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Abstract

Background: Landscape modifications, urbanization or changes of use of rural-agricultural areas can create more
favourable conditions for certain mosquito species and therefore indirectly cause nuisance problems for humans.
This could potentially result in mosquito-borne disease outbreaks when the nuisance is caused by mosquito species
that can transmit pathogens. Anopheles plumbeus is a nuisance mosquito species and a potential malaria vector. It is
one of the most frequently observed species in the Netherlands. Information on the distribution of this species is
essential for risk assessments. The purpose of the study was to investigate the potential spatial distribution of An.
plumbeus in the Netherlands.

Methods: Random forest models were used to link the occurrence and the abundance of An. plumbeus with
environmental features and to produce distribution maps in the Netherlands. Mosquito data were collected using a
cross-sectional study design in the Netherlands, from April to October 2010–2013. The environmental data were
obtained from satellite imagery and weather stations. Statistical measures (accuracy for the occurrence model and
mean squared error for the abundance model) were used to evaluate the models performance. The models were
externally validated.

Results: The maps show that forested areas (centre of the Netherlands) and the east of the country were predicted
as suitable for An. plumbeus. In particular high suitability and high abundance was predicted in the south-eastern
provinces Limburg and North Brabant. Elevation, precipitation, day and night temperature and vegetation indices
were important predictors for calculating the probability of occurrence for An. plumbeus. The probability of
occurrence, vegetation indices and precipitation were important for predicting its abundance. The AUC value was
0.73 and the error in the validation was 0.29; the mean squared error value was 0.12.

Conclusions: The areas identified by the model as suitable and with high abundance of An. plumbeus, are
consistent with the areas from which nuisance was reported. Our results can be helpful in the assessment of
vector-borne disease risk.
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Background
Mosquitoes (Diptera:Culicidae) are known to be vectors
of a large number of pathogens around the globe and are
considered as prime candidates for transmitting (re-)
emerging vector-borne diseases (VBDs) in Europe [1].
The increased mobility of humans, that has also increased
the mobility of livestock and pathogens, as well as
environmental modifications and climate changes can
contribute to the (re-)emergence of vector-borne diseases
[2]. Furthermore, mosquito bites can cause a considerable
nuisance for humans and mammals. Severe nuisance can
have negative economic consequences (e.g., in tourism,
work productivity outdoors, meat and dairy production)
[3]. These nuisance situations can eventually lead to
autochthonous VBD cases, when in non-endemic areas
infectious reservoirs, either humans (travellers, temporary
workers) or animals (livestock, migrating animals) come
in contact with high density of mosquito vectors.
In 2010, in the Netherlands, the Centre for Monitoring

of Vectors (CMV) started a nationwide inventory of
indigenous mosquitoes to acquire basic information on
the composition, geographical distribution, biodiversity
and environmental preferences of mosquito species. In
this survey, the nuisance mosquito species and potential
malaria vector Anopheles plumbeus (Stephens, 1828)
(Figure 1) was one of the most frequently collected mos-
quito species [4]. This species has been proven to be
able to transmit Plasmodium falciparum (Welch, 1897),
Figure 1 Anopheles plumbeus female (source: A. Ibañez-Justicia).
the causative agent of malaria tropica [5]. Circumstantial
evidence for local transmission of P. falciparum malaria
by An. plumbeus has been reported for Germany [6].
Anopheles plumbeus has also been incriminated as a
vector of Plasmodium vivax (Grassi & Feletti, 1890)
[7,8] and has been proven to be a laboratory vector of
West Nile virus [9]. Even though the health care system
is likely to rapidly identify malaria patients and thereby
prevent the building up of an infectious human reservoir
of Plasmodium parasites [10], it is important to gain
information on the spatial distribution of An. plumbeus,
in order to inform the health care system on the areas at
risk.
Anopheles plumbeus is a mosquito species commonly

found in forests, where larvae are usually found in water
in rot-holes of trees with high salinity and deficiency of
oxygen [11]. They can also be found in containers with
stagnant rain water and groundwater, such as tyres,
rainwater casks and cemetery vases [5,12]. In the last
decade, this species has also been associated with
abandoned stables where it breeds in the rain water
collected in the manure cellars [13]. This species is
known to be a particularly aggressive biter, feeding at any
time of the day on different mammalian hosts (including
humans), and to a lesser degree on birds and reptiles [14].
In June 2006, nuisance caused by An. plumbeus was
reported for the first time in the Netherlands, near the city
of Nijmegen [1]. Since then, An. plumbeus nuisance have
been reported every year in the Netherlands, mostly in
proximity to abandoned pig stables (Ibanez-Justicia,
unpublished).
An understanding of the spatial extent of potential

vector species, their abundance and seasonal activity, is
important for estimating levels of risks of VBDs and en-
abling better targeting for surveillance and control. In
order to develop basic reproduction number (R0)
models and construct risk maps that indicate the risk for
an outbreak after an introduction, abundance data of
vectors are an essential parameter [15,16]. Although vec-
tor presence and abundance are not the only factors de-
termining whether or not a pathogen can spread in an
area, determining the distribution of the vector is an
essential step in studying the risk of transmission of a
pathogen. Given the nuisance and potential risk for the
human health, such information on An. plumbeus is
needed. Currently, no information on the potential spatial
distribution of this species is available for the Netherlands.
In this study, we modelled the potential spatial distri-

bution, expressed in occurrence (predicted probability of
presence) and abundance of An. plumbeus in the
Netherlands, based on data collected during the
National Mosquito Survey and environmental data. The
occurrence was modelled to predict the environmental
suitability of the species using a random classification
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forest model. The abundance was modelled using a ran-
dom regression forest model with the aim to identify
areas where mosquito peaks could be expected. Random
(classification and regression) forest models allow exter-
nal validation through a bootstrapping procedure. The
occurrence model was validated also with an external
dataset. The resulting maps are in agreement with the
reported nuisance for this species and the predictions
show a good matching with an external dataset used to
validate the model.

Methods
Species distribution modelling links the occurrence or
the abundance of species with environmental data and
estimates the similarity of the conditions at any site
based on the conditions at the locations of known occur-
rence/abundance of a species. Here we describe the
mosquito data collection, the environmental data used
and the statistical methods applied in this study.

Mosquito data
Mosquito data used for the modelling were obtained
from the national mosquitoes survey that was carried
out from April to October 2010–2013 by the Dutch
Centre for Monitoring of Vectors. Mosquitoes were cap-
tured using CO2 baited Mosquito Magnet Liberty Plus
MM3100 (Woodstream® Co., Lititz, USA). Traps were
randomly distributed in the country following a cross-
sectional study design, with the following constraint:
40% of the traps were placed in urban areas, 40% in
rural-agricultural areas and 20% in natural areas [4].
Urban and agricultural areas were sampled more inten-
sively, because of the potential higher human and veter-
inary health risk in those areas due to higher exposure.
Data consisted of mosquito abundance data, sampled

at 778 locations. For this study the abundance data were
reclassified into data of presence (when at least one
Table 1 Surveys used for the validation

Survey name Year Sampling strategy

EMS-Used tires 2010-2014 Target longitudinal samplin

EMS-Lelystad 2013 Target sampling

NVS-Limburg 2009 Cross-sectional

NVS-Mosquitoes
longitudinal

2011 Target longitudinal samplin

Projects 2011, 2012 Target longitudinal samplin

Nuisance 2010, 2011, 2013,
2014

Check at locations of report
nuisance

West-Nile-Virus Wetlands 2010 Target longitudinal samplin

The predictions obtained with the occurrence model that used National Mosquito S
EMS: Exotic Mosquito Survey.
NVS: National Vector Survey.
mosquito was found in the trap) and absence (when no
mosquitoes were found in the trap). Each of the loca-
tions was sampled only once and each trap was active
for one week. The content of the traps was collected
weekly and sent to the CMV laboratory. In the labora-
tory, mosquitoes were morphologically identified using,
among others, the Culicidae key specifically designed for
rapid field-identification of Dutch adult Culicidae (modi-
fied key after Snow [17], Schaffner et al. [9], Verdonschot
[18], Becker et al. [19]). Twenty-seven mosquito species
were found in the National Mosquito Survey and An.
plumbeus was the 7th mosquito species most commonly
found in the Netherlands. This species was active in the
whole period of the survey, from April until October [4].
When a presence and an absence point were in the same
square kilometre only the presence point was used be-
cause presences inform about the places that are environ-
mental suitable for a species, but absences do not
necessarily indicate the opposite [20]. This reduced the
number of locations used in the analysis from 778 to 766.
For the validation of the occurrence model, data on

An. plumbeus presence from confirmed nuisance notifi-
cations and data from other mosquito surveys carried
out by the CMV in the Netherlands during the years
2010–2014 were used (Table 1). The mosquito data from
these surveys were collected with various trapping
methods: dippers, pooters, CDC miniature light traps
Model 512 (John W. Hock Company, Gainesville, USA),
BG Sentinel traps (Biogents AG, Regensburg, Germany)
and Mosquito Magnet traps. These data were extracted
from VecBase, a tailor-made application built for CMV
in 2010 for vector surveillance data.

Environmental variables
The environmental data included in the analysis as pre-
dictor variables are 1 km2 resolution satellite images and
meteorological data in raster file format, commonly used
Capturing device Total nr
locations

g Larval sampling, manual aspirator, BG-
Sentinel trap

16

MM-Liberty Plus trap 3

MM-Liberty Plus trap 14

g MM-Liberty Plus trap 1

g CDC light trap, manual aspirator 3

ed Larval sampling, manual aspirator 6

g MM-Liberty Plus trap, CDC light trap 2

urvey data were validate with data from these surveys.
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for mosquito distribution modelling [21]. The images
were obtained from the MODIS sensor on NASA’s Terra
and Aqua satellites [22,23] for 2000–2012 and subjected
to temporal Fourier transformation [24,25] to summarise
the images and to produce sets of data that capture
characteristics of the annual seasonality: the mean, the
annual, bi-annual and tri-annual amplitudes and phases,
the maxima, minima and variances of the middle infra-
red, day and night-time land surface temperature, the
enhanced vegetation index and the normalized differ-
ence vegetation index signals [26]. Other environmental
data used in this study are precipitation (WorldClim
[27] and CMORPH [28] 1950–2000), population density
(compiled from the Gridded Population of the World
Dataset 2000 [29]), the digital elevation model (MODIS
[23] 2012) and land cover (Corine land cover map of
2006 [30]). The Fourier components used are provided
in Table 2 and the environmental data in Table 3. For
each trap location the pixel values of the environmental
variables were extracted.

Statistical analysis
Occurrence model
Three distribution modelling techniques suitable for
occurrence data were applied: non-linear discriminant
analysis [25], random classification forest [31] and gen-
eralised linear model [32]. For each model, the accuracy
was assessed using (i) sensitivity, i.e. the ability of a
model to correctly identify known positive sites; (ii)
specificity, i.e. the ability of a model to correctly iden-
tify known negative sites; (iii) the area under the curve,
(AUC) that can be roughly interpreted as the probabil-
ity that a model will correctly predict positive and
Table 2 Fourier components from temporal Fourier
analysis of an imagery time series

Component Description

A0 Fourier mean for entire time series

MN Minimum value

MX Maximum value

A1 Amplitude of annual cycle

A2 Amplitude of bi-annual cycle

A3 Amplitude of tri-annual cycle

VR Total variance

P1 Phase of annual cycle

P2 Phase of bi-annual cycle

P3 Phase of tri-annual cycle

D1 Proportion of total variance due to annual cycle

D2 Proportion of total variance due to bi-annual cycle

D3 Proportion of total variance due to tri-annual and cycle

DA Proportion of total variance due to all three cycles

Component is the name used in Vecmap.
negative sites [33]. Of the three techniques, random
forest provided the best accuracy and therefore the re-
sults of this model are presented.
A random classification forest model consists of an en-

semble of trees. To create a reliable model, it is generally
considered necessary to have the same number of pres-
ence and absence points as input. This is because having
a different number will create a bias in the model pre-
diction towards the more prevalent category (presence
or absence) [33]. For this reason, a ‘balanced’ subset of
the data, i.e., a dataset with the same number of pres-
ences and absences, was selected. The output produced
by the model is an environmental suitability indicator,
expressed as a value between 0 (low suitability) and 1
(high suitability). The predictions are visualised in a map
with colours ranging from red (high suitability) to blue
(low suitability). A list of the most important variables
used in the model is given based on the mean decrease
in Gini index [31,34]. Random forest allows external val-
idation through a bootstrapping procedure: for each tree,
a random subset of the full dataset is sampled with re-
placement. The model validation is carried out for each
tree using the points not used from the full dataset. This
validation method is referred to as external, because the
model is validated using data that are not used to build
the tree. The comparison of the observed and predicted
results enables us to calculate accuracy statistics, such as
sensitivity and specificity. These measures are calculated
for each tree and then averaged to give the overall
values.
The predictions produced by the random classification

forest were also externally validated against 45 observa-
tions from other surveys (Table 1) that reported only the
presence of An. plumbeus. Comparing the observations
obtained with the other surveys and the predictions
made by the model using National Mosquito Survey
data, the error rate was calculated as the proportion of
incorrectly predicted pixels to the total number of points
used in the validation.

Abundance model
The abundance of the species was modelled using a
random regression forest model. The abundance data
were transformed according to the formula log10(abun-
dance + 1) [35]. Because the aim was to identify areas
where mosquito peaks could be expected, only the data
collected in months in which peaks were observed were
selected (June-September). The predicted environmen-
tal suitability obtained with the occurrence model de-
scribed above, was included as one of the predictor
variables for modelling the abundance of the species, as
it is frequently done in this type of analysis [36-40].
The predicted abundance is interpreted as the expected
maximum number of mosquitoes caught in a trap in a



Table 3 Environmental predictor variables

Source Variables

MODIS Middle Infra-red (MIR)

MODIS Day-time land surface temperature (DLST)

MODIS Night-time land surface temperature (NLST)

MODIS Enhanced vegetation index (EVI)

MODIS Normalised difference vegetation index(NDVI)

CMORPH Precipitation

WorldClim Precipitation

MODIS Digital elevation model (DEM)

Gridded Population of the World Human population density

European Environment Agency Corine land cover
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certain pixel. The predictions are visualised in a map
with colours ranging from light green (low abundance)
to dark green (high abundance). The importance of the
predictors was assessed using the Increase in Node Purity
(INP). The difference between observed and predicted
values was expressed as the mean squared error. The ana-
lysis has been performed with the software Vecmap demo
version [41]. The maps have been produced with
Quantum GIS [42].
Figure 2 Observed presence and absence points and map of the estimate
observed during the National Mosquito Survey program carried out from A
plumbeus produced using classification random forest. Environmental suita
suitability, red indicates high suitability. Locations where other surveys took
Results and discussion
The probability of occurrence (environmental suitability)
and the abundance of An. plumbeus have been predicted
using mosquito field data and environmental data. The
estimated environmental suitability and abundance are
shown in maps. The important environmental variables
used in the models and the accuracy of the models are
discussed. The fact that out of three different modelling
techniques for occurrence data random forest model
d environmental suitability for An. plumbeus. A- Presence and absence
pril to October 2010–2013. B- Environmental suitability map of An.
bility is depicted using a gradient fill: blue indicates low environmental
place are also shown on the map (black squares).



Table 4 List of the top 10 most important variables in the
occurrence model

Rank Variables

1 DEM

2 CMORPH precipitation, phase of bi-annual cycle

3 CMORPH precipitation, phase of annual cycle

4 Worldclim precipitation, phase of annual cycle

5 Worldclim precipitation, proportion of total variance due to
annual cycle

6 MIR, phase of annual cycle

7 NTLS temperature, minimum value

8 DTLS temperature, amplitude of annual cycle

9 NDVI mean

10 CMORPH precipitation, maximum value

The lowest ranking number indicates the most important variable (e.g., rank = 1 is
the most important variable). The ranking is based on the mean decrease in
Gini index.
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was selected based upon its higher classification accur-
acy is consistent with earlier findings; random forest has
been reported to outperform other traditional modelling
techniques [43-45].
An. plumbeus was found in 100 locations out of 766,

and it was observed in particular in the eastern part of
the Netherlands (Figure 2a). The percentage of traps
containing An. plumbeus per week is shown in Figure 3.
For the modelling, 97 presence points and 97 absence
points were selected. Using the random forest model,
forest-rich areas in the centre of the Netherlands (e.g.
National Park Hoge Veluwe and National Park Utrechtse
Heuvelrug) are predicted as suitable for An. plumbeus
(Figure 2b). Also the eastern parts of the country and in
particular the southeastern provinces (Limburg and
North Brabant) are predicted to be suitable. In these two
provinces nuisance is often reported, especially close to
abandoned and un-cleaned pig stables, where mosqui-
toes breed in manure pools [13]. Based on the environ-
mental characteristics included in the analysis, the
model was capable of identifying areas where An. plumbeus
is truly present, meaning that these characteristics can be a
good proxy for abandoned and un-cleaned stables.
Elevation, precipitation, day and night temperature,

vegetation indices and middle infra-red (index sensitive
to changes in the vegetation) were found to be import-
ant predictors for environmental suitability for An.
plumbeus (Table 4). Precipitation and vegetation are
likely to be biologically relevant, since this species typic-
ally breeds in water-filled tree holes with high organic
material content [19]. Presence of tree-holes is related to
Figure 3 Percentage of positive sites of An. plumbeus per week in 2010–20
the age of the tree or to the tree species. Eggs of this
mosquito species are not laid on the water surface but
on the sides of potential breeding sites, just above the
waterline, so the number of generations produced each
year are often dependent upon hydrological conditions
[19]. The occurrence model predicts environmental suit-
ability for An. plumbeus in areas where old trees with
tree-holes are known to occur (e.g., National Park Hoge
Veluwe). Even though the species is considered to be a
tree-hole breeding species, results obtained using the
random forest occurrence model depict environmental
suitability for this species in areas without forests in the
13.



Figure 4 Observed and estimated abundance of An. plumbeus. A – Observed abundance represented as log10(abundance + 1). B – Map of the
estimated abundance produced using a regression random forest. A darker colour indicates higher abundance.

Table 5 Observed abundance used in the model

Count Frequency

0 66

1-10 70

11-20 4

21-30 1

31-40 2

41-50 2

51-60 0

61-70 1
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Netherlands. The results indicate the potential successful
use of unforested environments for An. plumbeus popu-
lations, and imply a similar trend to that seen in contin-
ental Europe and UK, where An. plumbeus is shifting
habitats from almost exclusively breeding in tree-holes
to exploiting a wider array of novel man-made larval
breeding sites [4,46]. Day and night temperature were
found to be related to environmental suitability also in
another study in Belgium [1].
Fair accuracy was obtained with the model (AUC=

0.73), which showed a better ability in identifying suitable
environments (sensitivity 0.71) than unsuitable environ-
ments (specificity 0.66). The accuracy is improved as com-
pared with a first attempt of predicting the environmental
suitability for An. plumbeus in the Netherlands, where the
environmental suitability was extrapolated from Belgium
to the Netherlands (sensitivity = 0.50, specificity = 0.49)
[1]. The error rate calculated to compare the predicted
values to data of other surveys was low (0.29); 71% of the
pixels were correctly predicted, meaning that the model
could make good predictions in non-sampled areas. How-
ever, this is only a partial validation because it considers
only presence points and does not give information about
the performance of the model in predicting absence
points.
The observed and estimated abundance are shown in

Figure 4. In the summer, the observed field abundance
was low; rarely more than 10 mosquitoes per trap were
found (Table 5). The maximum value observed was 1701
mosquitoes followed by 62 mosquitoes per trap. Given
the huge difference between the maximum value and the
numbers of mosquitoes observed in the other traps, the
maximum value was considered as outlier and excluded
from the analysis. However, the reason of this high
abundance was investigated and it turned out that the
trap was located in a rural area where cattle farms with
abandoned stables, not in use anymore, are present. In
total, 505 mosquitoes were used in the analysis and they
were captured in 80 traps/weeks from 2010 to 2013. The
predicted abundance, produced with the random forest
technique, was also low (with a maximum of 15 individ-
uals per trap) and the highest abundance was predicted
in the eastern part of the country and especially in the



Table 6 List of the top 10 most important variables in the
abundance model

Rank Variables

1 Occurrence

2 Worldclim precipitation, phase of annual cycle

3 Worldclim precipitation, proportion of total variance due to bi-
annual cycle

4 NDVI, amplitude of annual cycle

5 Worldclim precipitation, amplitude of bi-annual cycle

6 MIR, amplitude of annual cycle

7 DEM

8 NTLS temperature, phase of bi-annual cycle

9 Worldclim precipitation, total variance

10 CMORPH precipitation, phase of bi-annual cycle

The lowest ranking number indicates the most important variable (e.g., rank = 1 is
the most important variable). The ranking is based on the Increase in Node
Purity (INP).
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south-eastern provinces Limburg and Brabant. These
findings are in agreement with the suitable areas identi-
fied by the occurrence model. This is not surprising be-
cause the probability of occurrence was the most
important factor among the environmental factors in-
cluded in the abundance model (Table 6). Similar re-
sults, where the probability of occurrence appears to be
the most important factor when using this technique,
were already observed in a study conducted on other
mosquito and biting midges species in the Netherlands
[35]. Other important predictors for abundance of An.
plumbeus were precipitation and vegetation, in accord-
ance with the biology of the species, as it is explained
above. The difference between the observed abundance
and the predicted abundance was small, with a mean
squared error value of 0.12, meaning that the model pre-
dictions matched the observation.
Conclusions
The aim of this study was to investigate the potential
spatial distribution of An. plumbeus in the Netherlands.
Using random (classification and regression) forest
models, we identified areas with high environmental
suitability and high abundance of this species in south-
eastern provinces of Limburg and Brabant. These areas
coincide with the areas where in recent years most nui-
sances have been reported. The predictions of the occur-
rence model were accurate and matched the external
dataset used for validation. The abundance model pre-
dictions also matched the observation.
The output of species distribution modelling method can

be used as an input for risk assessment of establishment
and spread of vector-borne diseases [47,48]. Understanding
and depicting the potential spatial distribution of mosquito
species with modelling techniques is of increasing import-
ance, especially for nuisance mosquito species that can
cause economic implications or impact on human health.
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