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Simple Summary: Amyloid aggregation of proteins in disease has been known for over a hundred
years; however, effective therapeutics for amyloid pathologies such as Alzheimer’s disease and
Parkinson’s disease are still lacking. This review divides the amyloid phenomenon into four major
questions: What are amyloids? How do amyloids form? Can proteins replicate? How do amyloids cause
toxicity? The aim is to answer these questions within a unified physicochemical framework that
links the structural biology of amyloids to the thermodynamics of amyloid formation and the
pathophysiology of amyloid aggregates in different diseases. We illustrate that the thermodynamics
of protein aggregation does not support the prion protein-only replication hypothesis, and how the
structural biology of amyloids makes them largely domainless, generic, and inert. The implications
of this understanding for the etiology, pathogenesis and potential therapeutics of amyloid diseases
are briefly discussed.

Abstract: Protein aggregation into amyloid fibrils affects many proteins in a variety of diseases,
including neurodegenerative disorders, diabetes, and cancer. Physicochemically, amyloid formation
is a phase transition process, where soluble proteins are transformed into solid fibrils with the
characteristic cross-β conformation responsible for their fibrillar morphology. This phase transition
proceeds via an initial, rate-limiting nucleation step followed by rapid growth. Several well-defined
nucleation pathways exist, including homogenous nucleation (HON), which proceeds spontaneously;
heterogeneous nucleation (HEN), which is catalyzed by surfaces; and seeding via preformed nuclei.
It has been hypothesized that amyloid aggregation represents a protein-only (nucleic-acid free)
replication mechanism that involves transmission of structural information via conformational
templating (the prion hypothesis). While the prion hypothesis still lacks mechanistic support, it is
also incompatible with the fact that proteins can be induced to form amyloids in the absence of a
proteinaceous species acting as a conformational template as in the case of HEN, which can be induced
by lipid membranes (including viral envelopes) or polysaccharides. Additionally, while amyloids can
be formed from any protein sequence and via different nucleation pathways, they invariably adopt
the universal cross-β conformation; suggesting that such conformational change is a spontaneous
folding event that is thermodynamically favorable under the conditions of supersaturation and phase
transition and not a templated replication process. Finally, as the high stability of amyloids renders
them relatively inert, toxicity in some amyloid pathologies might be more dependent on the loss of
function from protein sequestration in the amyloid state rather than direct toxicity from the amyloid
plaques themselves.
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1. What Are Amyloids?

Proteins, like any other molecules, can exist in different states or phases depending on
their packing density. Similar to gas, liquid, and solid phases of water, for example, (water
vapor, liquid water, and ice), proteins can be soluble or colloidally dispersed in the aqueous
biological environment, concentrated in liquid droplets that form a separate liquid phase
within the aqueous environment, or in a tightly packed solid state. The liquid–liquid phase
separation of proteins has been intensively investigated and reviewed recently [1,2]. Here,
we focus on amyloids as specific form of protein solids.

There are two main types of protein solids that form in-vivo:

1. Fibrous proteins, such as actin, elastin, and collagen;
2. Amyloids, which are associated with many human diseases.

While both types of in vivo protein solids share similar physicochemical mechanisms
of formation (nucleation and growth, see below), they differ in many fundamental ways.
Fibrous proteins, such as actin or collagen fibers, are formed from a specific group of pro-
teins, where the monomers (for examples G-actin and tropocollagen for actin and collagen
fibers, respectively) are natively folded before assembling into fibers in a controlled and
reversible manner, which involves energy-dependent processes (enzymes and ATP) [3–5].
In contrast, amyloid fibrils can be formed by almost any amino acid sequence, from glob-
ular nonfibrous proteins, such as myoglobin [6], insulin [7], and albumin, [8] to simple
polylysines, polyglutamates, and polythreonines sequences [9]. Such generic nature- and
sequence-independence indicate that the architecture of the amyloid state is not encoded in
the primary sequence of proteins [10–13]. Unlike native protein folding, which depends
on specific intramolecular interactions between the side chains of a particular sequence, the
structure of the amyloid state is dominated by intermolecular interactions via the backbone
that is common to all proteins. Consequently, amyloids from different proteins possess a
common core conformation, the cross-β conformation, where intermolecular β-sheets pair
tightly together with their side chains interdigitating (like zipper teeth) excluding water
to form the so-called “dry steric zipper” (Figure 1) [14–18]. The intermolecular β-sheets
form via a generic interbackbone hydrogen-bonding network between the amide N-H
and C=O groups of adjacent protein molecules [19] and can comprise up to thousands
of molecules extending for µm distances [14]. Within the β-sheet ladder, β strands are
spaced 4.8 A◦ and the distance between opposite β sheets are in the range of 6–12 A◦

(Figure 1), which gives rise to the characteristic amyloid X-ray diffraction pattern with
meridional and equatorial reflections of similar values, respectively [16,18]. Extended
ladders of interdigitating β-sheet pairs form the core spine of the superstructural subunit of
amyloids, the protofilament. A protofilament can accommodate a single or multiple steric
zippers in different arrangements with different mating/interdigitation options between
the side chains of the constituting ladders [15]. Protofilaments further associate laterally
into fibrils, which further associate and precipitate as insoluble plaques, characteristic of
tissues affected by amyloidosis [20].
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Another major difference between native protein folding and the cross-β conformation
of amyloids is that the interdigitation of side chains between β-sheet ladders generally
deprives amyloids from any characteristic domains. Additionally, the extensive, hierarchi-
cal self-interaction (ladders within zippers, zippers within protofilaments, protofilaments
within fibrils, and fibrils within plaques) makes amyloids very stable and, consequently,
extremely difficult to solubilize and relatively inert. The aggregated, plaque nature of amy-
loids is, again, in contrast with functional fibrous proteins which assemble in well-defined
networks by accessory proteins [23]. The difference between functional fibrous proteins
and amyloids is summarized in Table 1.

Table 1. The differences between fibrous proteins and amyloid fibrils.

Fibrous Proteins Amyloid Fibrils

Specific proteins Any protein sequence
Monomers assemble in their native conformation via specific

intramolecular sidechain-based interactions
Proteins assemble into in cross-β conformation via generic

intermolecular backbone interactions
Functional domains remain accessible Majority of functional domains are buried in steric zippers

Form well-defined networks Precipitate into plaques
Controlled nucleation and growth via structural elements

(proline and glycine rich), capping proteins,
specific nucleators, enzymes and ATP

Uncontrolled

Reversible Irreversible

Despite the universal cross-β conformation of any amyloid, the difference in number or
arrangement of steric zippers within a protofilament and/or the number and arrangement
of protofilaments within a fibril result in different polymorphs. Unlike the cross-β confor-
mation which is structurally encoded in any protein sequence via generic inter-backbone
hydrogen-bonding, polymorphism is dependent on environmental factors such as tempera-
ture, pH, concentration, and shaking; extrinsic factors that are not structurally encoded [24].
For example, with the same sequence, different polymorphic shapes of Aβ40 fibrils can
be produced in quiescent versus agitating conditions [25], and the presence or absence of
polyanions leads to the production of different polymorphs of α-synuclein fibrils [26]. The
interaction between environmental factors and the protein sequence affects polymorphism
by affecting the patterns of β-sheet ladder stacking and zipper interdigitation, which can
also lead to different polymorphs of different sequences under same conditions [15].

As proteins have the information to fold natively in the primary sequence of side chains
(Anfinsen’s dogma [27,28]), they also holds the necessary information to form the cross-
β conformation based intermolecular backbone interactions, which requires molecular
proximity. This is why amyloid formation requires supersaturated conditions and the
likelihood of a protein forming an amyloid increases with concentration [29,30]. Above
a certain concentration, the molecular proximity renders the intermolecular interactions
more favorable than intramolecular interactions responsible for native folding, leading
to amyloid formation. This intermolecular interaction will result in molecular packing,
phase transition, and precipitation out of the aqueous biological environment. Such phase
transition is a spontaneous (exergonic) reaction at supersaturated conditions but will
require crossing a thermodynamic barrier, the nucleation barrier.

2. How Do Amyloids Form?

Amyloid formation is essentially a process of protein crystallization [30,31]. The
difference between the formation of protein crystals ex vivo for structural determination
and amyloid formation is that amyloids always adopt a single conformation, the cross-β,
while protein crystals hold protein monomers in their native conformation. Otherwise, the
physicochemical processes underlying protein crystallization and amyloid formation are
similar in terms of the thermodynamic and kinetic parameters governing both. According
to the second law of thermodynamics and Gibbs free energy equation, the unfavorable
decrease in entropy (increase in order) due to the formation of an ordered solid (crys-



Biology 2022, 11, 535 4 of 14

tal/amyloid) is overcome by an increase of the entropy of the solvent (water) due to its
expulsion out of the crystalline structure or amyloid fibrils [32–34]. A similarity can be
traced to the processes that underlie hydrophobic effect, which governs many processes in
nature, including protein folding [34–36]. In addition to this entropic driving force, amyloid
formation is exothermic [37,38], which adds an enthalpic component to the driving force
for amyloid phase transition. The Gibbs free energy equation of this process is as follow:

∆Gamyl = ∆Hamyl − T
(
∆Sprotein + ∆Ssolvent

)
(1)

where ∆Gamyl is the free energy for amyloid formation, ∆Hamyl is the enthalpy for amyloid
formation, T is the temperature, ∆Sprotein is the soluble protein entropy, and ∆Ssolvent the
solvent entropy.

At a certain level of supersaturation, amyloid formation becomes thermodynamically
favorable; however, phase transition will not proceed unless a nucleation barrier is over-
come. According to the widely accepted classical nucleation theory, the initial formation
of a solid phase within a liquid phase requires overcoming the interfacial energy cost of
creating a new interface between the solid phase (amyloid in this case) and the liquid (aque-
ous environment) [39,40]. Overcoming this barrier requires the formation of a nucleus of a
certain size (of radius r). Below this radius, nuclei will dissociate back to monomers, and
only above it, the system will proceed into phase transition into a solid (Figure 2) [41,42].
With the addition of the nucleation barrier, the free energy equation of amyloid formation
becomes as follows:

∆Gamyl = ∆Hamyl − T
(
∆Sprotein + ∆Ssolvent

)
+ 4π r2 σ (2)

where r is the radius of the nucleus and σ is the surface tension of the interface between
the nucleus and the solvent. While a nucleus of the right size can spontaneously form
at very high supersaturations via a process termed homogenous nucleation (HON), in
practice, nucleation usually takes place at interfaces via a process termed heterogenous
nucleation (HEN), where the surface helps lower the energy barrier to nucleation by acting
as a nucleation site, sparing the interfacial energy required to form new interface in the
bulk of the fluid (Figure 2). HEN adds a new term to the equation which is a function
of the wetting angle (θ) between the protein and the surface, according to the spherical
cap approximation model [42,43]. The free energy equation of HEN can be described
as follows:

∆GHEN = ∆Hamyl − T
(
∆Sprotein + ∆Ssolvent

)
+

(
4π r2 σ × f (θ)

)
where θ is the wetting angle between the protein and the surface and f (θ) = 2−3 cosθ+cos3 θ

4 .
Thus, the final equation of HEN becomes:

∆GHEN = ∆Hamyl − T
(
∆Sprotein + ∆Ssolvent

)
+

(
4π r2 σ × 2 − 3 cosθ + cos3 θ

4
)

The higher the affinity of the protein to the surface, the lower the wetting angle θ,
which will lead to more significant reduction of the nucleation barrier. In this regard,
numerous interfaces have been shown to induce amyloid nucleation of proteins via HEN.
Interfaces such as lipid surfaces [44–47], nanoparticles [48–50], and viruses [51], in addition
to polymer surfaces, such as heparin, glycosaminoglycans [52,53], and nucleic acids, [54]
have been shown to facilitate amyloid nucleation. The growing fibril surface itself can
serve as a site for HEN, in a phenomenon termed secondary nucleation [55]. Additionally,
container surfaces and even air bubbles that result from sonication, agitation, or mechanical
stress can lead to amyloid formation of pharmaceutical proteins, such as insulin, during
production, transportation, or administration, significantly diminishing its activity [56,57].
The wide variety of interfaces that can facilitate amyloid nucleation indicate the high
potency of HEN as the major pathway of amyloid nucleation. In addition to the HON and
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HEN pathways, the introduction of a preformed nucleus will trigger phase transition by
eliminating the nucleation barrier altogether, in a process termed seeding. However, seeds
can also facilitate nucleation via HEN by acting as promiscuous surfaces [58]. Seeding and
HEN pathways are demonstrated for the crystallization of a supersaturated solution of
sodium acetate in video 1 (https://youtu.be/e82suzAi3sA (accessed on 15 February 2022)).
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Figure 2. Energy landscape of protein folding. Under unsaturated and saturated conditions, proteins
assume their thermodynamically favorable, native conformation based on specific interactions
between the sidechains constituting their primary sequence. Under supersaturated conditions,
molecular proximity render generic intermolecular backbone interactions more likely; however,
phase transition into amyloids will not take place unless a nucleation barrier is crossed. A nucleus of
certain size needs to be formed, smaller nuclei dissociate back into monomers, while larger nuclei
will trigger phase transition. Nucleation can be triggered by addition of preformed nuclei (seeding)
or catalyzed by surfaces, which will lower the energy barrier to nucleation (HEN).

Nucleation and growth are also essential for the formation of fibrous functional
proteins such as actin and collagen; however, in a more controlled manner. To prevent
random nucleation, collagen monomers, for example, include propeptides that need to be
cleaved by special proteinases to generate tropocollagen monomers, which are then able to
nucleate and grow into fibers [5]. In the case of actin, the G-actin monomer is protected by
accessory proteins such as profilin, which require enzymatic cleavage before nucleation and
assembly into actin fibers (F-actin) [4]. Moreover, several dedicated, enzymatically activated
nucleator protein complexes, such as the Arp2/3 complex, spire, and formin, are present to
facilitate and control actin nucleation via HEN [59,60]. Formation of higher-order networks,
and disassembly and degradation of such fibrous proteins are also well-controlled via
accessory proteins and enzymatic processes [23,61,62]. In addition to such energy intensive
(ATP) control mechanisms of nucleation and growth, fibrous proteins harbor high proline
and glycine content, which reduces the potential of forming amyloid fibrils [5,63,64]. Taken

https://youtu.be/e82suzAi3sA
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together, while biology made use of the thermodynamics of nucleation and growth to
produce functional fibrous proteins, it also evolved structural and energy-dependent
mechanisms to control this process and prevent uncontrolled or irreversible amyloid fibril
formation. Such control mechanisms are lacking in amyloid aggregation, where the process
is solely dominated by thermodynamic forces (Table 1). Thus, after the nucleation barrier
has been crossed, amyloid formation becomes spontaneous and irreversible, and will
continue until all the available substrate is transformed into plaques, a process similar to
crystallization video 1 (https://youtu.be/e82suzAi3sA (accessed on 15 February 2022)).

3. Can Proteins Replicate?

Long before the structural properties and kinetics of amyloid formation were under-
stood, amyloids involved in neurodegenerative diseases such as Kuru and Creutzfeldt-
Jacob disease were hypothesized to be “proteins that acquire alternative conformations
that become self-propagating”, and labelled as proteinaceous infectious particles, or pri-
ons [65]. Prions were assumed to encode conformational information, come in different
“strains”, and act as corruptive templates that incite a chain-reaction of misfolding and
aggregation [66]. However, nearly 40 years after the inception of the prion hypothesis,
(also known as the protein-only hypothesis), many fundamental questions regarding the
mechanism of replication and drivers of toxicity remain unanswered [67]. Moreover, the
current knowledge about the structure and thermodynamics of amyloid formation do not
support the initial assumptions of the prion hypothesis.

Proteins hold the necessary information both for their native folding conformation and
for the amyloid cross-β conformation in the primary side chain sequence and the backbone,
respectively. Neither of these conformational states requires templating. While a protein
adopts its native conformation at lower concentration, adopting the cross-β conformation
depends on the degree of supersaturation and the availability of nucleating agents and not
on the presence of another protein particle that acts a conformational template. This fact
is illustrated clearly by the ability of lipid surfaces, nanoparticles, and viruses to catalyze
the formation of amyloids from supersaturated protein solutions via HEN in absence of
any protein seed template. Supersaturation provides the molecular proximity required for
favoring generic intermolecular backbone interactions over specific intramolecular side-
chain interactions, and interfaces can offer a surface to nucleate upon, which enables the
crossing of the nucleation barrier. Once the nucleation barrier is crossed, amyloid formation
proceeds spontaneously, leading to precipitation of the available soluble protein substrate
into insoluble plaques. The uncontrolled nature of this process and the accessibility of
the cross-β conformation to any sequence or sequence combinations is responsible for
polymorphism, which is dependent on the environmental conditions that favor different
ladder, steric zipper and protofilament arrangements. Such sensitivity to environmental
factors leads to polymorphic heterogeneity and great intra and inter sample variability [24].

Polymorphism is hypothesized to underlie the phenomenon of prion “strains”, where
certain protofilament or fibrillar polymorphs can induce the formation of homogenous
plaques, composed solely of protofilaments or fibrils of a morphology similar to the mor-
phology of the seeding “template” via elongation at the seed fibril ends. However, no
definitive structural evidence for these presumptions has come forward, and the “strain-
ness” of prions is still diagnosed using such tools as differential resistance to disaggregation
and proteolysis [67]. Additionally, there is no thermodynamic basis, in terms of energies
and driving forces, for a natively folded soluble protein to exit its thermodynamically stable
conformation to bind on top of an amyloid fibril or for a specific fibrillar seed to be able to
template its morphology onto soluble protein molecules in a repetitive, “self-propagating”
manner. As reviewed above, the process of amyloid formation is a spontaneous phase
transition under supersaturated conditions after crossing the nucleation barrier. Therefore,
a particular seed morphology cannot control nor steer such a spontaneous process. The
end result is a multitude of polymorphs that are not structurally encoded in the seed, but
instead depend on the microenvironmental conditions [68]. This is further compounded by

https://youtu.be/e82suzAi3sA
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the fact that seeds and fibrils can induce HEN via their surfaces and not only via monomer
addition to their tips, leading to cross seeding or secondary nucleation. In both cases,
there is no mechanism by which the seed can restrict growth to the tips instead of HEN on
the surface.

Polymorphs depend on the recipient conditions, not on donor seeds. Prions are compared
to DNA as an alternative way of transmission of biological information. However, the
spontaneous (exergonic) nature of amyloid formation is in contrast to the non-spontaneous
(endergonic) nature of DNA replication, which involves continuous energy input in the
form of deoxynucleoside triphosphate (dNTP) hydrolysis together with extensive and
strict enzymatic control of every step of replication. An example to illustrate the difference
between endergonic DNA replication and exergonic amyloid phase transition is demon-
strated in Figure 3, where an oligonucleotide and a peptide at high concentrations are
treated with nucleating surfaces such as nanoparticles or viruses. The oligonucleotide
will not be able to replicate the information in its sequence as it requires enzymes and
continuous energy supply from dNTPs. However, the peptide can readily precipitate into
amyloids via the spontaneous process of phase transition, where the driving force is the free
energy difference between the soluble and the solid state under supersaturated conditions
(see above). All that is required is crossing the nucleation barrier, which can be achieved
by HEN, seeding, or by simply increasing the peptide concentration to facilitate HON. All
these pathways will lead to the generic intermolecular cross-β conformation, which is the
amyloid conformation encoded in the protein backbone structure and does not need to be
templated or transferred. Polymorphism on the other hand is dependent on factors in the
recipient environment that are not structurally encoded, and, hence, cannot be faithfully
replicated. Importantly, in the absence of supersaturation, seeds will not be able to initiate,
let alone template, amyloid formation (Figure 3B).
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or increasing the concentration to allow for HON. This is in contrast to DNA replication, which
requires a specific template sequence, enzymes and continuous energy input in the form dNTPs.
(B). Formation of amyloid is dependent on the recipient conditions, not on donor seeds. Thus, adding
seeds/prions to proteins in a non-supersaturated condition will not result in amyloid formation,
protein unfolding or any kind of templating.

While the cross-β conformation is structurally encoded and accessible to any protein
sequence under the right conditions, proteins differ in their relative propensity to form
amyloids [10]. This depends on factors such as the enrichment of amino acids with high
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β-sheet forming propensities, the overall solubility of the protein, its level of supersatura-
tion, and its exposure to nucleating agents. A combination of these factors leads to selective
vulnerability of certain proteins, cells, and tissues for amyloid aggregation. Particularly, su-
persaturation is a major driving force for protein aggregation [29]. By analyzing single-cell
transcriptomic and subcellular proteomics data, Freer et al. found that the most supersat-
urated proteins are enriched in cells and tissues that succumb first to neurodegeneration
(Figure 4) [69,70]. They also showed that the supersaturated proteins are closely involved in
synaptic processes, resulting in a high vulnerability of the synaptic environment to aberrant
protein aggregation, and that the supersaturation signature coincides with the pattern of
disease progression in Alzheimer’s disease (AD). This indicates that physicochemical fac-
tors of the recipient environment dictate not only polymorphism, but also the vulnerability
to amyloid aggregation and the apparent propagation patterns. Additionally, the diversity
of local factors that contribute to protein aggregation can explain the varied patterns of
cellular and tissue vulnerabilities that result in different pathologies, despite the similar
properties of amyloids. Genetic mutations can also aggravate vulnerability by making
a protein unstable, less soluble, or overexpressed. This is the case in many pathogenic
mutations that cause neurodegenerative diseases. For example, the H50Q mutation in
SNCA, which codes for α-synuclein, results in a 10-fold decrease in its solubility, which
increases α-synuclein supersaturation and, hence, its propensity to aggregate [71]. Gene
duplications in APP, such as in some cases of familial AD and Down’s syndrome, and in
SNCA, such as in familial Parkinson’s disease, will also lead to higher supersaturation and
lower the barrier for aggregation. With increasing amyloid formation there is consequent
protein consumption, ultimately leading to lower levels of soluble Aβ and α-synuclein, as
has been observed clinically [72,73].
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Figure 4. Supersaturation correlates with tissue and cell vulnerability in neurodegenerative diseases
(reproduced with permission from Freer et al., 2019 [69]). (A). Red regions indicate elevated expression
of supersaturated proteins relative to the proteome (left), which are also the tissues most vulnerable to
neurodegeneration in the early stages of AD, PD, frontotemporal dementia (FTD), and amyotrophic
lateral sclerosis (ALS) (left). (B). Scores of the top 5% of supersaturated proteins calculated for
AD, PD, ALS, and FTD. (C). Relative expression of supersaturated proteins in different cell types.
***** p < 0.0005.

4. How Do Amyloids Cause Toxicity?

Amyloid formation involves three pathological protein transformations: structural,
from natively folded to the cross-β conformation; biophysical, from soluble to insoluble;
and biological, from functional to non-functional [68]. The cross-β conformation buries
the once-functional domains of the protein within the steric zipper architecture, which
makes amyloids extremely stable [14], and, consequently, relatively inert. Additionally, the
uncontrolled phase transition leads to loss of protein solubility and colloidal stability result-
ing in precipitation into plaques, which further buries any potential unpaired side chains
via hierarchal self-interaction (see above). Within plaques, amyloid protofilaments and
fibrils adopt different polymorphic morphologies depending on environmental conditions.
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However, since all polymorphs are based on the same cross-β conformation, where the
functional side chain domains are sequestered, they are expected to have similar, generic
amyloid properties in terms of stability, insolubility, and low reactivity. Furthermore, the
loss of protein solubility and colloidal stability favors precipitation and cluster formation
over propagation of single fibrils, which requires colloidal dispersion. This is supported
by clinical findings that plaques (heterogenous fibrillar clusters) are the hallmarks of
amyloid pathologies.

With the high stability and low reactivity, amyloids pose little direct toxicity unless
they physically remodel a tissue, for example, in the rare cases of systemic amyloidosis
such as immunoglobulin light chain amyloidosis and transthyretin amyloidosis [74,75].
This is especially true for amyloid accumulation within the muscle tissue (e.g., cardiac amy-
loidosis), where amyloid infiltration physically impair muscle contractility [76]. However,
in many other cases, amyloids exist as a benign mass similar to other benign masses, such
as fibromas and lipomas. In insulin-derived amyloidosis, for example, repeated injection
of insulin subcutaneously in the same spot leads to the creation of insulin amyloid lumps
in some diabetic patients [77]. Despite the benign nature of such lumps, patients lose the
ability to control glucose levels due to insulin sequestration in the form of amyloid aggre-
gates [78]. Patients are, therefore, instructed to change the location of insulin injections
to avoid local aggregation. In this case, the toxicity due to amyloid aggregation is due to
loss-of-function (LOF) of the injected insulin and not due direct toxicity from the amyloid
mass. Pathogenesis due to LOF is also demonstrated in the case of p53 amyloid formation.
P53 is a tumor suppressor protein whose dysregulation or inactivation is involved in more
than 50% of all cancers [79]. It has been shown that p53 can form amyloid fibrils leading
to enhanced cell proliferation due to its sequestration and LOF [80,81]. These findings
clearly indicate that amyloids are not necessarily cytotoxic as they can enhance, not impair,
cell proliferation via a LOF mechanism of p53. LOF is also the mechanism behind many
phenotypes in yeast due to amyloid formation [82]. For example, amyloid formation of
Sup35, which is an essential translation termination factor, induces lethality due to LOF as
a result of its sequestration in the amyloid state [83]. Such an outcome can be reversed by
supplying the yeast with a modified version of Sup35, where the residues more prone to
amyloid formation are removed, while the domains involved in translation termination
are maintained [84]. This replacement approach to overcome amyloid LOF toxicity is also
utilized clinically in the treatment of diabetes mellites by using pramlintide, which is a
less aggregating analogue of the peptide hormone amylin, whose amyloid aggregation in
the pancreas and depletion in the circulation is common among diabetic patients [85]. The
relatively benign nature of amyloid plaques can also be seen in neurodegenerative diseases
such as AD, where up 30% of individuals who have plaques in their brains are cognitively
normal [86]. We have recently shown that higher levels of soluble Aβ42 are associated with
normal cognition and preservation of brain volume among amyloid positive individuals,
regardless of and despite increasing levels of brain amyloid, indicating that LOF of the
soluble Aβ42 is more detrimental to neurons than direct gain-of- function (GOF) toxicity
from plaques [87]. This suggests that a replacement approach might also be feasible for
AD treatment and other neurodegenerative diseases, an alternative to continuing with
anti-amyloid strategies, which have invariably failed [88].

“Toxic oligomers”? Oligomers have been postulated to explain the lack of association
between amyloid plaque load and toxicity, especially in AD. The term oligomers denotes
low and medium molecular weight aggregates that are assumed to mediate the amyloid
toxicity [89]. However, the evidence of their toxicity has been shown in vitro, not clinically,
and the clinically relevant toxic oligomer remains unknown [90]. Moreover, under super-
saturated conditions, which are necessary for amyloid formation, the distinction between
oligomers and nuclei is hard to make, since the formation of any cluster stable enough
will trigger phase transition into fibrils, whereas unstable clusters will dissociate back into
monomers (see above). This has been demonstrated experimentally, where the majority of
oligomers were shown to dissociate into monomers, in good accordance with the classical
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nucleation theory [91]. Moreover, the reduction of soluble Aβ42 levels during the disease
course reduces the substrate for the oligomers, questioning the long-term effect of such
species. This is supported by the fact that attempts to quantify oligomeric species of Aβ

found that they are less in AD patients compared to controls [92–94].
“Ratios”. Despite the progressive decrease in the absolute levels of soluble Aβ42

in AD, the ratio of Aβ42 relative to other shorter versions of the peptide, such as Aβ40,
was hypothesized to increase the likelihood of Aβ42 forming aggregates due to its more
amyloidogenic nature [95]. However, amyloid aggregation is dependent on supersaturation,
which is dependent on the absolute concentration of the peptide. Decreasing peptide
concentration will decrease, not increase, its propensity to form any type of aggregates
irrespective of its relative levels compared to other peptides. Moreover, it has been recently
demonstrated that CSF Aβ42/Aβ40 ratio also decreases during the course of AD [72].

Another indication on the importance of LOF as a pathogenic mechanism in neurode-
generative diseases is the fact that animal models where the amyloidogenic proteins were
knocked out or down display phenotypes that resemble those obtained by protein overex-
pression and aggregation. This has been demonstrated for Aβ42 [96,97] in AD, α-synuclein
in Parkinson’s disease [98–100], and other neurodegeneration-related proteins that form
amyloids such as Tau [101], PrP [102], SOD1 [103], and TDP43 [104]. The similarity of
phenotype in both the presence and absence of aggregates can only be explained by LOF
mechanism, where the sequestration of protein due to aggregation mimics the effects of
gene knock down. Additionally, in many cases, the phenotype can be rescued by restoration
of normal soluble levels of these proteins [97,99]. For further discussion on LOF toxicity,
we refer the reader to our earlier reviews [68,105].

5. Conclusions

Amyloid formation is a phase transition process, which leads to the formation of
a special type of protein solids where proteins assume the cross-β conformation and
precipitate in the form of plaques. Cross-β is the amyloid conformation, which is a generic
intermolecular conformation based on backbone hydrogen bond interactions. It comprises
extended β-sheet ladder pairs with interdigitating sidechains (steric zippers), which renders
amyloids insoluble, largely domainless, highly stable, and relatively inert. Polymorphism
on the other hand refers to different cross-β associations within protofilaments or fibrils,
which is a function of environmental conditions. The information to form cross-β is
present in the backbone of any protein sequence and does not require to be templated or
transferred, while polymorphism is a function of environmental conditions and cannot be
structurally encoded nor transferred. What “corrupts” a protein and results in amyloid
formation are supersaturation and nucleation, not templating. Supersaturation provides
the molecular proximity that facilitates the formation of generic intermolecular backbone
interactions rather than the specific intramolecular side-chain interactions required for
native folding. Nucleation can take place via HON, HEN, or seeding, where HEN is the
most common nucleation pathway that can be induced by a multitude of surfaces including
viral envelopes, in the absence of amyloid seeds/prions. After the nucleation barrier is
overcome, amyloid growth into heterogenous plaques is spontaneous and uncontrollable,
leading to the consumption of the available soluble protein substrate. This contrasts with
the controlled nucleation of functional protein fibers, such as actin and collagen, which
involves enzymes and ATP. The spontaneous (exergonic) nature of amyloid aggregation
is also in contrast to DNA replication, which is a well-controlled, endergonic process.
Finally, while amyloid fibrils are largely inert, toxicity in some amyloid pathologies might
be more dependent on soluble protein depletion, as they are sequestered into plaques, a
LOF mechanism of toxicity, which opens the door for testing new therapeutics based on
protein replacement.
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