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Plant microbiome-dependent 
immune enhancing action of 
Echinacea purpurea is enhanced by 
soil organic matter content
Mona H. Haron1, Heather L. Tyler2,3, Suman Chandra1, Rita M. Moraes1, Colin R. Jackson2, 
Nirmal D. Pugh1 & David S. Pasco1,4

We previously demonstrated that extracts from Echinacea purpurea material varied substantially in 
their ability to activate macrophages in vitro and that this variation was due to differences in their 
content of bacterial components. The purpose of the current study was to identify soil conditions 
(organic matter, nitrogen, and moisture content) that alter the macrophage activation potential of E. 
purpurea and determine whether these changes in activity correspond to shifts in the plant-associated 
microbiome. Increased levels of soil organic matter significantly enhanced macrophage activation 
exhibited by the root extracts of E. purpurea (p < 0.0001). A change in soil organic matter content from 
5.6% to 67.4% led to a 4.2-fold increase in the macrophage activation potential of extracts from E. 
purpurea. Bacterial communities also differed significantly between root materials cultivated in soils 
with different levels of organic matter (p < 0.001). These results indicate that the level of soil organic 
matter is an agricultural factor that can alter the bacterial microbiome, and thereby the activity, of E. 
purpurea roots. Since ingestion of bacterial preparation (e.g., probiotics) is reported to impact human 
health, it is likely that the medicinal value of Echinacea is influenced by cultivation conditions that alter 
its associated bacterial community.

Evidence from our lab1–4 and others5,6 supports the theory that the efficacy of E. purpurea against respiratory 
infections is dependent, at least in part, on its bacterial community (microbiome). Bacterial components of 
this microbiome can directly impact immune function1–5 and plant-endophyte interactions can alter second-
ary metabolite production of the anti-inflammatory alkylamides6. The immune-activating bacterial components 
may exhibit therapeutic effects against respiratory infection comparable to those reported in clinical research on 
probiotic bacteria7. In addition, the anti-inflammatory alkylamides may provide symptomatic relief to colds and 
the flu, analogous to NSAIDs.

In our previous studies we reported that the bacterial components lipopolysaccharide (LPS) and Braun-type 
lipoproteins within extracts of E. purpurea and other botanicals were responsible for essentially all of the in-vitro 
activation of monocytes/macrophages1. Consistent with these findings, our later studies showed that the level 
of in vitro macrophage activation exhibited by an E. purpurea extract could be predicted by calculating the sum 
of activities contributed by the prevalence and types of Proteobacteria within the plant material4. Furthermore, 
we found that root and aerial extracts from E. purpurea and E. angustifolia, obtained from six distinctly different 
regions in North America, exhibited substantial variation in macrophage stimulatory activity (up to 200-fold). 
The majority of detected activity was due to changes in levels of LPS and bacterial Braun-type lipoproteins, and 
differences in post-harvesting conditions did not appear to be responsible for the observed variation in activity2. 

1National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, 
The University of Mississippi, P.O. Box 1848, University, MS, USA. 2Department of Biology, The University of 
Mississippi, University, MS, USA. 3Present address: Crop Production Systems Research Unit, USDA Agricultural 
Research Service, P.O. Box 350, Stoneville, MS, USA. 4Department of BioMolecular Sciences, Research Institute of 
Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, P.O. Box 1848, University, MS, USA. 
Correspondence and requests for materials should be addressed to N.D.P. (email: ndpugh@olemiss.edu) or D.S.P. 
(email: dpasco@olemiss.edu)

Received: 23 August 2018

Accepted: 23 November 2018

Published: xx xx xxxx

OPEN

mailto:ndpugh@olemiss.edu
mailto:dpasco@olemiss.edu


www.nature.com/scientificreports/

2SCIeNTIfIC REPOrTS |           (2019) 9:136  | DOI:10.1038/s41598-018-36907-x

Follow-up research indicated that the Echinacea sourced from the six geographical locations also exhibited varia-
tion in both total bacterial load (up to 52-fold) and composition of the bacterial community3,4.

A growing body of literature suggests that environmental and agronomic conditions shape the microbiome 
of plants. Bacteria in soil are a reservoir for plant endophytes in that communities of bacteria within the rhizos-
phere are able to colonize roots and other plant tissues. Soil containing high levels of organic matter and moisture 
support high soil microbial load8,9 and increased microbial biomass can lead to enhanced microbial colonization 
of roots10. An opposite effect has been observed with nitrogen fertilization - high rates of application reduce col-
onization of plants by bacterial endophytes11,12. In light of these findings, the objective of the present study was 
to determine the contribution of soil organic matter, nitrogen fertilization, and moisture content on the immune 
enhancing activity of E. purpurea and evaluate shifts in the plant-associated bacterial community that could be 
responsible for the activity changes.

Results
For Experiment 1, cultivating E. purpurea in soil containing the higher levels of organic matter (10.4–67.4%) 
compared to lower levels (2.5% and 5.6%) resulted in enhanced in vitro macrophage activation (i.e., lower EC10 
values) by extracts of the root material (Fig. 1A). Mean activity of extracts from plants cultivated in soil con-
taining 2.5% organic matter based on dry weight was significantly lower than plants grown in 23.2% and 67.4% 
organic matter (p = 0.026 and p = 0.0002, respectively). Similarly, mean activity from plants cultivated in 5.6% 
was significantly lower than plants grown in 10.4%, 23.2% and 67.4% organic matter (p = 0.0002, p < 0.0001 and 
p < 0.0001, respectively). The largest difference in mean in vitro macrophage activation (4.2-fold) was observed 
between plants grown is soil that differed by 12 times in the content of organic material (67.4% versus 5.6%).

Root tissue from plants cultivated in soil containing a higher organic content (10.4–67.4%) had a higher bac-
terial load than roots grown in lower organic matter soil (2.5% and 5.6%), with higher organic matter treatments 
yielding bacterial loads of 2.4–4.1 × 107 cells per gram of root compared to 1.5–1.7 × 107 bacterial cells per gram 
in roots grown under low organic matter (Fig. 1B). The data for both activity and bacterial load suggests a possible 
threshold where plants cultivated in soil containing organic matter at or above 10% are significantly different in 

Figure 1.  Effect of cultivating Echinacea purpurea in soils containing different levels of organic matter on in 
vitro macrophage stimulatory activity and bacterial load of the plant material. Soil with five different levels of 
organic matter (determined gravimetrically after combustion) was used. E. purpurea seedlings were grown in 
pots for five months, with six pots with three plants per pot, for each soil type. Dried roots (A) and aerial (C) 
material were extracted with 4% SDS and extracts evaluated for activity (macrophage TNF-alpha production, 
expressed as EC10 values). Total bacterial load (B,D) represents cells per gram of dried plant material. Bars 
represent mean values ± standard error. Treatments with different letters are significantly different (p < 0.05).
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these parameters. Comparison of roots grown in lower organic matter soil (2.5% and 5.6% treatments) to those 
cultivated in higher organic matter treatments (10.4%, 23.2%, and 67.4%), showed that the higher organic matter 
soils resulted in significantly higher bacterial loads (p = 0.005). However, for individual treatments the only sta-
tistically significant difference between conditions was observed between roots cultivated in soil containing 5.6% 
organic matter versus 10.4% organic matter (p = 0.04).

For aerial E. purpurea tissue, the only significant effects of soil organic matter treatments on activity (Fig. 1C) 
or bacterial load (Fig. 1D) was that lower activity was found in plants cultivated in soil containing 67.4% organic 
matter versus plants grown in soils with lower levels of organic matter (p < 0.03). Aerial portions of plants under 
this organic matter treatment also had the lowest mean bacterial loads, but this, as with the other effects of organic 
matter on aerial components of the plant, was not significant.

Cultivating E. purpurea in soil containing different levels of nitrogen (Experiment 2) or moisture (Experiment 
3) did not influence plant extract activity or total bacterial load (Figs 2 and 3). The only statistically significant 
differences were observed in the nitrogen treatment experiment where root extracts from plants cultivated in soil 
supplemented with 150 kg/hectare of nitrogen exhibited higher mean activity than roots grown with no addi-
tional nitrogen supplementation (p = 0.02, Fig. 2A). Mean bacterial load was dramatically increased in aerial 
tissue from plant cultivated in soil supplemented with 50 kg/hectare of nitrogen versus plants grown in soils with 
lower and higher levels of nitrogen (p < 0.0001, Fig. 2D).

For analysis of the E. purpurea microbiome, one plant per pot was analyzed for the treatment conditions in 
each experiment (30 plants for Experiment 1, 30 plants for Experiment 2 and 18 plants for Experiment 3). After 
initial processing, alignment, and removal of sequences identified as chimeras or plant chloroplasts a total of 
1,352,517 final valid bacterial 16S rRNA gene sequences were recovered from root and aerial samples of these 78 
E. purpurea plants. Sequences were then binned into 8,805 distinct operational taxonomic units (OTUs) based 
on 97% sequence similarity, spanning 16 different bacterial phyla. In both the root and aerial E. purpurea tissues, 
the majority of bacteria identified were consistently members of the Proteobacteria and Bacteroidetes (Fig. 4). On 
average, Proteobacteria comprised 56% (roots) and 58% (aerial), while Bacteroidetes made up 15% (both roots 
and aerial) of the sequences recovered.

Figure 2.  Effect of cultivating Echinacea purpurea in soils containing different levels of nitrogen fertilization on 
in vitro macrophage stimulatory activity and bacterial load of the plant material. Soil with five levels of nitrogen 
fertilization (equivalent to 0, 50, 100, 150, and 200 kg/hectare) was used. E. purpurea seedlings were grown in 
pots for five months, with six pots with three plants per pot, for each soil type. Dried roots (A) and aerial (C) 
material were extracted with 4% SDS and extracts evaluated for activity (macrophage TNF-alpha production, 
expressed as EC10 values). Total bacterial load (B,D) represents cells per gram of dried plant material. Bars 
represent mean values ± standard error. Treatments with different letters are significantly different (p < 0.025).
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Different levels of soil nitrogen fertilization or soil moisture did not result in significant changes in bacte-
rial community structure within the plant material (Table 1) so we did not pursue these investigations further. 
However, changes in the level of soil organic matter resulted in differences in the bacterial community structure 
of both root and aerial E. purpurea (Table 1), a pattern that was also apparent in non-metric multidimensional 
scaling (NMDS) ordinations of microbiome composition under different organic matter treatments (Fig. 5). 
NMDS ordinations based on the Jaccard dissimilarity index (presence-absence of OTUs), showed some grouping 
of bacterial communities under the highest and lowest treatments of % organic matter, in both root and aerial 
samples of E. purpurea (Fig. 5), although these were not as prevalent for ordinations based on the theta index. 
Analysis of molecular variance (AMOVA) and analysis of similarity (ANOSIM) strongly supported significant 
differences in community composition among % organic matter treatments for both types of samples (p < 0.001). 
In terms of pairwise comparisons between organic matter treatments, there was a significant difference between 
bacterial communities at 2.5% and 67.4% organic matter for the aerial samples (AMOVA: p = 0.002) and a strong 
suggestion of the same differences in root samples (AMOVA: p = 0.006) (Table 1 and Supplementary Table S1).

Indicator analysis identified the specific OTUs that differed significantly in their relative abundance across 
organic matter treatments for both root and aerial samples. For roots, 30 OTUs, belonging to seven bacterial 
phyla, showed significant differences in their relative abundance between different levels of soil organic matter 
(Table 2). Of those, 23 OTUs were proportionally more abundant in the elevated (67.4%) organic matter samples. 
Aerial samples showed significant variation in the relative abundance of 21 OTUs, belonging to seven bacterial 
phyla, across organic matter treatments, with Actinobacteria and Proteobacteria being common in all but the two 
lowest (2.5%, 5.6%) organic matter concentrations (Table 3).

Discussion
Changes in soil organic matter content, but not levels of nitrogen or water, had a significant influence on the mac-
rophage activation potential of root extracts from E. purpurea. There appears to be a threshold effect, where roots 
grown in soil containing organic matter at or above about 10% dry weight exhibited significantly higher activity 
and higher total bacterial load. Furthermore, soil organic matter content was the only agronomic variable that sig-
nificantly altered the microbiome of both root and aerial tissue. We have previously demonstrated that essentially 

Figure 3.  Cultivating Echinacea purpurea in soils containing different levels of moisture has no effect on in vitro 
macrophage stimulatory activity and bacterial load of the plant material. Seedlings were grown for five months 
in soil containing three different levels of moisture (six pots per treatment, with three plants per pot). All roots 
(A) and aerial (C) material were extracted with 4% SDS and extracts evaluated for activity (macrophage TNF-
alpha production, expressed as EC10 values). Total bacterial load (B,D) represents cells per gram of dried plant 
material. Bars represent mean values ± standard error.
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all in vitro macrophage activation exhibited by Echinacea is due to bacterially-derived components1, so it is likely 
that the observed shifts in the Echinacea microbiome are responsible for the enhanced activity of the root extracts.

All plants contain communities of bacteria that are associated with roots and aerial tissues13. A rapidly growing 
area of research is providing new understanding of the composition of plant microbiomes and factors that guide 
their composition. Evidence indicates that the root microbiome is predominantly assembled from the bacteria 
present within the soil in which the plant is grown14. We derived a similar conclusion based on our initial research 
from changes in activity of Echinacea plants grown in tissue culture verses soil15. Clones were identified that con-
tained different, but stable, bacterial populations as evidenced by high and low levels of macrophage-activating 
bacterial components detected in their extracts. However, the high and low activity clones exhibited the same 
activity after several months of cultivation in typical potting soil, a result that indicated that soil is a major factor 
in determining the composition of the Echinacea purpurea microbiome.

The root microbiome is usually less diverse than the rhizosphere, and bacterial colonization of plants is selec-
tive with certain bacterial taxa more likely to colonize and be retained in plant tissue16,17. For example, compared 
to the surrounding soil, the root microbiome is generally enriched for members of the Proteobacteria, whereas 
plant-associated members of the Acidobacteria and Gemmatimonadetes are less common than in soil18,19. Results 
from the current study show that soil chemical composition is important to the plant microbiome selection pro-
cess, with changes in soil organic matter content resulting in differences in the plant-associated bacterial com-
munity. Plants cultivated in soil containing higher amounts of the same organic matter acquired significantly 
different bacterial consortia in their root and aerial tissues. This selection for different microbiome composition 

Figure 4.  Average bacterial microbiome composition in E. purpurea root and aerial material. Proportions of 
taxa (phyla) shown are derived from a total of 13,231,553 partial 16S rRNA gene sequences obtained from the 
plants that were cultivated using the different agronomic conditions detailed in Figs 1–3. A total of 78 plants 
were analyzed (one plant from each pot: n = 30 for Experiment 1, n = 30 for Experiment 2, and n = 18 for 
Experiment 3).

Plant part Soil condition

p value Jaccard Pairwise p value

Jaccard Theta T1 vs T5 T1 vs T4 T2 vs T5 T2 vs T3

Root

Organic matter <0.001* 0.044* 0.006 0.008 0.011 —

Nitrogen 0.208 0.366 — — — —

Moisture content 0.436 0.373 — — — —

Aerial

Organic matter <0.001* 0.21 0.002** 0.009 0.007 —

Nitrogen 0.119 0.783 — — — —

Moisture content 0.05 0.486 — — — 0.014

Table 1.  Community similarity (as assessed based on presence-absence of bacterial OTUs, Jaccard, or relative 
abundance of OTUs, theta, metrics and analyzed by AMOVA) for bacterial communities in E. purpurea under 
the different cultivation conditions tested. % organic matter in soil T1 (67.5%) – T2 (23.2%) – T3 (10.4%) – T4 
(5.6%) – T5 (2.5%), soil nitrogen fertilization T1 (200 Kg/h) – T2 (150 Kg/h) – T3 (100 Kg/h) – T4 (50 Kg/h) 
– T5 (0 Kg/h) and soil moisture field capacity T1 (full field) – T2 (3/4 of field) – T3 (1/2 field). *Statistically 
significant difference among treatments in each condition using an alpha of 0.05. **Statistically significant 
pairwise comparison using an alpha of 0.005.
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under different levels of soil organic matter could represent a different pool of potential bacterial inoculants in 
the soil, or a change in the plant-microbiome selection criteria when plants are grown under different levels of 
organic matter.

Based on findings from our previous research, it is likely that the shifts in the root bacterial community struc-
ture of Echinacea cultivated in soil containing higher organic matter are responsible for increased macrophage 
stimulating activity exhibited by this tissue. We have determined that the in vitro activity of Echinacea extracts 
detected in monocytes/macrophages is essentially all due to the bacterial components LPS and Braun-type lipo-
proteins1. Therefore, the increased activity of roots cultivated in higher organic matter would logically be derived 
from changes in bacterial components derived from shifts in the tissue’s microbiome. We have also reported that 
there are two factors that determine Echinacea extract activity – total bacterial load and activity exhibited by each 
type of bacteria (which can vary by over 8000-fold). Using these two factors, we found that Echinacea extract 
activity can be accounted for by the activities and prevalence of Proteobacteria members colonizing this plant4. 
In the current study we have suggestive evidence that both bacterial load (Fig. 1B) and the type of bacteria (Fig. 5, 
Tables 1 and 2) are responsible for the increased root activity observed in the plants cultivated in soil containing 
higher organic matter. Plants cultivated in higher levels of organic matter had roots that contained a higher per-
centage of various taxa (e.g., Aeromicrobium, Flavobacterium, Sphingopyxis, Sphingobium from treatment 1, and 
Stenotrophomonas from treatment 3; Table 2) that we have previously determined to be robust stimulators of in 
vitro macrophage activation4. However, we do not know the activity exhibited by the other taxa listed in Table 2 
since we were unable to isolate those bacteria (or closely related taxa) from Echinacea tissue for testing during our 
earlier culturing attempts4. Therefore, we do not know the extent of activity that is contributed by each bacterial 

Figure 5.  NMDS ordinations showing the influence of cultivating E. purpurea, in soils containing different 
levels of organic matter, on bacterial community structure of the plant material. Ordinations show 
communities derived from root material compared using the Jaccard index (A, stress = 0.38) and theta index 
(B, stress = 0.24), and aerial material compared by the Jaccard index (C, stress = 0.37) and theta index (D, 
stress = 0.18). Eclipses in panel A and C show sets of samples that were significantly different from each other 
(p < 0.005). “T” represents treatment condition and percentages indicate level of soil organic matter.
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member to the overall increase in macrophage stimulation observed from extracts of roots cultivated in soil con-
taining different levels of organic matter.

Research is beginning to evaluate whether plants from different geographical locations vary in their microbi-
ome18. Although similarities are found at the phylum level, large variation has been observed at finer taxonomic 
levels20. In agreement with these findings, we have found that bulk Echinacea material sourced from six different 
geographical locations in North America varied in total bacterial load by 52-fold3 and exhibited variation in com-
munity members at the genus level4. Extracts from the root and aerial tissues from these six different locations 
exhibited variation in macrophage-stimulating activity (up to 200-fold), and essentially all activity was due to 
changes in the levels of bacterial components derived from variations in the plant microbiome2. In the current 
study, increasing the level of soil organic matter by 12 times resulted in a 4.2-fold increase in macrophage stimu-
latory activity of extracts from Echinacea root tissue. Although these data indicate that level of soil organic matter 
is an important variable, clearly other agronomic/environmental factors are also responsible for determining 
the 200-fold variation we have observed in Echinacea cultivated in different geographical locations. Additional 
factors may include type of organic matter in the soil, cultivation practices and environmental variables, and 
post-harvesting procedures.

Plant microbiome research has focused on the development of strategies for improving agricultural produc-
tion, plant health, and ecosystem dynamics. An area that has been generally overlooked is the human health 
implications of consuming the microbial communities associated with plants in our diet. Plants can be colonized 
by up to 104 and 1010 microorganisms per gram of tissue and, when consumed, these microorganisms could 
alter the composition of our gut microbiome as well as influence our immune system21. In our research, we have 
found that a normal dose of Echinacea contains between 6.4 × 106 to 3.3 × 108 bacterial cells per g of dry plant 
material and is comparable to a therapeutic dose of probiotic bacteria3. The type of bacteria comprising plant 

OTU Phyla Family or genus

Average percent/group

T1 T2 T3 T4 T5

T1

0211 Acidobacteria Group 4 0.151* 0.000 0.002 0.000 0.000

0777 Acidobacteria Group 6 0.100* 0.027 0.008 0.000 0.000

0140 Actinobacteria Streptomyces 0.945* 0.096 0.141 0.198 0.053

0470 Actinobacteria Conexibacter 0.224* 0.023 0.049 0.022 0.000

0077 Actinobacteria Aeromicrobium 0.193* 0.117 0.006 0.000 0.024

0307 Bacteroidetes Chryseolinea 0.165* 0.109 0.035 0.019 0.013

0299 Bacteroidetes Chryseolinea 0.126* 0.059 0.017 0.005 0.040

0124 Bacteroidetes Chitinophagaceae 0.308* 0.043 0.018 0.014 0.144

0094 Bacteroidetes Flavobacterium 0.668* 0.039 0.165 0.128 0.122

0500 Bacteroidetes Filimonas 0.120* 0.000 0.000 0.010 0.008

0332 Chloroflexi Ktedonobacter 0.112* 0.084 0.032 0.006 0.011

0342 Chloroflexi Heliothrix 0.131* 0.061 0.041 0.044 0.019

0801 Chloroflexi Levilinea 0.073* 0.017 0.010 0.007 0.012

0362 Chloroflexi Bellilinea 0.115* 0.020 0.027 0.057 0.000

0478 Firmicutes Unclassified 0.103* 0.069 0.028 0.000 0.011

0649 Firmicutes Aneurinibacillus 0.082* 0.000 0.000 0.006 0.000

0759 Planctomycetes Zavarzinella 0.054* 0.000 0.006 0.000 0.028

0892 Planctomycetes Thermogutta 0.072* 0.028 0.013 0.005 0.000

0164 Alphaproteobacteria Sphingopyxis 0.782* 0.019 0.194 0.021 0.024

0232 Alphaproteobacteria Sphingobium 0.178* 0.002 0.028 0.079 0.006

0904 Alphaproteobacteria Oceanibaculum 0.088* 0.016 0.006 0.007 0.000

1040 Verrucomicrobia Terrimicrobium 0.055* 0.000 0.000 0.000 0.000

0400 Verrucomicrobia Spartobacteria 0.123* 0.011 0.003 0.036 0.005

T3

0506 Firmicutes Bacillus 0.000 0.015 0.091* 0.006 0.006

0005 Gammaproteobacteria Enterobacteriaceae 2.679 8.240 10.270* 6.820 3.468

0184 Gammaproteobacteria Stenotrophomonas 0.029 0.000 0.080* 0.056 0.025

T5

0259 Bacteroidetes Flavisolibacter 0.034 0.026 0.004 0.050 0.122*

0198 Alphaproteobacteria Asticcacaulis 0.139 0.057 0.016 0.095 0.296*

0246 Betaproteobacteria Cupriavidus 0.053 0.058 0.085 0.011 0.469*

0644 Verrucomicrobia Subdivision 3 0.017 0.000 0.000 0.000 0.139*

Table 2.  Classification, distribution, and relative abundance of 16S rRNA-defined bacterial OTUs recovered 
from root samples of E. purpurea treated with five different concentrations of organic matter in soil. OTUs 
shown were detected in at least two out of six replicates per treatment condition. Percent organic matter in soil: 
T1 (67.5%) – T2 (23.2%) – T3 (10.4%) – T4 (5.6%) – T5 (2.5%). A total of 48,197 16 S rRNA gene sequences 
were analyzed for treatment T1, 26,471 for T2, 64,655 for T3, 18,555 for T4, and 40,933 for T5. Significance 
between treatments indicated by *p < 0.05.
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microbiomes is probably another critical factor in determining the positive or negative implications of ingesting 
plants. Probiotic research has clearly illustrated that even strain differences can have a dramatic influence on ther-
apeutic efficacy. For example, protection against influenza viral infection in mice was observed after oral adminis-
tration of a Lactobacillus plantarum strain inducing high cytokine production in vitro, whereas no protection was 
observed for strains exhibiting inhibition of or low cytokine production22. It is therefore possible that the efficacy 
of Echinacea is dependent, at least in part, on the structure of its associated bacterial community. Future research 
is needed to fully understand the effect of domestication and modern agricultural practices on the microbiome of 
Echinacea, as well as other crops, and the implications of these effects on human health.

Methods
Cultivation, treatment and harvesting conditions of E. purpurea plants.  Echinacea purpurea 
(L.) Moench (Asteraceae) seeds (accession PI 631307) were provided by The North Central Regional Plant 
Introduction Station at Iowa State University (Ames, IA). Seeds were sown in plastic trays in May 2013 at the 
University of Mississippi medicinal plant garden. Most of the seeds germinated in 2–3 weeks. After gaining a 
height of ~10–12 cm, plants were transplanted to bigger pots (28 cm tall, 29 cm diameter at top and 24 cm diam-
eter at bottom). For each treatment condition, six pots were filled with appropriate soil type with three seed-
lings/pot. Pots were arranged in a complete randomized block design and plants were grown in the full sun for 
Experiments 1 and 2, and in the green house for Experiment 3 (to control soil moisture level). All plants were 
harvested after five months of treatment. Aerial parts were separated from roots and roots were then washed 
extensively to remove soil. Aerial parts consisted of stems and leaves only (flowers were not included). Plant parts 
were immediately frozen at −80 °C to prevent postharvest growth or contamination with bacteria. Frozen plant 
parts were freeze-dried, ground to powder and stored at −20 °C.

Experiment 1. Testing the contribution of organic matter content of the soil.  Formulations of soil, with increasing 
levels of organic matter, were created by mixing washed sand with Pro-mix Ultimate Organic Mix (Hummert 
International Co., Earth City, MO) at various ratios: 20, 40, 60, 80 and 100% Pro-mix by volume. Level of soil 
organic matter content was determined gravimetrically by drying (75 °C, 48 h), followed by combustion (500 °C, 
2 h). All the plants were irrigated manually and equally on a daily basis.

Experiment 2. Testing the contribution of nitrogen fertilization.  Seedlings were planted in soil low in nitrogen that 
consisted of one volume Pro-Mix BRK (Hummert International Co.) and three volumes washed sand (to decrease 
nitrogen content). Five levels of ammonium nitrate were added to pots at three time points, once at seedling 
transplantation and the next two at monthly intervals. Levels of nitrogen added were equivalent to 0, 50, 100, 150, 
and 200 kg/hectare. All the plants were irrigated manually and equally on a daily basis.

OTU Phyla Family or genus

Average percent/group

T1 T2 T3 T4 T5

T1

0226 Actinobacteria Actinoplanes 0.564* 0.037 0.000 0.000 0.000

1757 Bacteroidetes Spongiimonas 0.102* 0.000 0.000 0.000 0.000

0423 Alphaproteobacteria Lentibacter 0.239* 0.051 0.059 0.039 0.094

T2

0140 Actinobacteria Streptomyces 0.061 0.161* 0.013 0.000 0.000

0128 Bacteroidetes Niastella 0.086 0.189* 0.014 0.000 0.000

0158 Chloroflexi Anaerolineaceae 0.017 0.150* 0.014 0.012 0.000

0110 Chloroflexi Kallotenue 0.008 2.638* 0.114 0.082 0.014

0269 Chloroflexi Ktedonobacter 0.000 0.110* 0.004 0.000 0.000

0025 Betaproteobacteria Comamonadaceae 0.174 0.506* 0.053 0.270 0.089

0125 Gammaproteobacteria Acinetobacter 0.081 0.485* 0.019 0.030 0.077

T3

0415 Actinobacteria Conexibacter 0.030 0.000 0.093* 0.026 0.009

0176 Actinobacteria Nocardioides 0.183 0.069 0.527* 0.198 0.230

0250 Bacteroidetes Hymenobacter 0.000 0.035 0.239* 0.165 0.030

0124 Bacteroidetes Chitinophagaceae 0.139 0.054 0.258* 0.079 0.072

0623 Bacteroidetes Hymenobacter 0.000 0.000 0.117* 0.000 0.015

0773 Alphaproteobacteria Ancylobacter 0.000 0.015 0.066* 0.000 0.000

0156 Betaproteobacteria Methylophilus 0.025 0.024 0.179* 0.092 0.081

T4
0265 Planctomycetes Tepidisphaera 0.010 0.000 0.007 0.381* 0.021

0564 Planctomycetes Unclassified 0.005 0.001 0.000 0.080* 0.000

T5 1006 Ignavibacteriae Melioribacter 0.000 0.000 0.000 0.000 0.127*

Table 3.  Classification, distribution, and relative abundance of 16S rRNA-defined bacterial OTUs recovered 
from aerial samples treated with 5 different concentrations of organic matter in soil. OTUs shown were detected 
in at least 2 out of 6 replicates per treatment condition. Percent organic matter in soil: T1 (67.5%) – T2 (23.2%) 
– T3 (10.4%) – T4 (5.6%) – T5 (2.5%). A total of 12,204 16S rRNA gene sequences were analyzed for treatment 
T1, 39,556 for T2, 30,319 for T3, 23,518 for T4, and 27,428 for T5. Significance between treatments indicated by 
*p < 0.05.
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Experiment 3. Testing the contribution of soil moisture.  Plants were grown in Pro-Mix BRK soil. Levels of soil 
moisture tested were: full field capacity, ¾ of field capacity and ½ of field capacity. Water was supplied on a regular 
basis depending on the evaporation rate.

Determination of macrophage activation by E. purpurea plant extracts.  Crude biochemical 
extracts were prepared for all the E. purpurea plant samples as previously described3. In brief, plant material was 
extracted with 95% ethanol to remove anti-inflammatory compounds. Dried ethanol-extracted plant material 
was then further extracted with 98 °C water containing 4% SDS. SDS was removed using SDS-out reagent in the 
presence of 1% octylglucoside and crude extracts evaluated for activity. Macrophage activation was assessed by 
measuring tumor necrosis factor α (TNF-α) levels in culture supernatants from RAW 264.7 cells (ATCC) incu-
bated with crude extracts for 18–24 h. The level of TNF-α was determined using enzyme-linked immunosorbent 
assays (ELISA) (R&D Systems) following the manufacturer’s protocol. Macrophage activation for plant material is 
reported as an EC10 value that represents the concentration (μg/mL) of plant material required to induce TNF-α 
production to 10% of levels achieved by ultrapure E. coli LPS 0111:B4 strain (InvivoGen, 1 mg/mL corresponds to 
1 × 106 EU/mL) tested at 100 ng/mL.

E. purpurea total bacterial load estimation.  Total bacterial load in all E. purpurea tissue samples was 
determined through a PCR-based method as described previously3. DNA was extracted from 50 mg of ground, 
lyophilized E. purpurea tissue samples using PowerPlant DNA isolation kits (MoBio). Prior to extraction, sam-
ples were hydrated with 150 μL sterile water. DNA extracts were cleaned using PowerClean DNA Cleanup Kits 
(MoBio) to remove potential PCR inhibitors. A portion of the bacterial 16S rRNA gene was amplified using prim-
ers 799f (5′-AACMGGATTAGATACCCKG-3′) and 1492r (5′-GGTTACCTTGTTACGACTT-3′) that exclude 
the coamplification of chloroplast DNA and yield a 735 bp bacterial product and a 1090 bp mitochondrial product 
when used to amplify DNA extracted from plant material23. DNA amplifications were conducted as previously 
described3. Bacterial loads were determined by comparing the intensity of the 735 bp bacterial band from E. pur-
purea extracts to a standard curve of DNA extracted and amplified from known quantities of bacteria as described 
previously3.

Determination of E. purpurea bacterial community structure.  Analysis of the bacterial community 
associated with E. purpurea was conducted on the same DNA extracts used for bacterial load determination. 
One plant per pot was analyzed for the treatment conditions in each experiment (a total of 78 root and 78 aerial 
samples). A dual-index barcoding approach was used for Illumina next generation sequencing where each sam-
ple was amplified using primers that target a 250 bp section of the V4 variable region of the bacterial 16S rRNA 
gene24. Procedures followed those outlined by Jackson et al.24 and amplification conditions described by Kozich et 
al.25. Amplification products from all samples were pooled and spiked with 5% PhiX to increase nucleotide base 
diversity prior to sequencing. The final library was sequenced on an Illumina MiSeq instrument, via two index 
sequencing reads, at the University of Mississippi Medical Center Molecular and Genomics Core Facility.

Raw sequence files (fastq files) were accessed using the bioinformatics software Mothur26, and were processed 
and analyzed following the procedures recommended by Kozich et al.25 and Jackson et al.24. Briefly, contigs were 
assembled from paired end reads and screened to only include those with a maximum length of 275 bp and 
no base ambiguities. Sequences were aligned against the SILVA 16S rRNA database (v132)27 and misaligned 
sequences were deleted. Sequences were clustered together by 1% sequence similarity to account for potential 
amplification and sequencing errors, and chimeras removed using UCHIME28. Valid sequences were classified 
according to those in the RDP 16S rRNA database, version 16, after which any sequences classified as being other 
than bacterial were removed from the dataset. Remaining sequences were grouped into operational taxonomic 
units (OTUs) based on >97% sequence similarity.

Statistical analysis.  Analysis of variance (ANOVA) followed by Tukey-Kramer Honestly Significant 
Difference (HSD) test was conducted to determine the effects of different levels of soil organic matter content, 
nitrogen fertilization, and soil moisture on macrophage stimulating activity and bacterial load of root and aerial 
tissue. These analyses were assessed using an alpha of 0.05 and performed in JMP version 11.2.0. (SAS Institute 
Inc.). Analysis of microbiome patterns was conducted in Mothur. Presence or absence of specific OTUs in each 
sample were used to compare bacterial communities using the Jaccard index of dissimilarity, while the relative 
proportion of each OTU in each sample was used to compare communities using the Yue & Clayton theta index. 
Community comparisons were visualized using NMDS ordinations while specific comparisons of community 
structure were conducted using AMOVA and ANOSIM. Differences in the relative abundance of individual bac-
terial phyla or OTUs between treatments were analyzed by Indicator analysis function in Mothur.

Data Availability
Raw data is available upon request.
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