or larger (±2.0) fold-changes for each pair of TIS/proliferative
cells are shown in Figure S1. Flower model Venn diagrams were generated to identify the
core and differential carbon/nitrogen sources under- or over-utilized (±2.0 fold-changes)
by the four TIS-generated phenotypes (Figure 2B). All TIS cells shared a reduced ability to
metabolize mono- (glucose and mannose), di- (maltose), and tri- (maltotriose) saccharides
compared with matched proliferative controls. Most TIS-generated types also exhibited
a reduced capacity to metabolize the glucose polysaccharide, dextrin. Notably, TIS cells
generated in response to palbociclib, doxorubicin, and alisertib showed an enhanced
capacity (>2.0-fold) to utilize glutamine-containing dipeptides compared with matched
proliferative controls (Figure 2B). All TIS-generated types shared an ability to overutilize
glutamine-containing peptides compared with proliferative counterparts when using a
fold-change cut-off of >1.5.

Nutrients 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

dipeptides [55–60] (Figure 1B). Blank wells and wells pre-coated with glucose were in-
cluded as negative and positive controls, respectively. The proliferative and TIS cells were 
incubated under nutrient-limiting conditions with a Biolog IF-M1 medium (RPMI 1640, 
no glucose, 0.3 mmol/L glutamine, and 5% serum), providing all nutritional requirements 
at sufficient levels other than major carbon and nitrogen sources, which were omitted. 
Assays were conducted over 48 h. 

To assess senescence trigger-dependent effects, we first determined the substrate uti-
lization of paired proliferative/TIS cells in each nutritional niche using a colorimetric dye 
that is reduced when cells catabolize the extracellular substrate and generate energy-rich 
NADH. The optical density (OD) values of each substrate at 590 nm (purple color) result-
ing from the accumulation of reduced dye over a 90 min period were normalized to those 
of the negative-control wells included in each microplate (Figure 2A; source data are avail-
able online at Tables S1 and S2). The PM-M1 plate contained primarily carbohydrate and 
carboxylate substrates, whereas the PM-M2 plate contained individual L-amino acids and 
dipeptide combinations. We then calculated the absolute ratio between normalized OD 
values of senescent versus proliferative states. Detailed consumption maps of nutritional 
substrates that showed ±1.5 or larger (±2.0) fold-changes for each pair of TIS/proliferative 
cells are shown in Figure S1. Flower model Venn diagrams were generated to identify the 
core and differential carbon/nitrogen sources under- or over-utilized (±2.0 fold-changes) 
by the four TIS-generated phenotypes (Figure 2B). All TIS cells shared a reduced ability 
to metabolize mono- (glucose and mannose), di- (maltose), and tri- (maltotriose) saccha-
rides compared with matched proliferative controls. Most TIS-generated types also exhib-
ited a reduced capacity to metabolize the glucose polysaccharide, dextrin. Notably, TIS 
cells generated in response to palbociclib, doxorubicin, and alisertib showed an enhanced 
capacity (>2.0-fold) to utilize glutamine-containing dipeptides compared with matched 
proliferative controls (Figure 2B). All TIS-generated types shared an ability to overutilize 
glutamine-containing peptides compared with proliferative counterparts when using a 
fold-change cut-off of >1.5.  

 
Figure 2. Substrate utilization patterns of therapy-induced senescence cells. (A) Representative 
images of paired proliferative/TIS cells assayed in PM-M1 and PM-M2 plates. Negative control wells 

Figure 2. Substrate utilization patterns of therapy-induced senescence cells. (A) Representative
images of paired proliferative/TIS cells assayed in PM-M1 and PM-M2 plates. Negative control wells
(blue boxes) have no substrate. Wells containing D-glucose (red boxes) served as positive controls.
(B) Flower model Venn diagrams showing higher (left) or lower (right) substrate utilization in each
type of TIS cell. (C) Analysis of mitochondrial oxidation of glucose and glutamine in proliferative
and TIS cells using the Agilent Seahorse XF Mito Fuel Flex kit.

Our findings thus far suggest that TIS cells preferentially use glutamine over glucose as
mitochondrial fuel under nutrient-limiting conditions. To test this hypothesis, we measured
the dependency, capacity, and flexibility of proliferative and TIS cells (doxorubicin- and
alisertib-induced) to oxidize glucose and glutamine using the Seahorse XF Mito Fuel Flex
Test (Figure 2C). Compared with proliferative cells, TIS cells had a notably lower capacity
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to use and increase the oxidation of glucose when trying to compensate for the inhibition
of glutaminolysis and long-chain fatty acid oxidation as alternative fuel pathways using
glutaminase-1 inhibitor BPTES and carnitine palmitoyltransferase-1 inhibitor etomoxir,
respectively (Figure 2C). Conversely, no remarkable differences were observed in the ability
of proliferative and TIS cells to employ and augment the oxidation of glutamine when
trying to compensate for inhibition of glucose and long-chain fatty acid oxidation using the
mitochondrial pyruvate carrier inhibitor UK5099 and etomoxir, respectively (Figure 2C).

3.3. Alternative Metabolic Fuels of Therapy-Induced Senescent Cells in the Absence of Glucose

We normalized all the data to the positive control (wells pre-coated with glucose) to
better understand the flexibility of TIS cells in utilizing alternative carbon/nitrogen fuel
sources in response to the severe hypoglycemic/aglycemic conditions of the PM assays
(Figure S2). Flower model Venn diagrams were used to identify core and differential
carbon/nitrogen sources capable of rescuing the maximum glucose catabolism. Using a
20% cut-off (i.e., rescue of at least one-fifth of the glucose capacity; Figure 3A), we found
that all TIS phenotypes utilized the following core nine metabolites in the absence of
glucose: the six-carbon sugar fructose-6-phosphate, the keto-acid pyruvic acid, the amino
acid glutamine, and numerous dipeptides containing this amino acid (Ala-Gln, Arg-Gln,
Asp-Gln, Gln-Glu, Gln-Gln, and Gln-Gly). The glycolytic intermediate glucose-6-phosphate
also substituted for glucose for a majority of TIS-generated phenotypes. The nucleoside
inosine also supported the bioenergetic activity of bleomycin- and doxorubicin-induced
senescent cells in the absence of glucose. Doxorubicin-induced senescent cells showed a
differential capacity for bioenergetic activity in the absence of glucose, with the nucleoside
uridine, the lipid biosynthesis precursor α-glycerol-phosphate, the succinic acid derivatives
succinamic acid and mono-methyl succinate, and the alanine-containing dipeptides Ala-Pro,
Ala-Tyr, as alternative metabolic substrates. After applying a more stringent 25% cut-off (i.e.,
rescue of at least one-quarter of the glucose capacity; Figure 3B), most of the TIS-generated
phenotypes (doxorubicin-, alisertib-, and palbociclib-induced) preferentially catabolized
glutamine-containing dipeptides and pyruvic acid for growth in the absence of glucose.
Glucose-1-phosphate remained as one of the metabolites capable of rescuing glucose in
doxorubicin- and palbociclib-induced senescent cells, irrespective of the cut-off level.

None of the candidate metabolites that supported the viability of TIS cells under
glucose-deficient/nutrient-limiting conditions were related to the stimulation of prolifera-
tive subpopulations following exposure to different senescence inducers. When prolifera-
tive counterparts were included in the flower model Venn diagrams, all the core nutrients
identified as rescuing cells in the absence of glucose (i.e., dextrin, glycogen, maltotriose,
maltose, mannose, and glucose itself) were distinct from those differentially utilized by TIS
cells, irrespective of the applied cut-off level (Figure 3A,B).

3.4. Correlation between SASP Activity and Nutritional Niche Diversity in Therapy-Induced
Senescent Cells

Finally, we sought to establish whether the activation level of SASP correlated with the
diversity of nutritional niches utilized by TIS cells. The microRNA, miR146a, is expressed
in response to elevated inflammatory cytokine levels as part of a negative feedback loop
that restrains excessive SASP activity [63,72,73]. We thus engineered A549 cells expressing a
senescence-reporter construct containing the miR146a promoter linked to EGFP (Figure 4A)
as a surrogate marker of miR146a induction following treatment of cells with the panel of
senescence inducers, and utilized the IncuCyte® Live-Cell Analysis System to monitor real-
time reporter activity (up to 10 days) (Figure 4A). Notably, we found significant differences
in the ability of senescence-inducing agents to induce the reporter in a concentration-
and time-dependent manner. Bleomycin was the most powerful inducer, followed by
alisertib, palbociclib, and doxorubicin, with the latter showing the least potency in A549
cells (Figure 4B, left panel). Flow cytometry analyses confirmed that bleomycin-treated
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cells showed a higher miR146a-related mean fluorescence intensity (MFI) than doxorubicin-
treated ones (data not shown).
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the diversity of nutritional niches utilized by TIS cells. The microRNA, miR146a, is ex-
pressed in response to elevated inflammatory cytokine levels as part of a negative feed-
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Figure 3. Nutritional rescue of glucose deprivation in therapy-induced senescence cells. Flower
model Venn diagrams showing shared and unique metabolic substrates capable of rescuing at least
(A) one-fifth or (B) one-quarter of the bioenergetic capacity of glucose in TIS cells.

Doxorubicin-induced senescent cells could utilize the greatest number of metabolites (21),
followed by those induced by alisertib (14), palbociclib (13), and bleomycin (12), using a
20% cut-off value. With a more stringent 25% cut-off, doxorubicin-induced senescent cells
remained the most flexible in terms of utilizable metabolites (10), followed by palbociclib (9),
alisertib (6), and bleomycin (3) treatments. Thus, whereas a fewer number of metabolites
could be used to overcome glucose/nutrient deprivation in bleomycin-induced senescent
cells, which exhibited the greatest SASP activity (as measured by the reporter construct),
notably higher substrate diversity was evident in palbociclib- and doxorubicin-induced
senescent cells, which showed lower SASP activity (Figure 4B, right panel).



Nutrients 2022, 14, 3636 9 of 16

Nutrients 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

with the panel of senescence inducers, and utilized the IncuCyte® Live-Cell Analysis Sys-
tem to monitor real-time reporter activity (up to 10 days) (Figure 4A). Notably, we found 
significant differences in the ability of senescence-inducing agents to induce the reporter 
in a concentration- and time-dependent manner. Bleomycin was the most powerful in-
ducer, followed by alisertib, palbociclib, and doxorubicin, with the latter showing the least 
potency in A549 cells (Figure 4B, left panel). Flow cytometry analyses confirmed that ble-
omycin-treated cells showed a higher miR146a-related mean fluorescence intensity (MFI) 
than doxorubicin-treated ones (data not shown). 

 
Figure 4. Activation levels of the negative-feedback regulator of the SASP response, miR-146a, 
and diversity of nutritional rescue of glucose deprivation in therapy-induced senescence cells. 
(A) The miR146a-EGFP reporter detects senescence in A549 cells. The SASP-responsive miR146a-
EGFR reporter was transfected into A549 cells and TIS was induced through treatment with bleo-
mycin, alisertib, doxorubicin, and palbociclib. EGFP fluorescence was measured using either In-
cuCyte Zoom or flow cytometry. Acquisition and analysis of images was carried out using fully 
integrated algorithms in an IncuCyte S3 analysis system. (B) Left: kinetic plots of SASP-driven 
miR146a-EGFP reporter expression following senescence induction with bleomycin, alisertib, dox-
orubicin, and palbociclib. Right: correlation between SASP intensity and number of metabolites (as 
calculated in Figure 3A,B) circumventing glucose-deprived conditions following senescence induc-
tion with bleomycin, alisertib, doxorubicin, and palbociclib. 

Figure 4. Activation levels of the negative-feedback regulator of the SASP response, miR-146a,
and diversity of nutritional rescue of glucose deprivation in therapy-induced senescence cells.
(A) The miR146a-EGFP reporter detects senescence in A549 cells. The SASP-responsive miR146a-
EGFR reporter was transfected into A549 cells and TIS was induced through treatment with bleomycin,
alisertib, doxorubicin, and palbociclib. EGFP fluorescence was measured using either IncuCyte
Zoom or flow cytometry. Acquisition and analysis of images was carried out using fully integrated
algorithms in an IncuCyte S3 analysis system. (B) Left: kinetic plots of SASP-driven miR146a-EGFP
reporter expression following senescence induction with bleomycin, alisertib, doxorubicin, and
palbociclib. Right: correlation between SASP intensity and number of metabolites (as calculated
in Figure 3A,B) circumventing glucose-deprived conditions following senescence induction with
bleomycin, alisertib, doxorubicin, and palbociclib.

4. Discussion

Understanding the metabolic needs of cells that undergo TIS might help determine
what drives their paradoxical effects in vivo and provide new opportunities for ther-
apy [74–77]. We hypothesized that TIS cells under prolonged nutrient fluctuations metaboli-
cally adapt their scavenging and/or catabolic ability. We tested this in nutrient-limiting con-
ditions using an array format with almost 200 nutrients [55–60] to delineate the metabolic
fingerprints associated with mechanistically-diverse senescence triggers. We provide evi-
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dence of distinguishable TIS-associated nutrient consumption profiles involving a core set
of shared, but also of unique, nutritional sources after different senescence-inducing inter-
ventions. We suggest that the flexibility of TIS cells to use compensatory metabolites under
glucose-deficient conditions inversely correlates with the intensity of the SASP provoked
by TIS agents.

In a comparative analysis with proliferating cells, we evaluated the types of nutri-
tional substrates differentially utilized by TIS cells established under the four treatment
regimens, which revealed a shared bioenergetic under-utilization of glucose and glucose-
based saccharides and an over-utilization of glutamine. This suggests a common metabolic
reorganization in TIS cells of reduced oxidation of glucose and increased dependency
on glutamine. By measuring mitochondrial fuel usage, we confirmed that TIS cells dis-
played a notably lower requirement and ability to use glucose to meet metabolic demand
when attempting to compensate for BPTES-induced inhibition of glutamine oxidation.
Our findings are in line with previous studies that showed that glutamine consumption
and metabolism increase in several senescence states. For instance, senescence of human
fibroblasts induced by Nutlin3a, oxidative, replicative, and oncogene-related causes is obli-
gatorily accompanied by the up-regulation of glutaminase 1, a key mitochondrial enzyme
in the glutaminolysis pathway that converts glutamine into Krebs cycle metabolites [78].
Mitochondrial glutamine anaplerosis has also been shown to mediate senescence induction
following chemotherapy-induced DNA damage [79]. Intriguingly, the small subset of
cancer stem-like cells that can evade TIS after long periods of persistence in a dormant
state appear to similarly rely on glutamine metabolism [80,81]. These findings, altogether,
strongly support the targeting of glutaminolysis as a promising senolytic strategy for both
TIS cells and dormant senescent cells fueling tumor relapse [30].

We investigated both the common and exclusive nutrients that could serve as alter-
native sources under glucose/nutrient-restricted conditions to phenotype the metabolic
processes of TIS cells. Glutamine and glutamine-containing peptides formed the over-
lapping core of alternative nutrients scavenged and catabolized by all types of TIS cells
studied. From an ecological perspective, the metabolic redundancy within TIS “commu-
nities” indicates that individual “species” of TIS cell may not occupy a specific metabolic
niche (Figure 5). It should, however, be acknowledged that some types of TIS cells uti-
lized carbon/nitrogen sources that were not used by others, which hints at a senescence
trigger-dependent occupation of specific nutritional niches.
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Figure 5. Nutritional fingerprints of therapy-induced senescent cells: linking senescent pheno-
types to metabolic niches. Cells in a TIS state share several common features, such as changes in
morphology, increase in β-galactosidase activity, and activation of an inflammatory response. Under-
standing whether all types of senescent cells induced by exogenous therapeutic stresses are identical
or heterogeneous in terms of their metabolic needs might aid in achieving the goal of selectively
eliminating the deleterious effects of TIS cells. The recognition of inter-TIS heterogeneity in terms
of scavenging and catabolic ability contingent on nutrient availability might help to molecularly
understand and therapeutically exploit TIS phenotype-associated “communities” linked to contextual
micro-environmental nutritional cues in complex cancer and normal tissues.
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Glucose 1-phosphate, a key intermediate of the glucuronic acid pathway involved in
the conversion of galactose to glucose, synthesis of glycogen and glycosaminoglycans, and
metabolism and clearance of chemotherapeutic drugs via glucuronosylation [82–86], was
differentially employed by doxorubicin- and palbociclib-induced senescent cells. The non-
adenosine nucleosides, inosine and uridine, were exclusive nutritional sources for senescent
cells induced by the DNA-damaging drugs bleomycin and doxorubicin. Extracellular
inosine has recently been shown to relieve tumor-imposed metabolic restrictions on T-cells
by operating as an alternative substrate for cell growth and function of effector T-cells in
the absence of glucose [87]. Extracellular uridine has been shown to rescue nutrient stress
(glucose deprivation) in astrocytes and neurons [88,89], and was more recently reported to
be a compensatory metabolite in pancreatic cancer cells growing under nutrient-deficient
conditions [60]. The ribose moiety of inosine and uridine can be used as a carbon source
for central metabolic pathways, providing not only biosynthetic precursors for anabolic
proliferation (e.g., via nucleotide salvage), but also fueling energetic metabolism via routing
through the pentose-phosphate pathway and subsequent oxidative catabolism [60,87]. The
upregulation of nucleoside usage in diverse cell types including immune, cancer, and
now TIS cells, indicates that metabolic competition impacting both immunosuppression
and tumor progression might occur in interstitial tumor fluid where uridine levels are
highly enriched (up to millimolar levels) relative to their levels in serum [51]. Notably,
suppression of nucleotide synthesis, particularly that of pyrimidines such as uridine, is a
critical metabolomic adaption that plays a causative role in the establishment of replicative-
and oncogene-induced senescence [90,91]. Moreover, exogenous uridine has recently
been described as a pro-regenerative metabolite capable of reducing physiological and
pathological stem cell senescence and promoting tissue regeneration and repair [92]. As
TIS is not necessarily detrimental, the ability of DNA damage-induced senescent cells to
utilize nucleosides for cellular energetic needs in the absence of sufficient glucose might
be understood in terms of facilitating repair (including DNA repair) in tissues injured by
cancer therapy [93–95]. Although we recognize the limitations of extrapolating our in vitro
findings with a lung adenocarcinoma cell line to TIS in normal tissues, the senescence
response of A549 cells to DNA damage agents such as bleomycin was not very different
from that observed in normal alveolar epithelial cells [61].

Delayed induction of miR146a is a compensatory response that restrains the pro-
inflammatory expression and secretion of IL-6/IL-8 driven by the robust activation of
the IL-1α signaling pathway [72,73]. Thus, whereas ectopic expression of miR146a down-
regulates critical components of the IL-1α receptor pathway and suppresses IL-6/IL-8
secretion, cells undergoing senescence without induction of a robust SASP do not express
miR146a. Because this safeguard may be particularly important when the local concentra-
tion of SASP factors is high—for example, when senescence is induced after exposure to
chemotherapeutic agents—it is noteworthy that the higher the intensity of SASP-driven
induction of miR146a, the lower the number of compensatory nutritional niches utilizable
by TIS cells. This inverse correlation suggests that the SASP-related potency of a given TIS
agent might fine-tune the metabolic flexibility of the generated senescent cells to acquire
and use nutrients efficiently, thereby dictating the number and successful occupancy of dis-
crete nutritional niches (Figure 5). Mechanistically, if greater metabolic inflexibility relates
to disrupted inflammatory assuagement, we speculate that a certain degree of metabolic
flexibility, as an adaptation to energy resources and requirements of TIS cells, is necessary
for the mitigation of the SASP-related inflammatory processes. A majority of previous
studies have focused their efforts on the deregulation of nutritional sensors (e.g., mTOR,
AMPK, etc.) in the establishment of the senescent phenotype [96–100] and how correcting
those nutrient sensing pathways could promote senescent cell death [101–104]. However,
much less is known about the metabolic features, plasticity, and adaptation of TIS cells to
their respective microenvironments [30]. We now propose that unveiling the key drivers
linking SASP with the degree of metabolic (in)flexibility of TIS might reveal new targets for
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intervention strategies aimed to clinically manage tumor relapse and adverse side-effects
in cancer patients.

5. Conclusions

This is the first report, to our knowledge, showing that utilization patterns of different
carbon/nitrogen energy sources under compromised nutritional conditions vary across
different types of TIS cells, which would likely make them differentially responsive to
changes in their nutritional microenvironment. Whether the specific metabolic fingerprints
of TIS can be linked to tumor relapse and/or adverse effects warrants further investigation,
for example, using senescent cells from patient tissues. Nonetheless, application of the
Biolog metabolite phenotypic screening platform [96] enabled the rapid acquisition of
source-agnostic information about the nutrients utilized by TIS cells, which may enable a
more detailed exploration of the nutritional niches to understand and target TIS in cancer.
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of metabolite array from the PM-M2 microplate; Figure S1: comparison of substrate utilization by TIS
and proliferative cells; Figure S2: metabolic fingerprints of nutrients supporting bioenergetic activity
of TIS cells in the absence of glucose.
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