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Abstract

Early prediction of in-hospital mortality can improve patient outcome. Current prediction

models for in-hospital mortality focus mainly on specific pathologies. Structured pathology

data is hospital-wide readily available and is primarily used for e.g. financing purposes. We

aim to build a predictive model at admission using the International Classification of Dis-

eases (ICD) codes as predictors and investigate the effect of the self-evident DNR (“Do Not

Resuscitate”) diagnosis codes and palliative care codes. We compare the models using

ICD-10-CM codes with Risk of Mortality (RoM) and Charlson Comorbidity Index (CCI) as

predictors using the Random Forests modeling approach. We use the Present on Admission

flag to distinguish which diagnoses are present on admission. The study is performed in a

single center (Ghent University Hospital) with the inclusion of 36 368 patients, all discharged

in 2017. Our model at admission using ICD-10-CM codes (AUCROC = 0.9477) outperforms

the model using RoM (AUCROC = 0.8797 and CCI (AUCROC = 0.7435). We confirmed that

DNR and palliative care codes have a strong impact on the model resulting in a decrease of

7% for the ICD model (AUCROC = 0.8791) at admission. We therefore conclude that a

model with a sufficient predictive performance can be derived from structured pathology

data, and if real-time available, can serve as a prerequisite to develop a practical clinical

decision support system for physicians.

1. Introduction

1.1 Reuse of readily available hospital-wide data

Large amounts of data are registered in well-defined formats in hospitals. These datasets con-

tain administrative data—such as age, billing data, specialism, and so on—and structured

pathology data using the International Classification of Diseases (ICD) codes. Such datasets

exhibit much information that should be useful for secondary goals, although this information

is currently unused for predicting in-hospital mortality. Added value could be generated from

existing hospital databases without the need for much additional effort or time being spent on

noncare activities on the part of caregivers.
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1.2 Current approach predicting mortality

Early identification of patients with a high risk of mortality is crucial to adequately and timely

act by health care providers. The prediction of mortality is a well-researched topic in intensive

care [1–3] and cardiac diseases [4], yet little research has been based on hospital-wide datasets.

Currently, the Charlson Comorbidity Index (CCI) and the Risk of Mortality (RoM) score are

widely used to predict mortality.

The CCI score is obtained from 17 weighted comorbidities and was initially developed to

assess risk of one-year mortality [5]. This method dates from 1987 and is intended to provide a

fast and easy risk assessment. The clinical conditions were initially retrieved manually from

hospital charts, but are now available as ICD-10-CM codes, allowing automated extraction

and calculation of the score in larger samples, as has been done by Quan (2005) and Sundarar-

ajan (2004) [6, 7]. Although the initial purpose of this measure is to asses risk of one year mor-

tality, as this measure is still used to predict in-hospital mortality, we add this to our list of

comparison measures.

RoM represents the likelihood of dying calculated from all comorbidities [8] based on all

ICD codes: a weight is given to all secondary diagnoses. In the second step, the standard risk of

mortality level of each secondary diagnosis is modified based on patient age, principal diagno-

sis, pathology group, and procedures. This is aggregated into subclasses, numbered 1 to 4, rep-

resenting categories rather than scores. RoM should not be confused with Severity of Illness

(SoI) score, which is calculated from the same data. SoI is defined as the extent of organ system

derangement or physiologic decompensation [8]. RoM is used for risk adjustment of in-hospi-

tal mortality indicators from the Agency for Healthcare Research and Quality (AHRQ). This

categorization of risk of mortality has previously been demonstrated to correlate strongly with

observed mortality in a medical ICU setting [9]. The algorithm to calculate RoM is neither free

nor open source, and as such a license is needed. RoM was shown to have a better predictive

value than CCI for in-hospital mortality, but this study only encompassed older patients in

surgical settings [10]. Furthermore, separate diagnoses of CCI scores have been demonstrated

to better predict in-hospital mortality than the score itself in hip fracture patients [11].

Many hospitals make structured pathology information available in the form of ICD-

10-CM codes. In many countries, including Belgium, this classification is obligated to calculate

the hospital reimbursement. The ICD-10-CM diagnosis code is a seven character code, which

can be approached as a chapter (one character), a category (three characters) and a full code

(all seven characters; see Fig 1). These codes form the basis of the aggregated pathology groups

(APR-DRG) and the RoM and SoI values.

In Belgian hospitals, these codes are obtained via an extensive manual process. Trained

ICD-coding-experts search for the pathology described for a patient in the Electronic Health

Record (EHR) (and other databases or manual records), with the discharge letter being one of

the main sources. They then translate the patient’s diagnoses and procedures at admission into

adequate ICD codes.

1.3 Proposed approach predicting in-hospital mortality

RoM and CCI are both aggregated measures with ICD-10-CM codes as their basis. The first

difference in approach is to use the individual ICD-10-CM diagnosis codes as predictors

instead of these aggregated measures. In order to develop an early-warning system for in-hos-

pital mortality that would be useful in practice, it is important to concentrate on variables

known at admission. However, most studies considering ICD diagnosis (or aggregations like

RoM) as predictors for in-hospital mortality, make use of all the codes registered upon comple-

tion of the hospitalization episode, including those generated by complications during
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hospitalization. To address this problem, the “Present on Admission” (PoA) flag can be used

to indicate that a diagnosis was present at the time the admission order was written. This flag

is available in some ICD-9-CM databases, but is mandatory from ICD-10-CM onwards. Add-

ing this flag results in better models for in-hospital mortality prediction [12]. Next, nearly all

studies that build a prediction model on ICD data have been restricted in scope to specific

pathologies, with the exception of two hospital-wide studies [13, 14]. These include in their

analysis all diagnoses and procedures at the moment of discharge. Likewise, in order to be

practically useful in a real world setting, RoM should also be calculated at admission, rather

than on the complete ICD-10-CM coding set after completion of the hospital episode. We are

not aware of any studies that have looked at the prediction of in-hospital mortality using ICD

codes or RoM categories at admission.

Patients with a “Do Not Resuscitate” (DNR) or a palliative care code at admission are

already at high (and intrinsically predictable) risk of mortality. We did not find any articles in

the literature that excluded these patients from a hospital-wide model predicting in-hospital

mortality. We hypothesize that these diagnoses are of limited relevance in the development of

an in-hospital mortality warning system. As such, we aimed to build a model excluding these

patients.

A final difference from earlier research is the hospital-wide scope of the model and the

application of machine learning (ML) techniques. In recent studies ML techniques have been

adopted instead of the more commonly used logistic regression (LR), as ML techniques per-

form better at prediction than LR [15, 16].

1.4 Objective

The objective of this study is to assess whether in-hospital mortality can be predicted accu-

rately through individual ICD-10-CM codes available at admission, and to compare and evalu-

ate this approach with existing scoring systems based on CCI and RoM. Our analysis

quantifies the performance of aggregated CCI and RoM scores versus individual ICD-10-CM

codes on a large hospital-wide group of pathologies, excluding DNR and palliative care codes.

Fig 1. ICD-10-CM diagnosis code hierarchy and with example: S52, fracture of the forearm. The ICD-10-CM code

consists of a chapter (S), category (S52) and full code (S52.521A).

https://doi.org/10.1371/journal.pone.0235117.g001
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This may lead to a data-driven, machine learning approach based on nonlinear models, result-

ing in a clinical decision support system.

2. Materials and methods

2.1 Study population and study variables

The study cohort includes patients discharged between 1 January 2017 and 31 December 2017

at a single center, the 1061-bed University Hospital, Ghent, Belgium. Hospitalized patients

were excluded from the analysis if they lacked detailed coding due to incomplete records, and

also in the case of particular patient groups subject to specific hospital budget rules. This

mainly refers to patients who stayed for more than half of their hospitalization period in a psy-

chiatric department; no ICD coding available for these.

The dataset at admission contains only diagnoses positively flagged as PoA and diagnoses

that are always present on admission, such as ‘Z880 Allergy status to penicillin’, ‘Z794 Long

term (current) use of insulin’ or ‘I252 Old myocardial infarction’ [17]. As we are hypothesizing

that DNR and palliative care codes at admission have a high but essentially unnecessary impact

for the development of an in-hospital mortality warning system, and since the prediction for

such patients would not be contributive, we also fit models omitting patients with these codes.

In order to confirm or invalidate the performance of the predictors, models are also fitted at

discharge (with all diagnosis and measures calculated at discharge). One of the differences

between RoM and ICD is the principal diagnosis: we also create datasets without a principal

diagnosis in order to gain insight into its weight on the models.

The measure for RoM and CCI are recalculated on all datasets. The calculation of CCI is

straightforward, for RoM we use the 3M algorithm under the license of Ghent Univerity

Hospital.

The dependent (outcome) variable is in-hospital mortality. RoM, CCI or ICD-10-CM diag-

noses are taken as predictors. RoM is added as an ordinal variable, CCI as a continuous score

and in models with an ICD-10-CM diagnosis the three hierarchy levels (chapter, category,

code) are all added as dummy variables, translating into flags in the column for chapter 20 (S),

a flag for category S52 and a flag for code S52.521A in the example given in Fig 1.

We only include the diagnosis codes in our ICD models, not the procedure codes. For

planned admission, we can assume that a single surgical procedure was the reason for hospital-

ization, but this certainty is not possible when multiple procedures are performed, as our strat-

egy is to minimize the number of false positives.

2.2 Statistical analysis

We use the Random Forests approach to build the predictive model. It is known that this non-

linear method outperforms logistic regression, which is more commonly used in medical

applications [18]. In comparison with other data-driven approaches, Random Forests tends to

perform as one of the best techniques overall for solving classification problems [3, 4]. Further-

more, on a similar dataset with unplanned readmissions as the outcome variable, Random For-

ests turned out to outperform penalized logistic regression and the gradient boosting machine

learning approach [19]. The existing literature was scrutinized to determine which methods

have already been proven to deliver solid solutions. We do not use deep learning methods,

which are very popular, and have been used in recent research [20, 21] dealing with similar

outcomes. Such techniques are very suitable for complex features, such as pixels in images, but

they are not useful for standard tabular datasets as in this study.

For all models, the data is first split into training (60%), validation (20%), and test (20%)

sets, in order to prevent overfitting. Otherwise models that can simply “remember” the
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training data (rather than generalizing from it) would be rewarded. The two main parameters

for the model are the number of trees (fixed here at one thousand) and the maximum depth,

which is tuned. The model can be interpreted using a variable importance plot. An implemen-

tation as described in [22] is used.

We compare four sets of predictors: CCI, RoM, ICD and ICD_noPDX. The last of these,

ICD_noPDX, is the set of ICD diagnoses without the principal diagnosis. This is defined as a

separate category in order to assess whether the principal diagnosis impacts the models, as

RoM is calculated on the basis of all comorbidities without this principal diagnosis. For each

set of predictors, we calculate and compare three models: 1) at admission, 2) at admission

excluding patients with DNR or palliative care diagnosis code, and 3) at discharge.

We assess the performance of each model with the Area Under the Receiver Operating

Characteristic curve (AUCROC) on the test dataset. The AUCROC is typically preferred over

other measures in situations where the data is imbalanced as in our study and other health

care datasets [23]. We also calculate the Area Under the Precision-Recall Curve (AUCPR),

which mainly focusses on correctly predicting patients for which the model assumes they have

a high probability of mortality [24]. The ROC curve shows the False Positive Rate on the x-axis

and the True Positive Rate on the y-axis, while the PR curve has the True Positive Rate (or

Recall) on the x-axis and the Precision (or positive predictive value) on the y-axis.

All analyses are performed using the R Statistical Software, version 3.4.1 with the h2o and

mltools packages.

The study was approved by the ethics committee at Ghent University Hospital (Belgian reg-

istration no. B670201836838).

3. Results

3.1 Description of the study variables

A total of 36 368 patients were hospitalized and discharged during the study period. After

excluding admissions as per protocol, the final study cohort included 34 671 patients, of whom

919 (3%) did not survive. 41% of the included patients belonged to a surgical pathology group.

The excluded patients were all admissions in the psychiatry department except for three with

incomplete records. 1063 patients had a DNR or palliative care code at admission; after exclud-

ing these, 33 608 patients remained in the cohort that was modeled.

Table 1 provides an overview of the characteristics of the survivors and non-survivors, add-

ing age and sex for demographic description (these were not used in the models). For continu-

ous variables we show the median with the first and third quartiles. CCI scores and RoM

categories are shown upon admission and discharge. The CCI scores do not differ, but the dis-

tribution for RoM categories for non-survivors at discharge differs from the distribution at

admission.

3.2 Models

The resulting AUCs derived from our models are summarized in Table 2, using the four pre-

dictor sets at admission, with and without excluding patients with DNR or palliative care diag-

nosis code, and at discharge. We also add the number of predictors for each set (row) and the

number of records included per model type (column).

The models using ICD-10-CM codes as predictors outperform the others. The models

using CCI as predictors have low AUCROC. The resulting ROC curves are shown in Fig 2A,

while the resulting Precision-Recall plots are shown in Fig 2B.

The difference between the models using ICD-10-CM as predictors and RoM is the smallest

when excluding DNR and palliative care codes. When we exclude the principal diagnosis from
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the ICD predictor set, the set still delivers a better prediction than using the aggregated RoM.

As hypothesized, the models excluding patients with DNR and palliative code at admission

have lower AUCROC and AUCPR. The effect of these diagnosis codes is visually shown in the

variable importance plot (Fig 3). The most important variables for each model are shown next

to each other. Due to the imbalanced dataset, the difference between the results using AUCPR

is even more pronounced in favor of using ICD as predictor set.

4. Discussion

This study establishes that modeling based on all individual ICD-10-CM codes is a better pre-

dictor of in-hospital mortality at admission than hitherto used combined scores such as RoM

and CCI. The PoA flag available in ICD-10-CM is necessary in order to retain only those diag-

noses recognized at admission in the model. RoM does not allow the automatic exclusion of

diagnoses not present upon admission, in contrast to ICD coding, which favors the latter in

the development of a clinically-relevant decision support system. From Table 1, we could

already indicate that for non-survivors the diagnoses not present at admission have an impact

Table 1. Population overview: Characteristics of survivors and non-survivors.

Population overview survivors (N: 33 752 = 97%) non-survivors (N: 919 = 3%) p-value�

Age 52 [30–67] 70 [58–80] <0.001

Sex (% male) 17 320 (51%) 543 (59%) <0.001

% Diagnoses Present on admission (PoA) 93% 80% <0.001

DNR at admission 469 (1.5%) 231 (25%) <0.001

Palliative care flag at admission 234 (0.7%) 286 (31%) <0.001

CCI Admission 0 [0–2] 3 [1–6] <0.001

Discharge 0 [0–2] 3 [1–6] <0.001

RoM (1–2–3–4) Admission 71% - 22% - 6% - 1% 10% - 34% - 40% - 16% <0.001

Discharge 70% - 22% - 7% - 1% 6% - 22% - 40% - 33% <0.001

Data are reported as n (%) or medians (1st– 3rd quartile), or otherwise indicated.

� p-values based on Pearson chi-square for categorical variables and the Wilcoxon rank-sum test for continuous variables.

Legend: DNR = Do Not Resuscitate; PoA = Present on Admission flag; CCI = Charlson Comorbidity Index; RoM = Risk of Mortality

https://doi.org/10.1371/journal.pone.0235117.t001

Table 2. Model AUC results.

Admission Discharge

# predictors All (n = 34 671) Excluding patients with DNR or

palliative care diagnosis code

(n = 33 608)

# predictors All (n = 34 671)

AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR

CCI 1 0.7435 0.0615 0.7015 0.0270 1 0.7471 0.0654

RoM 4 0.8797 0.1393 0.8601 0.1086 4 0.9272 0.1979

ICD 4743 0.9477 0.4035 0.8791 0.2476 4961 0.9774 0.5542

ICD_noPDX 3761 0.9340 0.3837 0.8623 0.1911 4050 0.9671 0.5425

AUC results for the Random Forests models: each line is a set of predictors. At admission we built the model for all diagnoses and excluding admissions with DNR or

palliative care code. At discharge all diagnoses known for the whole episode were used in the models. As the dataset is imbalanced, the AUCPR is shown as well as the

AUCROC. The differences between the predictor sets are larger using AUCPR.

Legend: CCI = Charlson Comorbidity Index; RoM = Risk of Mortality; ICD = International Classification of Diseases; DNR = Do Not Resuscitate; ICD_noPDX = all

ICD codes without the principal diagnosis code; AUCROC = Area Under the ROC curve; AUCPR = Area under Precision-Recall Curve

https://doi.org/10.1371/journal.pone.0235117.t002
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on the RoM classification. Evidently and intrinsically, the codes for DNR and palliative care—

as key components of care paths—aimed at humanizing the dying process. They avoid futile

care, which is very strongly associated with subsequent in-hospital mortality. Hence they

clearly need to be excluded from prediction models of in-hospital mortality at admission, as

these models should be aimed at providing a relevant support tool for clinical decision

making.

We confirm that individual diagnoses perform better than the aggregated measures of the

CCI score [11]. Our results show that CCI cannot be considered as a robust predictor for in-

hospital mortality and should not be further used for this purpose. Moreover, prediction of in-

hospital mortality was not the initial purpose of introducing CCI, which was rather developed

to assess mortality after one year.

RoM turns out to be suboptimal compared to the full ICD diagnosis set. We have to be

aware that RoM is calculated individually, belonging to a certain pathology group (APR-DRG).

As such, this measure should be considered at the individual level or by pathology group. For

the prediction models this requirement is fulfilled, as the patients are handled individually.

One advantage of RoM compared to all the ICD codes is that is has very easy and intuitive

properties. Also, the restriction to only four predictors (instead of almost 5000) saves computa-

tion time in building the model. However, an extra calculation step is needed to retrieve the

RoM at admission, which is not a common practice. This also requires that the necessary 3M

Fig 2. A (Upper panel). ROC curves showing the results using three different sets of predictors in the Random Forests model. The figure on the left shows the

ROC curve with all diagnoses known at admission, while the figure on the right shows all diagnoses known at discharge. The ROC curve in the middle is for the

models using only the diagnoses known at admission, excluding all admissions with DNR and palliative care codes at admission. B (Lower panel). Precision-

Recall plot showing the results using three different sets of predictors in the Random Forests model. The figure on the left shows the PR curve with all diagnoses

known at admission and on the right all diagnoses known at discharge. The PR curve in the middle are the models using only the diagnoses known at

admission, excluding all admissions with codes DNR or palliative care codes at admission. Both approaches show low performance using CCI as a predictor for

in-hospital mortality, while the models using ICD as predictors perform best overall. Legend: CCI = Charlson Comorbidity Index; RoM = Risk of Mortality;

ICD = International Classification of Diseases.

https://doi.org/10.1371/journal.pone.0235117.g002
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license is available in the software package (e.g., EHR), as the calculation is needed at real time

and may come with an extra license cost. One of the key differences between the aggregated

RoM score and the ICD predictors is the inclusion of the principal diagnosis. Where RoM

applies this for risk adjustment, our models with ICD codes uses this principal diagnosis func-

tion as a full predictor. The models we constructed excluding the principal diagnosis as predic-

tor all perform better than the models based on RoM. Another potential explanation for the

difference could be the fixed weighting in the RoM calculation; this is unlike the weighting of

the predictors, which depends in our ICD models on the patient mix used for training.

We have found only a few prior hospital-wide studies predicting in-hospital mortality at

admission in the literature [20]. One study using deep learning as technique and extracting the

data from EHRs into a specific format achieved an AUCROC of 0.90. The potential of ICD-

10-CM diagnoses as predictors in hospital-wide studies has not been sufficiently researched

and as such we can only compare the AUCROC calculated from our model to that based on

RoM at moment of discharge on all patients (RoM_AUCROC = 0.93). In this perspective, a

single study only included non-cardiac surgery patients in its model [10], obtaining an

AUCROC of 0.97. In another study including only non-chirurgical patients [14], an AUCROC

of 0.86 was observed. In a preliminary study [13] on the same data set, without the inclusion of

laboratory data and without using a penalization factor in the logistic regression, an AUCROC

of only 0.81 was achieved. As other techniques, patient mix, and predictors are included, the

models are not fully comparable, hampering conclusions. Our models containing all ICD-

10-CM diagnosis codes at discharge already have an AUCROC of 0.98, and could be optimized

using variables such as age. We believe that our models have a good performance with still a

large potential for improvement.

In our study, the codes are manual retrieved by ICD-coding-experts using the information

from the EHR. This implies a certain degree of human error and bias within the codes. These

codes, however are also the basis for the calculation of CCI and RoM and as such the same bias

Fig 3. Variable importance plot for the models using ICD-10-CM diagnosis codes as predictors at admission and discharge, either using all diagnosis

codes, without the Do Not Resuscitate or palliative care codes at admission, or without these codes and without the principal diagnosis. Whereas

‘Encounter for palliative care’, ‘Do not resuscitate’ and ‘Encounter for other aftercare and medical care’ are the three most important variables in the models

with all diagnosis, ‘Cardiac arrest’ is the most important variable in the model with the excluded patients.

https://doi.org/10.1371/journal.pone.0235117.g003
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holds for all predictors. We are also aware that the codes for DNR will be biased: there will be a

general tendency towards undercoding rather than overcoding, as they do not influence the

severity of illness of an individual patient and as such do not have an impact on the financial

reimbursement. However, our results show that patients with these codes already have a large

effect on the model. As such, we believe that the potentially-missing codes will only have a

minor effect on our models. The same holds for the PoA flag. This flag will be biased, as

human interference is needed to unflag the diagnosis code. However, the results comparing

the measures will remain the same, as the same codes are flagged for all measures. The results

of the models may be slightly biased due to repeated measures (e.g. if a patient was admitted

more than one time during the study period), as all admissions are treated equally. To over-

come this bias, we should remove all admissions previous to the readmissions. In our dataset

only 2.5% of the admissions are readmitted within 30 days.

To optimize the model we should include administrative variables with proven importance

for adjusting mortality risk [25]. We did not include the ICD-10-PCS procedures codes, as we

could not distinguish which procedure was known and planned upon admission. RoM implic-

itly uses procedures, as the RoM is risk-adjusted for the procedures and depends on a pathol-

ogy group (which may be non-surgical or surgical). Nevertheless, our models with ICD-

10-CM diagnosis codes still outperform RoM as a predictor, and could thus only be improved.

The predictive performance of the risk adjustment models could be further improved, among

other factors, through the inclusion of laboratory data, as shown in many studies [12, 14, 18,

26]. It has been shown that a limited set of routine laboratory results upon admission can con-

tribute to risk stratification and independently predict mortality in patients hospitalized with

acute heart failure [27]; the inclusion of laboratory data at admission from our EHR thus

seems necessary [28]. In many electronic health records these laboratory data can be found as

Logical Observation Identifiers Names and Codes (http://www.regenstrief.org/resources/

loinc/).

The dataset for this study was extracted from a single center. It is possible that the perfor-

mance may differ in other institutions with other patient mixes. However, we believe that the

conclusions should be independent of the actual patient mix. We should also be aware that in

some cases no represented sample is available in our historical data. Not only will there be new

patients, with different case mixes, but ICD-10-CM also has yearly updates with the introduc-

tion of new codes. Refreshing of the model on a frequent basis is thus necessary in order to

continue optimal predictions.

In conclusion, a predictive model with trustworthy operating characteristics can be derived

from compulsory administrative data. A predictive model containing ICD-10-CM codes out-

performs the conventional tools of combined scores. Data available at admission are required

to develop a clinically-relevant warning system. An automated system would allow real-time

alerts, without increasing workload and additional costs, while improving patient outcomes.
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