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Abstract

With climate change becoming more of concern, many ecologists are including

climate variables in their system and statistical models. The Standardized Pre-

cipitation Evapotranspiration Index (SPEI) is a drought index that has potential

advantages in modeling ecological response variables, including a flexible com-

putation of the index over different timescales. However, little development has

been made in terms of the choice of timescale for SPEI. We developed a Baye-

sian modeling approach for estimating the timescale for SPEI and demonstrated

its use in modeling wetland hydrologic dynamics in two different eras (i.e., his-

torical [pre-1970] and contemporary [post-2003]). Our goal was to determine

whether differences in climate between the two eras could explain changes in

the amount of water in wetlands. Our results showed that wetland water surface

areas tended to be larger in wetter conditions, but also changed less in response

to climate fluctuations in the contemporary era. We also found that the average

timescale parameter was greater in the historical period, compared with the

contemporary period. We were not able to determine whether this shift in

timescale was due to a change in the timing of wet–dry periods or whether it

was due to changes in the way wetlands responded to climate. Our results sug-

gest that perhaps some interaction between climate and hydrologic response

may be at work, and further analysis is needed to determine which has a stron-

ger influence. Despite this, we suggest that our modeling approach enabled us

to estimate the relevant timescale for SPEI and make inferences from those esti-

mates. Likewise, our approach provides a mechanism for using prior informa-

tion with future data to assess whether these patterns may continue over time.

We suggest that ecologists consider using temporally scalable climate indices in

conjunction with Bayesian analysis for assessing the role of climate in ecological

systems.

Introduction

With climate change becoming more of concern, many

ecologists are including climate variables in their system

and statistical models. Such efforts have included assess-

ing how species may respond to changes in climate (e.g.,

Niemuth et al. 2008), as well as how landscape features

that function as wildlife habitat, such as wetlands, might

respond to wetting and drying periods (e.g., Johnson

et al. 2005, 2010). For ecosystems, like wetlands, that

appear to respond to patterns of both drought and del-

uge, linking some aspect of system function to climatic

fluctuations is important for understanding habitat

dynamics (Anteau 2012). Typically, these patterns might

be inferred by relating a response variable to weather vari-

ables like temperature or precipitation (Forcey et al.

2011). Others have used indices that represent more com-

plex relationships between climate variables (e.g., Thog-

martin and McKann 2014). Indices, like the Palmer

Drought Severity Index (PDSI; Palmer 1965), have an

intuitive appeal in modeling responses to climate because

they represent departures from average conditions, where
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positive values indicate relative wetness and negative val-

ues indicate relative dryness. The PDSI, is also useful

because it relies on information about water balance (i.e.,

water inputs and evapotranspiration) to estimate those

departures. This can allow for modeling responses to

expected available moisture in a way that simply using

temperature or precipitation data does not.

While PDSI is a popular choice for an index, it may be

somewhat limited in its usefulness for those interested in

modeling systems responding to finer spatiotemporal

variability in climate. As others have pointed out, PDSI is

computed using a fixed time interval and is often most

useful for describing regional climate variability (Guttman

1998; Vicente-Serrano et al. 2010). For modeling phe-

nomena on a more local scale, some analytical flexibility

with regard to computing a climate index would be use-

ful. One index that seems to possess this flexibility is the

Standardized Precipitation Index (SPI). As the name

implies, SPI estimates departures from average precipita-

tion over time (McKee et al. 1993). This index can be

computed in both a spatially and temporally relevant

way, but it may be limited by the fact that it does not

model departures based on a water balance like the PDSI.

This could be a problem because both temperature and

precipitation interact to determine regional and local cli-

mate. As an improvement in drought modeling, Vicente-

Serrano et al. (2010) presented an alternative index called

the Standardized Precipitation Evapotranspiration Index

(SPEI). Their approach allows for estimation of a multi-

scalar index that captures departures from average condi-

tions using precipitation and potential evapotranspiration

over user-defined timescales. However, choice of timescale

seems to be left to expert knowledge or intuition. Perhaps

a more objective solution could be found by treating the

appropriate timescale as an unobservable parameter to be

estimated.

We explored this idea of estimating the timescale for

computing both SPI and SPEI with a case study focused

on understanding how wetland hydrology responds to

fluctuations and changes in climate. We based our analy-

sis on the data presented in McCauley et al. (2015), who

modeled wetland water surface area as a function of cli-

mate and land use variables. In their analysis, they used a

model selection approach to find an appropriate timescale

for SPEI, and then included that index in subsequent

models containing other variables. The variable selection

approach they used may be problematic because it does

not allow the analyst to explore all of the potential

parameter and variable combinations that are possible in

a model. Additionally, one does not have a flexible way

to assess whether the effect of climate may have changed

over time. One could accomplish this by specifying many

more model combinations with a different timescale

parameter in each model. But this approach would be

very cumbersome and would not necessarily allow one to

assess dynamics in climate as a model parameter.

Bayesian hierarchical models provide an alternative

approach that allows for the modeling of more complex

relationships between parameters in a model (Clark

2007). Likewise, the Bayesian approach treats all parame-

ters as random draws from distributions and thus focuses

on characterizing those distributions, rather than simply

generating point estimates. In this case study, we devel-

oped a hierarchical model for analyzing wetland water

surface areas as a function of SPEI-derived indices, where

the temporal scaling parameter was a variable to be esti-

mated. Much like the models of McCauley et al. (2015),

we considered variability of surface areas between two

eras, but we allowed the scaling parameter to vary

between the two periods. Our intent with this case study

was to estimate timescale parameters used in computing

drought indices, determine whether those parameters

were different between eras, and then draw inferences

about whether the estimates could help to explain some

of the variability we observed in wetland water surface

areas.

Materials and Methods

Our study was based on the work of McCauley et al.

(2015), which was focused on modeling variability of

hydroperiods, as indexed by water surface areas, in rela-

tively closed-basin wetlands called “potholes.” The wet-

lands in their study were located in the North Dakota,

U.S.A., portion of the “Prairie Pothole Region” (PPR) of

North America. The quality of these kinds of wetlands as

habitat appears to be related to hydroperiod (e.g., Snod-

grass et al. 2000), so any alterations of those hydroperiods

are likely to have effects on wetland-dependent wildlife

populations. Natural variation in water levels is known to

be caused by regional wetting and drying periods (Winter

and Rosenberry 1998; Johnson et al. 2004). However, cli-

mate on a smaller scale is likely to be highly variable

throughout the PPR, so modeling wetland responses to

climate requires capturing finer spatial and temporal vari-

ability in climate.

Study area and wetland selection

The procedure that McCauley et al. (2015) used for

selecting sample wetlands can also be found in Anteau

and Afton (2008). In general, they focused on two ecore-

gions within the larger PPR: Missouri River Coteau and

Northern Glaciated Plains. Sampling clusters were allo-

cated to each of the ecoregions depending on the size of

the region. This resulted in 6 and 14 sampling clusters in
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each of the ecoregions, respectively. They then randomly

selected three 94-km2 townships within each cluster and

randomly selected three wetlands from within each town-

ship. Our analysis was based on 147 wetlands ranging

from 0.5 to 750 ha.

Measuring wetland water surface area

McCauley et al. (2015) measured water surface areas in

wetlands using historical aerial photographs. In short,

they acquired photos of each wetland in all available years

prior to 1970 from digital (USGS Earth Explorer and

scanned photos from U.S. Fish and Wildlife Service) and

print (U.S. Department of Agriculture, Natural Resources

Conservation Service, and Farm Service Agency county

offices) sources. McCauley et al. (2015) surmised that

observed water surface areas in those images were less

affected by widespread wetland consolidation drainage.

They also obtained contemporary photographs from the

USDA National Agriculture Imagery Program for the

years spanning 2003–2010, except 2007 and 2008.

Observed surface areas from this era were thought to be

likely influenced by consolidation drainage (Anteau 2012;

McCauley et al. 2015). They digitized all imagery and

subsequent measurements of water surface areas were

made using ArcGIS v.10 (ESRI 2015; McCauley et al.

2015). They also made numerous assumptions when com-

puting surface areas. For example, when the water bound-

ary was not easily seen because it was hidden by emergent

vegetation, they interpolated the water area to the halfway

point between the visible water line and the outer edge of

the emergent vegetation. Additionally, when a road

crossed a wetland, they digitized the boundary of the wet-

land at the road.

Because these assumptions had the potential to under-

estimate wetland size, we decided to model water surface

area as the ratio of observable water surface area to basin

area. In essence, this meant that we were modeling change

in the relative area of water, rather than the absolute area.

We used basin areas that were computed by Wiltermuth

(2014). Stated simply, he defined wetland basins as topo-

graphic depressions that collect surface water and identi-

fied these depressions using high-resolution digital

elevation models (3 m pixel LiDAR or 5 m pixel InSAR).

He then used contour areas at the spill point elevation

for each basin to assign basin area values. As with water

surface areas, he truncated the size of basins bisected by

roads. This ensured that water surface areas for bisected

wetlands could, in practice, only be as large as the associ-

ated basin. While this does not correct for the issues

caused by truncating either area relative to the road, we

contend that focusing on the ratio of water area to basin

area (i.e., proportion area) potentially reduces some of

the problems associated with skewed absolute water sur-

face areas.

Estimating drought index

We calculated drought indices for each wetland using

temperature and precipitation estimates from the Parame-

ter-elevation Regressions on Independent Slopes Model

(PRISM Climate Group, Oregon State University). These

estimates were interpolated to a 2.5 arcmin grid using

digital elevation (DEM) and linear regression models that

relate weighted weather station observations to elevation

(Daly et al. 2008). We downloaded monthly precipitation

and minimum and maximum temperature values for

1895 to 2011 for each wetland. We used the SPEI as well

as the SPI in our analysis. For the calculation of SPEI, we

used the Hargreaves potential evapotranspiration equa-

tion (Hargreaves 1994), which uses precipitation and

minimum and maximum temperature values. As men-

tioned above, both indices require the specification of a

timescale for which the index should be computed. The

choice of this time parameter is then used in an autocor-

relation function to weight the amount of temporal

aggregation used in computing the index. It is this

amount of temporal aggregation, and the effect that has

on predicting proportion area, that we were primarily

interested in estimating for this study.

For our analysis, we assumed a uniform correlation

function and considered timescales ranging from 1 to

120 months for SPEI and 1 to 3 months for SPI. We con-

sidered these monthly steps because the PRISM estimates

within our date range were only available on a monthly

timescale. Because we used a hierarchical model, we could

have sampled SPEI and SPI as parameters from the distri-

butions specified in Vicente-Serrano et al. (2010). How-

ever, we computed each set of SPEI and SPI values using

the SPEI package in the R programming environment

(Beguera and Vicente-Serrano 2013) and then stored

those values. We then sampled from that range of values

using a model fitting algorithm described below.

Statistical analyses

We modeled our response variable using a Bayesian rep-

resentation of a hierarchical beta regression (Figueroa-

Z�u~niga et al. 2013). While it may be possible to use a

logistic regression to model continuous proportion data,

typical logistic regression packages (e.g., in R) assume the

data are binomially distributed (i.e., discrete and assume

values of zero or one). The beta distribution, on the other

hand, is a continuous distribution that assumes data are

distributed on the interval [0,1] (Bolker 2008). However,

the distribution is undefined at 0 or 1. For our data, digi-
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tization errors occasionally resulted in observations

greater than 1.0 and we did observe a few zeros. For these

cases, we recoded these observations as 0.99999 and 1 �
0.99999, respectively. These extreme observations made

up less than 5% of our data, so we regarded this transfor-

mation as having minimal effect on our inferences. Had

we made more 0 or 1 observations we would have used a

zero-inflated version of the beta likelihood (Ospina and

Ferrari 2012).

We assumed the model for our observations was:

yij �bðlij � /ij; ð1� lijÞ � /ijÞ, where l represented the

mean and / represented the dispersion parameter of the

beta distribution, i represented each wetland and j repre-

sented each observation year for each wetland. Because this

was a hierarchical model, we were able to model these two

parameters as functions of another model. In this case, we

modeled the mean with logitðlijÞ ¼ blXij þ ci þ dij, where
b represented a collection of regression parameters, c repre-
sented a wetland-specific random effect and d represented

residual error. We modeled the dispersion parameter with

logð/ijÞ ¼ b/Zij þ ei þ fij, where Z was a vector of ones, e
was a wetland-specific random effect and f represented

residual error. We assumed that all random effect terms

were normally distributed with a mean of zero and a vari-

ance term to be estimated. We parameterized the variance

terms as precision terms (i.e., s = 1/r), which allowed us to

model these terms assuming inverse-gamma distributions.

The model we used for l assumed an intercept, a term for

era (historical [pre-1970] and contemporary [post-2003]),

terms for both SPEI and SPI, an interaction between era

and SPEI, an interaction between SPEI and SPI and a

three-way interaction between SPEI, SPI, and era.

We considered the era term because we assumed the

proportion area would be higher in the contemporary

era, compared with the historical era. We considered the

interaction between SPEI and SPI because we assumed

that wetter periods in the short term (SPI) might have a

larger effect during a drier period over the longer term

(SPEI). We considered the interaction between SPEI and

era because we expected that the response to long-term

climate would be different between eras. Lastly, we con-

sidered the three-way interaction because we expected the

short- and long-term climate response to vary by era as

well. Again, we assumed that the timescale t for the cli-

mate indices was also a parameter to be estimated condi-

tional on all of the other model parameters. We assumed

regular uninformative normal and gamma priors on

regression parameters and an uninformative Dirichlet

prior on t.

We fit this model using Markov Chain Monte Carlo

(MCMC) simulation and wrote the algorithm in the R

programming environment (R Core Team 2015). We

used a combination of Gibbs sampling, which simulates

draws from the full conditional posterior distribution

(i.e., likelihood 9 prior) and Metropolis–Hastings (M-H)

updating, when the full conditional could not be

calculated. In essence, the algorithm proceeded this way:

(1) Use M-H to propose new values for each li;j or /i;j

and accept or reject based on the posterior; (2) use

Gibbs sampling to update all of the regression parame-

ters; (3) use M-H to propose new values of t for each

era and index (1–120 for SPEI and 1–3 for SPI) and

accept or reject based on the posterior; (4) go back to

the step 1.

Models fit with this type of algorithm are typically

summarized by computing statistics based on one or

more Markov chains with different starting values. We

ran three separate chains each with a 10,000 iteration

burn-in period to allow the algorithm to settle into a sta-

tionary sampling distribution, after which, we ran each

chain for an additional 100,000 iterations. We then

thinned each chain to every 100th iteration to reduce

serial autocorrelation and computed Gelman–Rubin diag-

nostics to assure convergence (Gilks et al. 1995). We then

combined the chains and summarized them by comput-

ing summary statistics for each posterior parameter distri-

bution. We also diagnosed model fit by simulating data

from the posterior parameter distributions and then

regressing the simulated data against our actual observa-

tions. We did this assuming both “fixed effects" (mar-

ginal) and “random effects" (conditional). We report

model fit statistics as the coefficients of determination

(R2) under both the marginal and conditional cases.

Results

The wetlands we analyzed in our study showed a general

trend toward being less full in the historical era

(mean = 0.34 ha, SD = 0.27) compared with the con-

temporary era (mean = 0.59 ha, SD = 0.27). Annual

summaries of the temperature information used in com-

puting our monthly climate indices did show a slight

increasing average annual trend for both minimum tem-

perature and for precipitation (Fig. 1). The parameter

estimates from our model suggested that era and SPEI

were useful variables in predicting the proportion of a

basin’s area that was covered with water, whereas SPI had

a very weak and uncertain relationship with our response

variable (Table 1). All further summaries and predictions

were made assuming that SPI was held at its mean value.

The mean estimate of the model’s marginal predictive

performance was R2
marginal = 0.16. The model’s conditional

predictive performance showed some improvement

(R2
conditional = 0.61), which indicates additional sources of

variation in the observed pattern for our response vari-

able.
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Figure 1. Summary of weather information for a set of sample wetlands in North Dakota. These summaries were generated from interpolated

temperature and precipitation values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). The top panel shows total

annual precipitation in millimeters, while the bottom panel shows the annual mean of average monthly high temperature (red line) and average

monthly low temperature (green line). Monthly values of these three measurements were used in calculating potential evapotranspiration.

Table 1. Model parameter table showing posterior distribution summary statistics for a beta regression explaining variation in the proportion of a

wetland basin covered with water in North Dakota, U.S.A. The distributions were summarized by their means, standard errors, and 95% quan-

tiles. The b and / terms represent regression parameters for mean (logit scale) and dispersion (log scale) parameters of a beta distribution, respec-

tively. The ss represent precision terms (i.e., inverse of the variance), and ts represent the timescale parameter for computing two indices:

Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI).

Mean SE 2.5% 97.5%

b0 �0.62 0.13 �0.89 �0.38

bera 0.65 0.12 0.38 0.85

bSPEI 0.68 0.06 0.56 0.79

bSPI �0.02 0.03 �0.08 0.04

bSPEI � era �0.32 0.08 �0.48 �0.14

bSPEI � SPI �0.00 0.04 �0.09 0.08

bSPEI � SPI � period 0.00 0.05 �0.10 0.10

sc 19.70 4.51 12.92 30.45

sd 0.51 0.06 0.39 0.64

log(/) 3.65 0.14 3.38 3.95

se 0.20 0.02 0.16 0.24

sf 0.51 0.06 0.39 0.64

tSPEIhistorical 83.75 18.24 49.00 118.00

tSPEIcontemporary 63.96 15.27 39.00 92.00

tSPI 2.03 0.85 1.00 3.00
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Examining the parameter estimates showed that the

proportion of a wetland’s area that was covered with

water positively varied with SPEI, suggesting that drier

periods resulted in lower proportions and wetter periods

resulted in higher proportions. Likewise, wetlands in the

contemporary era appeared to have a larger proportion of

their basin areas covered with water compared to the his-

torical era. The degree of change in these proportions in

response to changes in SPEI also appeared to vary

between the two eras. Wetlands tended to be more full,

but less responsive to SPEI during the post-2003 then the

pre-1970 era (Fig. 2).

On average, the scaling of SPEI also varied between the

two eras (Table 1), although there was considerable

uncertainty around the mean of each distribution. Despite

this, there appeared to be enough information in the data

to estimate a posterior distribution that was considerably

different than the uniform prior that we specified (Fig. 3).

The distributional plots also showed clear shifts in the

modes of each distribution, which indicated that a shorter

timescale fit the data better in the contemporary era com-

pared with the historical era.

One potential reason for the effect of era on both the

estimated response to climate and the shift in t could be

that the historical era was drier than the contemporary

era. To analyze this, we computed a weighted climate

index, which was simply the sum of each possible index

weighted by the likelihood of that index from our esti-

mated distribution. We then regressed that index accord-

ing to the era and the region which corresponded to that

index. The results of this post hoc analysis suggested that

the west-central part of North Dakota (Missouri River

Coteau region) shifted from being drier to being wetter,

whereas the eastern part of the state (Northern Glaciated

Plains region) showed a similar, but more exaggerated,

pattern (Fig. 4). Interestingly, we did try fitting a region

parameter in our beta regression model, but those esti-

mates did not explain any variation in the data. Spatial

plots of our weighted index for the month of August, for

example, confirmed the regional wetting pattern, but also

showed that the index was more spatially variable histori-

cally (Fig. 5).

Using this same weighted climate index, we predicted

the expected proportion of a basin to be covered with

water using one of the wetlands from our sample as an

example (Fig. 6). In general, the predicted patterns sug-

gested that the amount of water covering a wetland his-

torically tended to respond much more strongly to both

dry and wet periods. Under more contemporary condi-

tions, there were somewhat similar relative fluctuations in

water surface area, but overall wetlands were much fuller,

and responded over slightly shorter time periods com-

pared with historical dynamics.

Discussion

Our work suggests that differences in climate may be

responsible for some, but not all, of the dynamics we

observed in the amount of water that wetland basins

hold. The relationship between water areas and relative

wetness and dryness was very similar to those already

observed and reported in McCauley et al. (2015). Their

work used a constant timescale parameter of ten years for

SPEI in their model of water surface areas, but they did

report that when conducting exploratory analyses shorter

timescales tended to better explain more contemporary

observations. However, they suggested that the range of

values computed for drought indices were similar, and

thus, climates between periods were similar. Our analysis,

on the other hand, formalized the estimation of a change

in climate scaling, rather than selecting this parameter in

a step-wise fashion. As a result, we were able to estimate

the degree of shift in the scaling parameter and draw

inference from that parameter. What our results suggest

is that it now takes a slightly shorter period of accumula-

tion of wet and dry periods over time to affect the

hydroperiods of wetlands compared to the past. The fact

that it may take multiple years to affect a change in water

conditions for wetlands with long hydroperiods is not

surprising given that other work shows that water condi-

tions tend to be correlated with conditions in previous

years (Niemuth et al. 2010; Huang et al. 2011). This sug-

Drought index (SPEI)

P
ro

po
rt

io
n 

ba
si

n 
ar

ea

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Predicted relationship between the observed proportion of

a wetland basin that was covered with water and Standardized

Precipitation Evapotranspiration Index in North Dakota, U.S.A. The

thin black line represents the posterior mean relationship for

observations made prior to 1970 and the thicker lines represent 95%

Bayesian credible intervals. The gray lines represent the average

relationship for observations made after 2003.
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gests that moisture deficits accumulated over years might

be more useful in predicting surface areas in wetlands

within more closed basins. But there may also be more

inference to be made based on the scaling parameter. One

way to interpret the timescale used in the calculation of

SPEI may be the degree to which surface inputs or con-

nection to groundwater explain variation in hydroperiods

(e.g., Skøien et al. 2003).

Others have pointed out that groundwater interactions

with permanent and semipermanent wetlands are com-

plex, but that such groundwater interaction could attenu-

ate the influence of dry periods (LaBaugh et al. 1996,

1998). In addition, deeper groundwater in this region has

been reported to move as slowly 0.0006 m year�1 (Sloan

1972), but shallower groundwater might move much fas-

ter (e.g., 1000 m year�1 van der Kamp and Hayashi

2009). Given the change in timescale between the histori-

cal and the contemporary observations, our results would

suggest that our wetlands have become slightly more

influenced by surface inputs, such as drainage water. This

finding is consistent with the expectation that more drai-

nage of wetlands in a landscape could lead to more con-

solidated wetlands that are larger and less responsive to

wetting or drying periods (Anteau 2012; McCauley et al.

2015).

On the other hand, our results may suggest that the

relative change in the amount of water a wetland holds

under dry or wet conditions may be because of changes

in climate variability. We suggest that the scaling parame-

ter is a potentially useful indicator of the degree of varia-

tion in wet and dry periods. In other words, as the

timescale parameter decreases the degree of variability

represented by the index also generally increases. Larger

values of the timescale parameter tend to average over

much of this variability. A change in this parameter

could, thus, represent a shift in the periodicity of fluctua-

tions between wet and dry periods over the longer term.

Our finding that average index values have shifted
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Figure 3. Posterior distributions for the temporal scaling parameter t, used in computing the relationship between the proportion of a wetland

basin that was covered with water and the Standardized Precipitation Evapotranspiration Index. The top panel represents the estimated

distribution for the historical period (i.e., pre-1970) and the lower panel represents the estimated distribution for the contemporary period (post-

2003). The height of the bars represents the relative frequency with which certain values of t were chosen in our analysis. The thin red line

represents the expected frequency under a uniform prior distribution. The parameter t was modeled as a discrete distribution in monthly
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distributions for presentation.
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between eras and regions may indicate that perhaps the

differences in climate between eras might be responsible

for the variability we observed in water surface areas.

That is, the PPR portion of North Dakota may be experi-

encing wetter periods, which may raise water tables in

this region. Raised water tables could result in wetlands

having more groundwater connection, which could

increase and stabilize water surface areas. However, one

cannot rule out the fact that our results could have been

caused by the asymmetric distribution of our observations

between eras. The observations that McCauley et al.

(2015) made in the historical period spanned about

32 years, whereas the observations in the contemporary

period only spanned 7 years. Thus, the data for the con-

temporary period may not span enough time to deter-

mine whether there was an actual change in average

climate. The relative strength of our results suggests that

there were additional sources of variation in wetland

water levels. One potentially strong source was found by

McCauley et al. (2015), who were able to link increased

water surface areas and attenuated responses to SPEI to

land use parameters. These findings support that idea of

increased wetland drainage and increased surface inputs

causing some of the changes in water level responses

between eras.

Despite not conclusively being able to address the ques-

tion of climate shifts, the Bayesian nature of our analysis
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Figure 4. Plot of average Standardized Precipitation Evapotranspiration

Index values (�95% BCI) computed for sample wetlands in two

different regions of North Dakota (Missouri River Coteau and Northern

Glaciated Plains) in a historical era (pre-1970) and a contemporary era
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Figure 5. Example of weighted Standardized Precipitation Evapo-

transpiration Index (SPEI) values for North Dakota, U.S.A. (black outline)

for the month of August in the year 1980 (top) and 2011 (bottom). The

SPEI values were computed using parameter-elevation regressions on

independent slopes model output and a distribution of timescale values

(see Fig. 3).
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would allow us to improve our inferences over time. We

could, for example, treat our current parameter estimates

and predictions as priors for further analysis. This means

that we could collect more data in the future from other

wetlands within North Dakota and use these data to

update our estimates over time. Such an approach would

have the advantage of more closely mirroring how we as

scientists learn from data and would also improve the

precision and accuracy of estimates through time. One

would also not have to completely reanalyze an entire

dataset, but could instead focus on how much informa-

tion new data actually contain. The analytical framework

we developed here also allowed us to improve upon pre-

vious studies using this index (e.g., Vicente-Serrano et al.

2012, 2013) by treating the timescale as an unobservable

parameter to be estimated. We contend that our approach

is more informative than using variable selection proce-

dures or simply choosing a value in an ad hoc fashion,

because such approaches do not make distributional

assumptions, and subsequently do not allow for the inclu-

sion of prior information and learning. We suggest that

further improvements should include modeling timescale

as a temporally continuous parameter, so one can identify

when climate changes are likely occurring based on rela-

tionships found in data.

One final benefit we noted in using our approach was

that it essentially allowed the amount of temporal auto-

correlation in the index to be estimated relative to its

explanatory value given the data. For the system we ana-

lyzed in this study, we expected a potentially high degree

of autocorrelation would help explain variation in wet-

land water surface areas. But this may not be the case for

other systems. For instance, those systems that respond to

more seasonal climate phenomena might require shorter

nonoverlapping timescales. One could accomplish this by

simply setting different prior assumptions on the distribu-

tion of timescale values and then estimating the posterior

distribution for timescales, as we did in our analysis. We

suggest that modeling approaches, like the one we present

here, along with the spatial and temporal flexibility that

SPEI offers, be considered as part of the toolbox for

understanding how ecological systems respond to climate.
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