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Abstract

Background: In several neurodegenerative disorders, toxic effects of glial cells on neurons are implicated. However the
generality of the non-cell autonomous pathologies derived from glial cells has not been established, and the specificity
among different neurodegenerative disorders remains unknown.

Methodology/Principal Findings: We newly generated Drosophila models expressing human mutant huntingtin
(hHtt103Q) or ataxin-1 (hAtx1-82Q) in the glial cell lineage at different stages of differentiation, and analyzed their
morphological and behavioral phenotypes. To express hHtt103Q and hAtx1-82Q, we used 2 different Gal4 drivers, gcm-Gal4
and repo-Gal4. Gcm-Gal4 is known to be a neuroglioblast/glioblast-specific driver whose effect is limited to development.
Repo-Gal4 is known to be a pan-glial driver and the expression starts at glioblasts and continues after terminal
differentiation. Gcm-Gal4-induced hHtt103Q was more toxic than repo-Gal4-induced hHtt103Q from the aspects of
development, locomotive activity and survival of flies. When hAtx1-82Q was expressed by gcm- or repo-Gal4 driver, no fly
became adult. Interestingly, the head and brain sizes were markedly reduced in a part of pupae expressing hAtx1-82Q under
the control of gcm-Gal4, and these pupae showed extreme destruction of the brain structure. The other pupae expressing
hAtx1-82Q also showed brain shrinkage and abnormal connections of neurons. These results suggested that expression of
polyQ proteins in neuroglioblasts provided a remarkable effect on the developmental and adult brains, and that glial cell
lineage expression of hAtx1-82Q was more toxic than that of hHtt103Q in our assays.

Conclusion/Significance: All these studies suggested that the non-cell autonomous effect of glial cells might be a common
pathology shared by multiple neurodegenerative disorders. In addition, the fly models would be available for analyzing
molecular pathologies and developing novel therapeutics against the non-cell autonomous polyQ pathology. In conclusion,
our novel fly models have extended the non-cell autonomous pathology hypothesis as well as the developmental effect
hypothesis to multiple polyQ diseases. The two pathologies might be generally shared in neurodegeneration.
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Introduction

Effects of glial expression of mutant proteins (or non-cell

autonomous effects) on the pathology have been suggested in

amyotrophic lateral sclerosis (ALS) and in spinocerebellar ataxia

type 7 (SCA7). Primary mouse spinal motor neurons expressing

mutant superoxide dismutase 1 (SOD1) do not provoke motor

neuron degeneration, whereas when motor neurons were generated

from embryonic stem cells (ESCs), co-culture with primary glial cells

from transgenic mice expressing mutant SOD1 induces neurode-

generative changes of co-cultured neurons [1,2]. Furthermore,

conditioned media by astrocytes but not fibroblasts, microglias, or

cortical neurons induces cell death of motor neurons, suggesting

soluble factor(s) mediate the non-cell autonomous effect. These

effects in vitro were confirmed also in vivo. Selective Cre-mediated

gene excision of mutant SOD1 in astrocytes improved the survival

of SOD1 expressing mice [3], while mutant SOD1 expression in cell

types other than motor neurons and oligodendrocytes seem to

accelerate the onset of motor neuron disease phenotype [4].

Specifically in the case of mutant SOD1 transgenic mice, secreted

mutant SOD1 protein from reactive astrocytes might be a mediator

of the glial toxicity [5].

In polyglutamine (polyQ) diseases, the La Spada group reported

that mutant ataxin-7 in Bergmann glias induces ataxia and

neurodegeneration of Purkinje cells in mice [6]. The Orr group

also reported that embryonic expression of human ataxin-1

(hAtx1), the causative gene product of SCA1, which interacts

with retinoic acid orphan receptor alpha (ROR-a) and disturbs

Purkinje cell development, affects the pathology in adulthood [7].

It indicates that the mutant gene expression and its interaction
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with mediator molecules during development are critical factors

for the SCA1 pathology. All these studies suggested that the non-

cell autonomous effect of glial cells might be a common pathology

shared by multiple neurodegenerative disorders.

In this study, to test this hypothesis of non-cell autonomous

effects by glial cells as well as by stem/progenitor cells, we

generated and analyzed phenotypes of Drosophila models

expressing human mutant Htt or Atx1 in the glial cell lineage at

different stages of differentiation. In both cases, severe phenotypes

are observed in development, locomotive activity and survival of

flies. Morphological analyses of these flies revealed severe

degeneration of neurons in the brain. These results further

support the concept that glial cells expressing mutant proteins

provides a non-cell autonomous effect on neurons. In addition, the

fly models would be available for analyzing molecular pathologies

and developing novel therapeutics against the non-cell autono-

mous polyQ pathology.

Results

Generation of fly models expressing mutant polyQ
proteins in glial cell lineage

We used two Gal4 drivers, repo-Gal4 and gcm-Gal4 to express

polyglutamine proteins in glial lineage cells. Glial Cell Missing

(gcm) is a transcription factor that regulates glial cell lineage

commitment to longitudinal glioblast cells [8]. After the commit-

ment, gcm expression decreases rapidly but sustains until immature

glial cells [8] (Fig. 1A). Exceptionally, a small percentage of mature

neurons in ventral nerve cord seem to express gcm [9] beside glial

cell lineage. Reversed Polarity (repo), a homeobox gene required for

the differentiation and maintenance of glia function, is another

marker of glial cell lineage [10]. Repo is expressed from glioblasts,

immature to mature glial cells but not in neuroglioblasts (Fig. 1B).

All glial cells except midline glias express repo [8,10]. GCM protein

is known to regulate transcription of repo in glial cells [11,12].

In Figure 1, such differences between gcm and repo expression

patterns are summarized. Gcm is mainly expressed around

commitment to glial cell lineage. Expression level of repo is from

immature to mature glial cells is far higher than that of gcm.

Therefore, in brief, we can induce glial cell-specific gene

expression by repo driver and stem/progenitor cell-specific gene

expression by gcm driver in the glial cell lineage (Fig 1A, B).

Existence of different types of cells in glial cell lineage or neuronal

cell lineage is also summarized in Table (Fig. 1C).

Behavioral and survival effects of glial cell-lineage
expression of mutant huntingtin

We crossed male repo-Gal4 flies balanced by a balancer

chromosome (TM3, sb) with UAS-hHtt103Q virgin females because

homo repo-Gal4 fly is lethal. The number of F1 flies was not

different between repo-Gal4 positive and negative flies (Table 1),

suggesting that embryogenesis of the flies expressing mutant

human Htt in glial cells was largely normal. Therefore, we tested

lifespan and motor activity of adult repo-Gal4/ UAS-hHtt103Q (repo;

hHtt103Q) flies, and found lifespan shortening and abnormal

motor activities (Fig. 2A, B). We also observed spontaneous

activity of the flies, which was basically in accordance with the

Light-Dark cycle but partially arrhythmic (Fig. 2C vs 2D). In

addition, their spontaneous activities decreased gradually during

the test period (Fig. 2D).

We next employed gcm-Gal4 driver for expression of mutant Htt.

Because the homo gcm-Gal4 flies were lethal, gcm-Gal4 flies were

balanced by a balancer chromosome (Gla). Then we crossed them

with virgin female UAS-hHtt103 flies like generation from repo-Gal4

flies. In this case, the birth rate of gcm-Gal4/+; UAS-hHtt103Q/+
(gcm; hHtt103Q) fly was remarkably reduced (Table 1), suggesting

that developmental abnormalities were induced by mutant Htt

expression in neuroglioblasts/glioblasts. Although the number of

the gcm; hHtt103Q adult flies were small, all the flies were available

for behavioral analyses. We found their lifespan to be shortened

remarkably (Fig. 2A). Their anti-gravity climbing activity was not

impaired within 24 hrs after eclosion, but they became unable to

move within few days (Fig. 2B). Because of the small number of

adult flies and their very short lifespan we could not calculate their

daily activities.

Pathological effects of glial cell-lineage expression of
mutant huntingtin

We next performed morphological analysis of these fly models.

Expression of human mutant Htt protein with 103 polyQ repeats

(hHtt103Q) was confirmed by immunohistochemistry with N-18

anti-htt antibody (Fig. 3A, N-18). The distribution pattern of the

mutant hHtt inclusion bodies in the brain at Day 2 was consistent

with that of glial cells (Fig. 3A, repo). We also performed double

staining of repo and mutant hHtt and the validity of the repo-Gal4

driver was confirmed (Fig. 3A, merge arrow heads and 1,8).

Toluidine blue staining revealed vacuolar changes in retina and

lamina of the repo; hHtt103Q flies (Fig. 3B, arrows), but not in the

gcm; hHtt103Q flies. The number or signal intensity of glial cells

stained by anti-repo antibody were reduced and photoreceptor

cells stained by anti-elav antibody showed abnormal alignment

and morphology at a high magnification in the retina of the repo;

hHtt103Q flies (Fig. 3B). In the gcm; hHtt103Q flies, morphological

change was not remarkable (Fig. 3B).

Developmental effects of glial cell-lineage expression of
mutant ataxin-1

No adult fly was obtained in expression of mutant human

ataxin-1 (hAtx1-82Q) under the control of gcm-Gal4 or repo-Gal4

driver. Therefore, we tried to determine the stage when the

development of the expressers was inhibited. To discriminate the

flies expressing hAtx1-82Q, we employed GFP-balancers. As

expected, we could distinguish hAtx1-82Q/+ (or Y); gcm-Gal4/+ flies

from hAtx1-82Q/+ (or Y); CyO,GFP/+ flies by fluorescence even at

larval stage. hAtx1-82Q/+ (or Y);;repo-Gal4/+ and hAtx1-82Q /+ (or

Y);;TM3, GFP sb/+ could be also distinguished by GFP.

At 1st and 2nd instar larvae (L1–L2), hAtx1-82Q driven by gcm-

and repo-Gal4 did not affect the survival (Fig. 4A). Afterwards the

ratio of F1 flies expressing hAtx1-82Q was declined during

development. The initial effect of hAtx1-82Q was detected at 3rd

instar larvae (L3) in gcm-Gal4 driver (Fig. 4A) and at early pupa

with repo-Gal4 driver (Fig. 4A). A part of larvae expressing hAtx1-

82Q by gcm- or repo-Gal4 became pupa but not adult flies (Fig. 4A).

The toxicity of hAtx1-82Q expression may be variable from larva

to eclosion stage, stochastically.

Interestingly we found a part of pupae of hAtx1-82Q /+ (or Y); gcm-

Gal4/+ (gcm; hAtx1-82Q) to have remarkably small heads (Fig. 4B). To

quantitatively evaluate the small head phenotype, the ratio between

head width and length of pupa was calculated (Fig. 4B and C). The

histogram of the ratio in gcm; hAtx1-82Q Q flies was clearly biphasic

(Fig. 4C), and nearly 50% of pupa possess extremely small heads.

Pathological effects of glial cell-lineage expression of
mutant ataxin-1

The morphologies of pupal brains were remarkably changed

both in gcm; hAtx1-82Q and repo; hAtx1-82Q pupae (Fig. 5A and B).

As shown in Fig. 4C, shrinkage of the head size by gcm-Gal4 driven

Generality of Glial PolyQ
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expression of Atx1-82Q exhibits biphasic distribution. In mild

cases, the gross structure of the central nervous system is relatively

preserved, whereas the size of each brain structure became 50–

60% of normal in length (Fig. 5B). In some parts of the brain,

vacuolations were observed in the tissue (Fig. 5B). In severe cases,

however, the brain structure was extremely destroyed and the

relationship to surrounding head tissues was also distorted (Fig. 5B).

We confirmed expression of human mutant Atx1 protein in

these pupae by immunohistochemistry (Fig. 6A). In the hATX1-

82Q/+;; repo-Gal4/+ (repo; hAtx1-82Q) flies, most glial cells co-

expressed repo and ataxin-1 proteins (Fig. 6A). A small number of

cells expressed only ataxn-1 probably because the cell viability was

reduced (Fig. 6A, arrow heads). Glial cells expressing only repo

were extremely rare (Fig. 6A arrowhead). On the other hand, in

the gcm; hAtx1-82Q flies, surviving glial cells did not express Atx1

protein (Fig. 6A, middle panels), suggesting that neuroglioblasts/

gliobalsts expressing mutant Atx1 (Fig. 1) were already selected

during development and survived glial cells not expressing Atx1

were relatively healthy.

In the repo; hAtx1-82Q pupae, the gross structure of the brain was

relatively preserved. Although the number of glial cells stained

with anti-repo antibody did not change remarkably, the neuropils

became coarse and the number of neurons stained with anti-elav

antibody was reduced (Fig. 6B). The reduction of neurons

Figure 1. Expression patterns of gcm and repo genes during glial cell lineage differentiation. (A) Gcm is expressed in neuroglioblasts,
glioblasts, and transiently in immature glia cells [8,24]. Exceptionally, expression of gcm is observed in a very few number of interneurons in the
ventral nerve cord from L1 to adult stage [9]. (B) A scheme of the expression pattern of repo. In addition, Repo is detected in longitudinal glioblasts
and glial cells [25]. (C) Existence of different types of glial cell lineage and neuronal cell lineage cells at developmental stages.
doi:10.1371/journal.pone.0004262.g001
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(photoreceptor neurons) was most prominent in retina (Fig. 6B). In

addition, anti-elav staining revealed that the number and density

of neurons surrounding optic lobes decreased remarkable in the

gcm; hAtx1-82Q and repo; hAtx1-82Q pupae.

When axons from photoreceptor neurons were stained with a

specific antibody (MAb24B10), the number of axons was reduced

and the axonal pathway from retina to lamina and that from

lamina to medulla were remarkably distorted (Fig. 7).

Discussion

In this study, we asked generality of the glia-mediated non-cell

autonomous effect and the stem/progenitor cell-mediated devel-

opmental effect in the pathology of neurodegeneration by using

Figure 2. Effects of glial expressions of hHtt103Q on survival, locomotive and spontaneous activities of adult flies. (A) The survival
curves of adult flies show that the flies expressing hHtt103Q with gcm-Gal4 driver died by Day 6 and the flies expressing hHtt103Q with repo-Gal4
driver died by Day 14. (B) Negative geotactic responses of hHtt103Q or hHtt20Q expressing flies. Because gcm; hHtt103Q flies died within 1 week as
shown in A, we could not test them at 7 days. Asterisk: p,0.05 in Student’s t-test. The mean+SE and the number of flies used for each experiment are
shown. (C) and (D) indicate spontaneous activity at Day 2 of control and repo; hHtt103Q flies, respectively. Open and filled boxes under the graph
indicate Light and Dark cycle (L:D = 12 hr:12 hr). We could not test gcm; hHtt103Q flies due to the low birth rate.
doi:10.1371/journal.pone.0004262.g002

Table 1. The number of adult flies which expressing
hHtt103Q induced by gcm-Gal4 is reduced.

driver hHtt103Q expression # of flies born

gcm-Gal4 + 3

2 120

repo-Gal4 + 60

2 60

doi:10.1371/journal.pone.0004262.t001
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two different polyQ genes in Drosophila system with two different

drivers for gene expression. Glial cell lineage expression of mutant

polyQ proteins by the two drivers evoked profound effects on

development, survival, behavior and pathology. Although the

severities and the patterns of pathological/behavioral changes

were different, both mutant hHtt and hAtx1 induced remarkable

outcomes either through stem/progenitor cell-specific or glial cell-

specific expression. These results basically support the hypothesis

that developmental and non-cell autonomous (glial) effects are

shared in multiple neurodegenerative disorders.

Previously, two groups performed homologous studies.

Kretzschmar and colleagues expressed ataxin-3 in Drosophila

neurons and glias using APPL-Gal4 and M1B-Gal4 (a Gal4-

insertion in the repo gene), respectively [13]. They beautifully

showed ataxin-3 aggregation in neurons and glial cells, as well as

vacuolar changes of glial cells. The Birman’s group analyzed

effects of repo-Gal4-driven expression of Htt93Q on behaviors

[14]. They nicely showed life span decrease and locomotor defects.

However, these analyses were limited to a single gene. Both studies

did not employ two drivers conducting glial cell lineage expression

at different developmental stages. Therefore, our study added

novel insights to the polyQ pathologies, including developmental

effects of mutant polyQ proteins expressed in glial cell lineage stem

cells and distinct effects of huntingtin and ataxin-1.

Gilal cell-specific expression of mutant hHtt by the repo driver

leads to the lifespan shortening and the abnormal motor activities

(Fig. 2A, B). Neurons, in addition to glial cells, were affected

morphologically in those flies (Fig. 3B). Similarly, remarkable

effects on neuronal functions and developmental defects, including

neuronal loss in the retina and optic lobes, were induced by repo-

driven exression of mutant hAtx1 (Fig. 6B). Thus, expression of the

two mutant polyQ proteins in glial cells definitely induces a kind of

non-cell autonomous effect on neurons.

Meanwhile, gcm-driven expression of mutant proteins in stem/

progenitor cells of glial cell lineage induced more profound effects. In

the case of hHtt, gcm-driven expression, either in neuroglioblasts or

gliobalsts, before L1 stage during development (Fig. 1) permitted

development to pupae and adult flies although the number of adult

flies was reduced (Table 1). The adult flies survived developmental

stress have short lifespan (Fig. 2A), suggesting that impairment of

stem/progenitor cells induces certain delayed effect(s) on the nervous

tissue. Our result is consistent with the findings by the other group

Figure 3. hHtt103Q expression in glial cell lineage induces pathological change in the central nervous system. (A) In repo; hHtt103Q
flies, mutant Htt stained by anti-hHtt N-18 antibody was clearly colocalized with a glial cell marker, repo stained by anti-repo antibody (upper panels,
arrow heads). High magnification shows a negative relationship between the expression level of hHtt103Q and that of repo (middle panels, dotted
squares numbered). Glial cells marked with squares in middle panels are magnified in lower panels. Four examples of high-Htt103Q cells (1,4) and 4
examples of high-repo cells (5,8) are shown. (B) Morphological changes of brains in the gcm; hHtt103Q and repo; hHtt103Q flies. The coronal sections
of the head were stained with toluidine blue, anti-repo antibody (glial cell marker), and anti-elav antibody (pan-neuron marker). Arrows in repo;
hHtt103Q flies indicate vacuolar changes.
doi:10.1371/journal.pone.0004262.g003
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Figure 4. Glial cell lineage expression of hAtx1-82Q induces abnormal development. (A) The graph shows survival from larvae to adult fly
of the hAtx1-82Q expressing (repo; hATX1-82Q and gcm; hATX1-82Q) or non-expressing siblings. The repo; hATX1-82Q and gcm; hATX1-82Q larvae (F1)
are generated by crossing UAS-hATX1-82Q virgin females and repo-Gal4/TM3, GFP Sb or gcm-Gal4/CyO, GFP males. repo+ and gcm+ are F1 of WT virgin
females and repo-Gal4/TM3, GFP Sb or gcm-Gal4/CyO, GFP males. The ratio of GFP(2)/GFP(+) larvae was calculated. The gray line in the graph is the
ideal ratio for no toxicity. (B) Head size in gcm; hATX1-82Q at mature pupa stage was evaluated. Vertical and horizontal arrows indicate the length of
pupae and the width of their heads, respectively. Wild type (control), repo; hATX1-82Q F1 and gcm; hATX1-82Q F1-pupae (GFP-negative) were
examined. The lower panels show the heads after removing the capsule. (C) Histograms show the head width /pupa length ratio (%) of pupae. The
frequency of ratio was plotted in each histogram, and the numbers of examined control, repo; hATX1-82Q and gcm; hATX1-82Q were 15, 16 and 54,
respectively.
doi:10.1371/journal.pone.0004262.g004
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that hAtx1 interaction with ROR-a induced delayed effect in the

model mice [7].

The two disease genes driven by the same driver induced

different effects. Mutant hAtx1 expression did not permit

development to adult flies in either driver (Fig. 4A). The severities

of phenotypes by repo and gcm drivers were almost similar. On the

other hand, mutant hHtt expression driven by repo and gcm drivers

permitted development to adult flies. The survival of adult flies was

shorter in gcm-driven expression than in repo-driven expression

(Fig. 2A).

The discrepancy in phenotypic severities between hHtt and

hAtx1 might come from a higher conservation of Atx1 and its

interacting molecules in Drosophila. Drosophila Htt is remarkably

different from human Htt, while Atx1 possesses 44% of homology

in the AXH domain between Drosophila and human [15]. The

AXH domain mediates neurotoxicity of hAtx1 through interaction

with Gfi-1/Senseless, which is conserved in human and Drosoph-

ila [15]. Capicua, a critical interacting molecule to hAtx1 that

mediates physiological functions of hAtx1 through binding to

phosphorylated Ser776 proximal to the AXH domain [16,17], is

also highly conserved between human and Drosophila. Therefore,

not only gain of abnormal function but also loss of physiological

function might be conserved in Drosophila models similarly to

human SCA1 pathology. Another possibility is that exon-1 of

mutant hHtt was expressed in our flies. The partial molecule might

be less toxic than the full-length hAtx1. On the other hand, as our

fly models are expressing the partial molecule, loss of physiological

function of hHtt [18] is not highly plausible in our case.

Diversity in the phenotypes of the gcm-driven hAtx1 expressing

flies is an open question. As the neuronal pathways are relatively

preserved in the mild cases of gcm; hAtx1-82Q flies and survivors

show relatively normal glial cells without mutant hAtx1, we might

be able to assume that the stem/progenitor cell survival against

mutant hAtx1 is stochastically regulated by a certain gene. As the

ratio between severe and mild cases was nearly 1:1, such a single

gene might regulate the phenotype diversity in gcm; hAtx1-82Q flies.

It would be interesting to identify the gene through genetic

screening. Although we mainly analyzed adult flies in the case of

mutant hHtt expression, the birth rate of the hHtt expressers with

the gcm-Gal4 driver was remarkably lower than that with the repo-

Figure 5. Morphological analysis of the small head phenotype in pupae expressing hAtx1-82Q in glial lineage cells. (A) The head
structure of normal pupa stained by toluidine blue. The squares indicate brain and retina regions for immunohistochemistry shown in figure 6, 7. (B)
Representative morphologies of the head of the gcm; hATX1-82Q (mild and severe cases) and repo; hATX1-82Q pupae are shown (toluidine blue
staining).
doi:10.1371/journal.pone.0004262.g005
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Gal4 driver (Table 1), suggesting that embryonic death also occurs

in mutant hHtt expression. Identification of such a modifier gene

might provide us some hints for therapeutics development.

In conclusion, our fly models expressing mutant hHtt and hAtx1

in glial cells or glial lineage stem/progenitor cells have extended

the non-cell autonomous pathology hypothesis as well as the

Figure 6. hAtx1-82Q expression in glial cell lineage induces pathological change in the central nervous system. (A) Double-staining
with anti-human Atx1 (H21) and anti-repo antibodies shows co-localization of mutant hAtx1 and repo proteins in glial cells of repo; hATX1-82Q pupae
(arrowhead). A small part cells expressed only repo or hAtx1 protein (arrow). The former would non-expressors and the latter would be ghost cells
with hAtx1 inclusions. (B) Immunohistochemistry with anti-repo and anti-elav antibodies showing glial cells and neurons, respectively. The right
higher magnifications show photoreceptor cells in the retina, which were remarkably reduced in repo; hATX1-82Q pupae.
doi:10.1371/journal.pone.0004262.g006

Generality of Glial PolyQ
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developmental effect hypothesis to multiple polyQ diseases. The

two pathologies might be generally shared in neurodegeneration.

Materials and Methods

Fly stocks and rearing conditions
All flies were raised on a corn-meal medium without propionic

acid and were maintained at 25uC and 60% humidity under a

12:12 hr light-dark cycle. pUAST-hHtt 103Q plasmid was

generated by subcloning human HD exon 1 cDNA digested from

pTL1HA3-HD90Q [19] with EcoRI and NotI, into pUAST

vector. During the subcloning, CAG repeats were expanded.

Transgenic flies of mutant Atx1 containing human full-length Atx1

with 82Q (y1w1118 UAS:ATX1 82Q) were described previously

[20,21]. w1118; P{GAL4}repo/TM3, Sb1 and gcm-Gal4/Gla flies were

obtained from the Bloomington Drosophila stock center. Canton-S

strain was used as the wild-type control in this study.

Calculation of toxicity of hAtx1 during larval and pupa stage
Males of gcm-Gal4 and repo-Gal4 driver flies which were balanced

by GFP-balancers, gcm-Gal4/CyO, GFP and repo-Gal4/TM3, GFP

Sb were crossed with UAS-hATX1 82Q homozygous virgin females

respectively. We randomly picked up F1 pupa or larvae and

checked their GFP under a stereo fluorescent microscope (LEICA,

MZFLIII). Ratio of GFP (2)/GFP (+) larva or pupa were

calculated, if expression of hAtx1-82Q at glial cells is not toxic the

ratio should be 1.

Survival assay
For measurement of lifespan, about 25 virgin females were

reared in a food vial and transferred to fresh food vials every 2 or 3

days. Numbers of dead flies were counted every 1–2 days.

Spontaneous activity assay
For spontaneous activity analysis virgin males were placed

individually in glass tubes with one end filled with medium and

another end cotton. Their motion is detected and counted by

infrared light beam breaks every 30 min using a Drosophila

Activity Monitoring System (Trikinetics, Waltham, MA). To

calculate synchronized zeitgeber rhythm the flies were kept under

12 hour light-12 hour dark cycles (LD) for 10 days.

Figure 7. hAtx1-82Q expression in glial cell lineage induces a change in a pattern of axon. Axons from photoreceptor neurons were
stained with an antibody specific for photoreceptor neurons (MAb24B10). The number of axons and their alignment were remarkably distorted
especially in repo; hATX1 82Q pupae. Lamina and medulla were remarkably deformed (white and black arrows, respectively).
doi:10.1371/journal.pone.0004262.g007

Generality of Glial PolyQ
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Negative geotaxis assay
Individual female fly was transferred to a test column (150 mm

in length and 25 mm in diameter) lined with nylon mesh. To

evaluate climbing ability of flies, we used the startle-induced

climbing assay, which had been developed by Bainton et al [22].

The bottom of test column was tapped against a soft surface of the

bench top to drop flies to the bottom after they had been placed

there for 20 sec. Although almost all flies in column were dropped

to the bottom by one tap, we used three taps to drop all flies to the

bottom. The time that flies reach 50 mm from the bottom were

counted. All flies tested reached at 50 mm within 10 sec.

Paraffin sections and Immunohistochemistry
Proboscis were removed from dissected adult female fly heads or

mature pupae and were fixed in carnoy’s solution (ethanol:

chloroform: acetate = 6:3:1) for 3 hours at 4uC, dehydrate in serial

dilutions of ethanol and embedded in paraffin (pathoprep546,

m.p. 54,56uC, Wako). The paraffin blocks were cut into 6 mm

horizontal (for pupa) or frontal (for adult heads) sections. After re-

hydration, the sections were stained with anti-huntingtin N-18

antibody (Santa Cruz, diluted 1:100), Ataxin-1 H21 antibody

(Santa Cruz, diluted 1:100), anti-elav or anti-repo (developmental

studies hybridoma bank, Iowa University, diluted 1:10 and 1:50),

and with Alexa488-conjugated secondary antibody (Jackson). Cy3-

conjugated secondary antibody (Jackson) was used for double

staining. The sections for N-18, H21 and anti-repo antibodies

were treated with microwave before staining.

Frozen sections and Immunohistochemistry
Mature pupae were fixed in 4% paraformaldehyde in PBS for

1.5 hours followed by successive incubations in 5% and 10%

sucrose for 30 minutes, 15% and 20% sucrose for 1 hour, and

30% sucrose overnight at 4 degree. All sucrose solutions were in

PBS. After the heads or mature pupae were frozen in dry ice/ n-

hexane, 10 mm frontal sections were cut with a cryostat

microtome. They were then stained with anti-chaoptin antibody

(24B10) (developmental studies hybridoma bank, Iowa University,

diluted 1:200), Alexa488-conjugated secondary antibody (Jackson).

Toluidine Blue Staining
Toluidine blue staining of adult heads or mature pupae was

performed as we described previously [21,23]. Briefly, paraffin

sections (6 mm) were stained with 0.5% toluidine blue (Merck) plus

0.5% Borax after re-hydration.
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