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Spread of Viruses 
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Abstract 

Cell-to-cell spread of retroviruses via virological synapse (VS) contributes to overall progression 
of disease. VS are specialized pathogen-induced cellular structures that facilitate 
cell-to-cell transfer of HIV-1 and HTLV-1. VS provide a mechanistic explanation for 

cell-associated retroviral replication. While VS share some common features with neurological or 
immunological synapses, they also exhibit important differences. The role of VS might not be lim­
ited to human retroviruses and the emerging role of a plant synapse suggests that VS might well be 
conserved structures for cell-cell spreading of both animal and plant viruses. Dissection of the VS is 
just at its beginning, but already offers ample information and fascinating insights into mechanisms 
of viral replication and cell-to-cell communication. 

Neural, Immunological and Virological Synapse 
The complex functioning of biological systems requires the capacity of cells to interact in a 

synchronized manner. The capacity of cells to come in close contact with one another enables rapid 
exchange of information through directed secretion. In complex systems such as the nervous and 
immune systems, characteristic rearrangements of plasma membrane proteins appear at the cell-cell 
junction, called synapse. A synapse is defined as "a stable adhesive junction across which informa­
tion is relayed by directed secretion".^ 

The concept of the neural synapse (NS) was first introduced over a century ago and was depicted 
as a stable structure organized and specialized in intercellular signaling between neurons. Plasma 
membranes of the pre and post-synaptic neurons are contiguous and information is conveyed to the 
downstream cell via secretion of neurotransmitters. In order to generate a favorable microenviron-
ment, stabilization of synapse by scaffolding proteins, mainly cadherins and other adhesion 
molecules, is required (reviewed in re£ 1). 

In the immune system, interactions between T cells and antigen presenting cells (APC) are essen­
tial for an effective adaptive immune response. By analogy with the nervous system, these specialized 
interactions occur via an immunological synapse (IS). The concept of the IS has been extended to 
several types of cell-cell interactions within the context of the immune system (signaling via receptor 
engagement, lytic granules, directed secretion of cytokines) since its first description 20 years ago 
(reviewed in refs. 2,3). Although the IS shares many similarities with the NS, it also differs in two 
aspects. First, the panel of receptors and adhesion proteins recruited to the IS diverges from those in 
the neural synapse: integrins play the central role in stabilizing IS. Second, the establishment of an 
IS is a dynamic process between moving cells, whereas the neural synapse is long-lived. Therefore, in 
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order to permit immune responses to take place, ISs need to be assembled and disassembled quickly. 
An example is CTL-mediated killing, where a single effector cell has been shown to contact sequen­
tially target cells through several stable IS (for reviews see in refs. 1,5-7). 

In recent years, the concept of the synapse has been further extended to cell-cell contacts during 
viral replication. To initiate an infection, viruses need to gain access to the replicative machinery of 
the host cell. In the cell-free virus model, viruses do so by crossing the plasma membrane of the 
target cell after binding to surface receptors. Nevertheless, some viruses use direct passage from 
cell-to-cell to spread within their host achieving, in the process, protection from neutralizing anti­
bodies^ and complement as well as higher kinetics of replication (reviewed in ref 9). Recent articles 
have described virological synapses (VS) for two retroviruses, human T cell leukemia virus type 1 
(HTLV-1) and human immunodeficiency virus type 1 (HIV-l)^°-^5 (reviewed in ref 16). VS, like 
their neural and immunological counterparts, suit the minimal criteria that define a synapse: both 
pre and post-synaptic cells implied in cell-cell contact remain discrete cells (no plasma membrane 
fusion), a stable adhesive connection is established between the two cells and directed transmission 
of information (viral genome) occurs from the infected cell (presynaptic cell) to the uninfected cell 
(post-synaptic). 

Virological Synapse during Retroviral Infection 
Although viral cell-to-cell transfer has been identified many years ago,̂ '̂ '̂"̂ ® we gained only 

recently some insight into the mechanisms of this mode of viral transmission. Cell-free HTLV-1 
ineffectively infects T lymphocytes and spreads within and between individuals via cell-to-cell transfer. 
With the partial unraveling of the mechanisms involved in HTLV-1 dissemination from lymphocyte to 
lymphocyte via VS,^®'̂ '̂̂ ^ puzzling questions, such as HTLV-1 cell tropism, regardless of the 
ubiquitous expression of its surface receptor, have found satisfying explanations. 

Other retroviruses, such as HFV-l and SIV, also use VS to propagate within their respective 
hosts. Efficient HFV-l infection requires permissive target cells to be located in close vicinity in 
order to initiate infection and subsequent spreading throughout different tissues. At least three modes 
of propagation have been described for HIV-1. Firstly, cell-free transmission of HIV-1 is well 
characterized. Cell-free HIV-1 binds surface receptors/coreceptors (CD4/CCR5 and CXCR4) of 
permissive cells before fusing with the plasma membrane of the target cell and following the subse­
quent steps of the viral replication cycle. Secondly, HIV is able to propagate through infection 
in trans. Cells such as dendritic cells (DC) capture virions through viral binding to cell-surface 
receptors such as C-type lectins. HIV-l^ DCs, not necessarily infected themselves, then present the 
virus to target cells in trans via a VS or an Infectious Synapse. Thirdly, HFV-l -infected cells (also 
termed effector cells) are able to transmit the virus to uninfected target cells, without the previous 
requirement of virus budding in the extracellular milieu, illustrating direct cell-to-cell viral transmission 
through a VS. ̂ "̂  Until now, three types of VS have been described for HFV-l: the DC-T cell VS, also 
referred to as "Infectious Synapse", ' the T cell-T cell VS and the mononuclear cell-mucosal 
epithelial VS, impUcated in HFV transcytosis through mucosal epithelia.^^'^^ 

The use of VS for viral transmission is probably not limited to retroviruses and is exploited by 
other intracellular pathogens in order to disseminate through their host. Early in vitro experiments 
show a VS-like structure possibly contributing to SARS-coronavirus (SARS-CoV) dissemination 
from DCs to target cells.^ 

As the concept of infectious or virological synapse is further applied to other organisms, such as 
plants,^^ VS emerges as a general mechanism of cell-to-cell transmission for many pathogens and 
parasites. 

Virological Synapses during HIV Infection 

Dendritic Cell-T CeU Infectious Synapse during HFV Sexual Transmission 
In model systems of sexual transmission, myeloid dermal DCs and Langerhans cells (LC) play a 

central role in the early steps of HFV-l propagation (reviewed in refs. 36-40). DCs locate to the skin 
and mucosal tissues in an immature state (iDC) until coming across pathogen-derived antigens. D C 
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activation and diflFerentiation into mature APC^ -̂̂ ^ results from contact with different stimuli such 
as bacterial products, TNF family ligands, '̂ double-stranded ^ and single-stranded RNA. 
Migration of mature DCs (mDC) from the periphery to secondary lymphoid organs is strongly 
associated with maturation and allows DCs to encounter antigen-specific T cells in order to initiate 
adequate immune responses. '̂̂ ^ Although HIV-l infects CD4^T cells more effectively, LC and 
other DC types support low levels of viral replication, both in vivo and in vitro. ̂  '̂ ^ DC are also able 
to capture HIV-l in an infectious form and transfer such virions to target CD4*T cells without the 
need of virus replication within the effector cell (here the DC)̂ '̂̂ '̂ (reviewed in refs. 37,61). 
Recognitions of adhesion molecules inserted in the viral envelope ' or binding through lectin 
receptors, such as DC-SIGN, mannose receptor or langerin, allow DCs to bind HIV-l effi-
ciendy^ '̂̂ '̂̂ '̂ ^ The C-type lectin DC-SIGN (CD209), strongly expressed in iDCs, plays a crucial 
role in capture and transfer of HIV-l to T cells in trans. ' ^ DC-SIGN was shown to mediate VS 
(or rather infectious synapse) formation in vitro between DCs and autologous resting T cells, favor­
ing transfer of a CXCR4-using HIV-l .̂  As a major attachment factor on DCs, DC-SIGN has been 
shown to bind many viruses such as HIV-l, HIV-2, simian immunodeficiency virus (SIV),^^'^^ 
Dengue virus,^^ Cytomegalovirus (CMV),^^ Ebola viruŝ ® and SARS-CoV.^^ 

Professional APCs play a central role in antigen processing. As the archetypal APC, DCs are rich 
in degradative compartments."^^ Nevertheless, efficient digestion of HIV-l occurs in DCs, but a 
small fraction DC-SIGN-internalized virus remains infectious for extended periods of time^ '̂'̂ " '̂̂ ^ 
and can be transferred in trans to target cells. The characteristic DC lysosomal degradative functions 
are activated upon DC maturation. Several studies suggest that HIV-l-induced maturation is 
only partial and might fail to induce a full activation of the lysosomal system.̂ ^' HIV-loaded DCs 
retains a population of infectious virus within an intracellular compartment that, until recently, was 
poorly described. Surprisingly, dissection of non repHcating (CXCR4-using) HIV-l trafficking 
pathways in monocyte-derived DCs revealed that, virus does not accumulate in lysosomes after 
capture but in a novel mildly acidic nonconventional compartment distinct from the classical late 
endosome/multivesicular body (MVB). This novel endosome targeted by HIV after capture by DCs 
is enriched in specific tetraspanins (CD81 and CD9) but contains only little CD63 (marker of 
MVB) and virtually no LAMP-1 (marker of lysosomes). ̂ ^ This tetraspanin rich compartment 
targeted by HIV-l after capture by DCs is also rich in MVB. This is reminiscent of the situation in 
macrophages, a DC-related cell type, where HIV-l assembles in late endosomes exploiting the ma­
chinery implicated in MVB biogenesis. Viral release from macrophages happens subsequently by 
exocytosis.̂ '̂̂ ^ Although the tetraspanin rich endosome targeted by HIV in DCs^^ resembles the 
structures where HIV assembles in macrophages,^^ the location and mechanisms of HIV-l replica­
tion and budding within DCs remain to be characterized.̂ '̂  

Importantly, both HIV-infected and HIV-pulsed DCs are able to transmit a strong infection to 
T cells in trans. ̂ '̂'̂ '̂̂  The recent depiction of a VS formed between uninfected T lymphocytes 
and DCs pulsed with fluorescently tagged HIV-l has shed some light on the molecular processes at 
play.̂ ^ The DC-T cell VS has also been termed "Infectious Synapse". In the DC-T cell situation the 
dendritic cell is not necessarily replicating virus and is transferring HIV to a target cell in trans, 
whereas in the T cell-T cells VS both cells (pre and postsynaptic) are productively infected. For the 
purpose of clarity in this review we will use the term VS also in the case of the DC-T cell Infectious 
Synapse. In DC-T cells conjugates, virions polarize to the contact surface between the adjacent cells. 
Simultaneously, HIV-l receptors (CD4) and coreceptors (CXCR4/CCR5) seem to be at least 
partially enriched on the T cell side of the junction with the DC^ ̂  (EG and VP, unpublished obser­
vations). VS formation is possibly initiated by normal cellular interactions in which T cells "scan" 
DC in an antigen-independent fashion, searching for the cognate peptide presented by the APC.^^ 
Upon contact with T cells, internalized HIV-l relocates rapidly to the VS in which the tetraspanins 
CD81 and CD9 are also redistributed.^^ Given the apparent role of CD81 as an element of the 
ĵ 86,87 (reviewed in see refs. 6,88), HIV-l subverts a pathway involved in IS formation and T cell 
activation to spread from DCs to uninfected CD4^T cells. ̂ ^ On the T cell side of the synapse, 
engagement of the CD81 receptor might also play a role in increasing viral gene expression.^^ 
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The dissection of the DC-T cell VS is still ongoing and many questions remain to be answered. 
Is VS formation relevant in the context of sexual transmission of HIV-1? Shown to facilitate 
nonreplicative HIV-1/SIV transfer in DC-T cell conjugates,^^'^^'^^ DC-T cell VS usage by HIV-1 
has to be confirmed with replicative CCR5-using strains. What is the relationship between the 
DC-T cell immunological synapse and the DC-T cell VS.** The molecular basis of DC-T cell VS 
assembly remains poorly understood. Interference studies using receptor-blocking antibod­
ies, inhibitors of cellular processes involved in cytoskeletal rearrangements and signaling, and RNA 
interference of surface receptor expression are ongoing in order to address this issue. 

HIV-l T Cell'T Cell Virological Synapse 
Upon cell-to-cell contact, HIV-l-infected T cells are able to induce rapid clustering of viral 

receptors on uninfected T cells.̂ '̂̂ "^ The molecular interactions behind this process were recently 
detailed and led to the description of an HIV-l induced VS between T cells. ̂ "̂  Interactions between 
HIV-l Env protein on the effector cell with CD4 and CXC chemokine receptor 4 (CXCR4) on the 
naive T cell are essential to induce a fast actin-dependent recruitment of viral receptors and 
lymphocyte-associated antigen 1 (LFA-1) to the VS.̂ "̂  F-actin disassembly/reassembly is central to 
the mobilization of all players within the T cell VS, as demonstrated by inhibitors for both 
processes. ̂ "̂  Indeed, stable antigen-independent clusters between CD4^T cells seldom occur when 
compared with antigen-dependant DC-T cell clusters. Therefore, stabilization of T cell-T 
cell contacts must be triggered by a specific signal. In the case of HIV-l VS, Env seems to function 
as the triggering signal. Blocking antibodies and chemical inhibitors preventing Env binding to 
CD4 and CXCR4 on the naive T cell reduce T cell VS formation as well as T cell-T cell conjugates. ̂ "̂  

Virological Synapse and HIV-l Transcytosis across Mucosal Epithelia 
Mucosal epithelia are the first line of defense of the human body against sexual transmission of 

HIV-1. The virus needs to circumvent this obstacle in order to gain a foothold within a new individual. 
In addition to capture by DCs or Dendritic Cells residing in mucosal epithelia, transcytosis of 
infectious virions across epithelial cells at mucosal sites of exposure may well be a strategy used by 
HIV-1. Early studies showed convincingly that transcytosis with cell-associated HIV-l was much 
more efficient than transcytosis of cell-free virions through epithelial cell layers. ̂ '̂̂ '̂̂ ^ Virological 
synapses, in which HIV-1-infected blood mononuclear cells establish contacts with mucosal epithelial 
cells, were recently described, providing a likely explanation for this cell-to-cell vial transmission. 
In this context, HIV-l buds locally from the effector cell, followed by endocytosis and transcytosis 
without fusion from the apical to the serosal pole of epithelial cells.^^ Infection grants HIV-l-loaded 
cells the ability to interact with epithelial cells by upregulating the expression of surface adhesion 
molecules^ and by the presence of the viral envelope proteins gpl20 and gp4l. Epithelial cells also 
take part in VS formation and stabilization as well as in proper initiation of HIV-l transcytosis. The 
heparan sulfate proteoglycan (HSPG) agrin, present in the scaffolding complexes of neural and 
immunological synapses, ' serves as an HIV-1 attachment receptor through gp4l-binding, 
reinforcing virion interactions with its previously described endocytic receptor galactosyl ceramide 
(GalCer).^^ Nevertheless, this is not sufficient to initiate HIV-l trancytosis and additional signals 
supplied by the synaptic scaffold are crucial. Stable interactions between epithelial cells and 
HIV-1-infected PBMCs result partially from epithelial expression of the RGD-dependant Beta-1 
integrin. Contacts between RGD-containing molecules, either at the surface of HIV-l-infected 
PBMCs or released as soluble factors,^ with Beta-1 integrins potentially initiate the signaling pathways 
leading to an efficient HIV-l trancytosis and its subsequent spread throughout the host.^ 

These three examples of HIV-l VS demonstrate that VS play a central role in HIV cell-to-cell 
transmission. The benefit of VS for HIV spread is observed so far in vitro, but suggests an important 
function for VS in vivo. 

Virological Synapse for HTLV-1 Replication 
HTLV-1 is an oncogenic retrovirus spreading from infected T lymphocytes to uninfected T 

lymphocytes through VS, with little if any contribution from cell-free virions.^^ Upon cell-to-cell 
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Figure 1. DC-T cell HIV-l Virological Synapse. Left) Immature Dendritic Cells (DC) were incubated with HIV-1 
for 24 hrs at 37°C. HIV-1 accumulates in an intracellular "viral endosome". Right) Lipopolysaccharide-matured 
Dendritic Cells (DC) were incubated with HIV-1 for 2 hrs at 37°C. Upon encountering Jurkat CD4* T cells, HIV-1 
is redistributed from this intracellular compartment to the zone of contact (infectious synapse) between the DC and 
the CD4* T cell (D center and right). Immunological synapse marker MHC-II (HLA-DR) does not appear enriched 
in the infectious synapse. (Green: Immunostaining of HIV-l p24̂ '*̂ ; Red: HLA-DR; Blue: Lamp-1) 

contact, HTLV-1 Env and Gag proteins polarize in the effector cell (presynaptic cell). On the 
post-synaptic side, talin polarizes as well at the site of cell-cell interaction and within minutes of 
synapse formation. Subsequently, HTLV-1 Gag protein transfer through VS is closely followed by 
HTLV-1 RNA genome transmission to the post-synaptic cell.̂ ^ Interestingly, HTLV-1 T cell VS 
shares a common feature with the CTL-mediated IS: in both cases, the microtubules organizing 
center (MTOC) polarizes toward the cell-cell junction within the effector cell.̂ '̂̂ ^ Recognition of 
the cognate peptide and engagement of the TCR are responsible for MTOC movement in the 
CTL-mediated IS, while in the HTLV-1-induced VS polarization occurs regardless of the potential 
antigen presented. ̂ ^ The molecular basis underUning HTLV-1 T cell VS formation have partially 
been revealed. Using an antibody-coated bead-cell assay used previously to analyze T cell activa-
tion̂ '̂̂ ®^ followed by interfering experiments, engagement of the intercellular adhesion molecule-1 
(ICAM-1) on the effector cell (presynaptic cell) by lymphocyte function-associated antigen-1 (LFA-1) 
(on the postsynaptic side) was shown to be a crucial signal causing microtubules to polarize to the 
VS."̂ ^ VS formation is also facilitated by viral encoded proteins such as HTLV-1 transcriptional 
activator protein (Tax).̂ "̂  Tax resides in the nucleus of unconjugated HTLV-1-infected T cells. ̂ '̂̂ '̂ ^̂  
Upon contact with naive T cells. Tax is found at the site of contact between cells and around the 
MTOC, in association with the cis-Golgi apparatus."^^ Transient transfection of Jurkat cells with Tax 
demonstrated a facilitating role for Tax in cell-cell contact-induced MTOC polarization, suggesting 
that Tax synergizes with ICAM-1 engagement to cause microtubule reorientation during VS forma­
tion.'̂ ^ Finally, the recent identification of HTLV-1 receptor, glucose transport protein 1 (GLUT-1), 
will certainly lead to further understanding of the mechanisms involved in HTLV-1 T cell VS 
formation. 

Emerging Role for a Plant Virological Synapse 
Passage of intracellular pathogens, such as viruses, bacteria and parasites, between animal cells 

has been an area of intense scrutiny (reviewed in refs. 9,105,106). Thus it is likely that the concept 
of virological synapse or rather infectious synapse might be extended beyond animal viruses de­
scribed above. Recently, the concept of synapse, including the VS has been extended to plants.^^ 
Plant viruses are known to take advantage of plasmodesmata to gain access to the next cell. 
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Plasmodesmata are cytoplasmic channels formed and maintained between neighboring plant 
cellŝ ^̂ '̂ ®^ diat selectively allow passage of macromolecules as well as viral particles. In a physiological 
context, plant synapses share limited similarities with the mammalian neuronal as well as immuno­
logical synapse, allowing plants to deal with pathogen attacks, as well as establishing symbiotic 
interactions, by polarizing the endocytic and secretory machineries towards the intruding organisms 
(reviewed in ref 35). The use of a VS-like structure in plants, impUcating genetic transfer from one 
discrete cell to another has been recendy demonstrated in the case of Tobacco Mosaic Virus (TMV), 
supporting the concept ofVS in plants. ̂ ^̂  Unlike HIV-1 DC-T cell VS that originates in tetraspanin 
rich multivesicular endosomes (MVB), TMV replication originates in the endoplasmic reticulum, 
before cell-to-cell propagation across plasmodesmata.^®^ There are significant differences between 
the VS of mammalian viruses when compared to VS-like structures in plants. Plasmodesmata are 
membrane Hnked pores in plant cell walls that provide continuity between adjacent cells, whereas in 
the immune system contacts between cells are transient and do not necessitate the formation of a 
pore. Nevertheless, cell-to-cell propagation of T M V through a plant VS-like structure is very 
reminiscent of the VS of mammalian retroviruses. 

Conclusions 
The identification and characterization of the virological synapse provides a satisfying explana­

tion for cell-cell spread of retroviruses within the immune system. VS contribute to stealthy retroviral 
replication as these viruses hop from cell-to-cell across VS without possibility of neutralization by 
the immune system. Plant viruses use a plant VS-like structure, indicating that VS are conserved 
evolutionary structures facilitating replication of animal as well as plant viruses. For each virus and 
cellular context VS present themselves differendy. Only in-depth study of VS in its various forms 
will provide us with a useful knowledge that may potentially allow us to interrupt cell-cell viral 
spread. 
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